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Previously a compact formula for total reaction cross section for heavy-ion collisions as a function of energy
was obtained by treating the angular momentum l as a continuous variable. The accuracy of the continuum
approximation is assessed and corrections are evaluated. The accuracy of the compact equation can be improved
by a simple modification, if a higher accuracy is required. Simple rules to determine the barrier heights and the
penetration probability for the l partial wave from experimental data are presented for the collision of identical
or nonidentical light nuclei.
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I. INTRODUCTION

Nuclear fusion in heavy-ion collisions is an important
process in many phenomena. The sub-barrier fusion of light
nuclei plays an important role in the evolution of massive
stars, the dynamics of white dwarf Type Ia supernovae, and
explosions on the surface of neutron stars [1]. The fusion
of heavy nuclei just above the barrier is an important tool
in the production of superheavy nuclei [2]. The fusion of
identical light nuclei at high energies reveals interesting
effects in isolated high-angular-momentum states of the fused
system [3]. Nuclear fusion of light nuclei is utilized in
accelerator-based heavy-ion inertial fusion for fusion energy
production [4].

Previously, a simple analytical expression was obtained for
the total reaction cross section σr in the collision of nuclei A1

and A2 as a function of the collision energy E [5]:

σr (E) = πR2
0
�

E
ln

{
1 + exp

(
E − E0

�

)}
, (1)

where E0 is the barrier height for the l = 0 partial wave,
� = h̄ω/2π is the energy width parameter in the potential
barrier penetration probability, ω is the frequency of the
inverted parabola representing the potential barrier, and R0 =
r0(A1/3

1 + A
1/3
2 ) is the spatial separation between the two nuclei

at the potential barrier. By assuming that the fusion process is
equivalent to the strong-absorption of ingoing waves passing
through the potential barrier, the total reaction cross section
(1) can be interpreted as the heavy-ion fusion cross section.

Even though the fusion process involves complicated dy-
namics of channel coupling, dynamical distortions, polariza-
tions, deformations, particle transfers, proximity interactions,
and barrier penetrations [6], the simple expression of Eq. (1)
provides an efficient way to represent experimental data in
terms of important physical parameters, whose systematics
give valuable insights into the dynamics of the process. The
relationship between the barrier penetration model used in
Ref. [5] and the coupled-channels calculations for heavy-ion
fusion was discussed previously [7]. Equation (1) has been
successfully applied to describe fusion cross sections in the
collision of many projectile and target combinations [6].

As the range of fusion energy in astrophysical processes
and fusion-energy production extends to the region beyond

the sensitivity of present-day measurements, theoretical ex-
trapolations are needed to access many relevant rates of
fusion reactions [1]. It is desirable to examine the accuracy
of the simple formula (1) in the sub-barrier region. In the
other extreme in higher energy fusion, the recent interesting
observation of the stepwise increase of the fusion cross section
for two identical spin-0 nuclei [3] also calls for an analysis of
its accuracy in the high-energy fusion regime.

The simple result of Eq. (1) was obtained by treating the
discrete angular momentum l as a continuous variable. Such
a treatment incurs errors. We therefore wish to assess the
accuracy of Eq. (1) over the whole energy range and to find
how it may be improved if a higher accuracy is desired.

The simple result of Eq. (1) relies also on the assumption
that the fusion barrier height El for the l partial wave is a linear
function of l(l + 1). While such an assumption is a reasonable
concept for many reactions, there are nuclear collisions for
which such an assumption is not valid, as is evidenced by
the disagreement of the 12C + 13C data [8,9] with the main
features of Eq. (1). To diagnose such a pathological case, it
will be useful to develop tools that will enable us to determine
the fusion barrier heights El and the penetration probabilities
Pl(E), as a function of l, from experimental data. Furthermore,
the direct determination of these physical quantities provides
useful insight into the fusion process.

For those cases where the basic assumption of the linear
dependence of the fusion barrier El on l(l + 1) does not hold,
we would like to propose alternative methods to describe
the reaction cross section. We wish to design a framework
to partition the reaction cross section such that contributions
to different regions of l partial waves can be singled out for
special scrutiny.

This paper is organized as follows. In Sec. II, we evaluate
the reaction cross section and develop the rules for fusion
barrier analysis. In Sec. III, we present the formulation of
the reaction cross section, the continuum approximation, and
its corrections. In Sec. IV, we give the numerical results and
the comparison with experimental data. In Sec. V, we carry
out a barrier analysis for 12C + 13C and show that the barrier
El for that reaction is not a linear function of l(l + 1). We
show how the fusion cross section of such a pathological case
can be described by an alternative method of partitioning the
reaction cross section. We present the rules for barrier analysis
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in Sec. VI and the rules for the penetration probability analysis
in Sec. VII, for the collision of identical or nonidentical light
nuclei. In Sec. VIII, we present our conclusions and discussion.

II. REACTION CROSS SECTION AND FUSION BARRIER
ANALYSIS

We approximate various barriers for different partial l

waves by inverted harmonic-oscillator potentials of height
El and frequency ωl in the ingoing-wave strong-absorption
model. For a collision energy E, the probability for the
absorption of the l partial wave is then given by the Hill-
Wheeler penetration probability formula [10],

Pl(E) = 1

1 + exp{2π (El − E)/h̄ωl} . (2)

As a consequence, the total reaction cross section as a function
of E for the collision of unequal nuclei is [5]

σr (E) = π

k2

∑
l=0,1,2,...

2l + 1

1 + exp{2π (El − E)/h̄ωl} . (3)

The above expression can be cast in a more illuminating
form in terms of the de Broglie wavelength λ = 1/k. The
natural unit of cross sectional area in de Broglie wavelength
scales is πλ 2 [11], which can be conveniently called the de
Broglie cross section. Using Eq. (3), we can construct the
dimensionless measure of the reaction cross section σr in units
of πλ 2, (σr/πλ 2), at the collision energy E, as given by

(σr/πλ 2)(E) =
∑

l=0,1,2,...

f (l) = f0 + f1 + f2 + f3 + · · · ,

(4)

where

fl = f (l) = 2l + 1

1 + exp{(El − E)/�l} , (5)

and �l = h̄ωl/2π . We can evaluate (σr/πλ 2)(E) at the
collision energy E. We find from Eq. (4) that for the energy E

such that

l2 � (σr/πλ 2)(E) � (l + 1)2, (6)

the reaction cross section at energy E is

(σr/πλ 2)(E) = l2 + 2l + 1

1 + exp{(El − E)/�} + C(l, E),

(7)

where the correction term C(l, E) takes into account the width
�l for the barrier penetration. It is given explicitly by

C(l, E) = −
l−1∑
l′=0

2l′ + 1

1 + exp{(E − El′)/�l′ }�(l − 1)

+
∞∑

l′=l+1

2l′ + 1

1 + exp{(El′ − E)/�l′ } , (8)

where �(x) = 1 for x � 0.
For the evaluation of the reaction cross section and the

correction term C(l, E), we shall study a simple model in

which we assume that the barriers El and the frequencies h̄ωl

(or �l) are related to l by

El = E0 + h̄2l(l + 1)

2μR2
0

, (9)

h̄ωl ∼ h̄ω (or�l = �), (10)

where μ = A1A2mnucleon/(A1 + A2) is the reduced mass. We
shall further convert the summations in Eq. (8) as integrals
in the continuum approximation, then the correction term is
given explicitly by

C(l = 0, E) = 2μR2
0�

h̄2 ln[1 + exp{(E − E1)/�}], (11)

C(l = 1, E) = 2μR2
0�

h̄2 ln[1 + exp{(E − E2)/�}]

− 1

1 + exp{(E − E0)/�} , (12)

C(l � 2, E) = 2μR2
0�

h̄2 ln[1 + exp{(E − El+1)/�}]

− 2μR2
0�

h̄2 ln

[
1 + exp{(El−1 − E)/�}
1 + exp{(E0 − E)/�}

]
.

(13)

Thus, Eq. (7), with supplementary equations (6), (11), (12),
and (13), gives the reaction cross section as a function of
energy E.

We can evaluate the reaction cross section (σr/πλ 2)(El) at
the barrier El . It is given by

(σr/πλ 2)|El
= l(l + 1) + 1

2 + C(l, El), (14)

where the correction term C(l, El) is

C(l = 0, El) = 2�

E1 − E0
ln[1 + exp{(El − El+1)/�}],

C(l = 1, El) = 2�

E1 − E0
ln[1 + exp{(El − El+1)/�}]

− 1

1 + exp{(El − E0)/�} , (15)

C(l � 2, El) = 2�

E1 − E0
ln[1 + exp{(El − El+1)/�}]

− 2�

E1 − E0
ln

[
1 + exp{(El−1 − El)/�}
1 + exp{(E0 − El)/�}

]
.

Equation (14) has a simple physical interpretation. As illus-
trated in Fig. 2.1 of Blatt and Weisskopf [11], the partial wave
l′ contributes 2l′ + 1 units to the dimensionless measure of the
reaction cross section. The total contribution is the integral
of

∫
dl′(2l′ + 1). Therefore, the dimensionless measure of

the reaction cross section, up to the fusion barrier of the l

partial wave, is given by l(l + 1) on the right-hand side. The
additional constant 1/2 is purely quantum mechanical in origin
and it depends on the symmetry of the colliding system, as
will be discussed in Sec. VI. The correction term C(l, El)
in Eq. (14) takes into account the finite energy width �l for
barrier penetration probability relative to the spacing between
adjacent fusion barriers.
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TABLE I. The value of the dimensionless measure σr/πλ2 at
which the fusion barriers El for the l partial wave is located, for the
collision of unequal nuclei, when the correction term C(l, El) can be
neglected.

l 0 1 2 3 4 5

σr/πλ 2 0.5 2.5 6.5 12.5 20.5 30.5

Equations (14) and (15) can be inverted to provide the rule
for the “barrier analysis” for unequal nuclei as follows. The
fusion barrier El for the l partial wave is located at the value
of energy E at which the dimensionless reaction cross section
measure, σr/πλ 2, is equal to l(l + 1) + 1/2 + C(l, El). If the
dimensionless measure (σr/πλ 2) can be obtained experimen-
tally as a function of E, the heights of various fusion barriers
El can be determined iteratively, within the present model of
fusion barrier penetration.

In the beginning of the iteration, one neglects the correction
C(l, El), and the barriers El can be determined from the
σr/πλ 2 values. With the knowledge of the barriers heights
El the correction terms C(l, El) can be evaluated for different
l partial waves, and the barrier quantities El can be corrected.
In these iterations, it is necessary to know the width parameter
�, which can be obtained either from a fit of the experimental
fusion cross section with Eq. (1) or from the penetration
probability analysis, as will be discussed in Sec. VII.

We list the values of σr/πλ 2 at which the fusion barriers
El are located for the collision of unequal nuclei in Table I,
when the correction term C(l, El) can be neglected.

The ratio �/(El − El−1) in the correction term C(l, El)
varies with the colliding nuclei mass number as A5/3�/2l.
Thus, a decrease in the mass number or an increase in the
angular momentum l will lead to a smaller �/(El − El−1)
and a smaller correction term C(l, El). Our investigations
in subsequent sections (Tables II and III) indicate that, for
light nuclei collisions, the condition of � � |El − El±1| is
approximately fulfilled so that C(l, El) is small. It becomes
appropriate to neglect the correction term in the barrier analysis
for light nuclei collisions. For heavy nuclei collisions, while
the neglect of the correction C(l, El) may be appropriate in the
barrier analysis for large angular momentum l, the correction
term must be properly taken into account for partial waves
with small values of l.

III. THE CONTINUUM APPROXIMATION AND ITS
CORRECTIONS

Our model assumption of a linear dependence of El on
l(l + 1) in Eq. (9) is a reasonable concept for cases when
the effective separation of the two colliding nuclei, R0, at
the fusion barrier is insensitive to the change of the angular
momentum l. While such an assumption is reasonable for most
reactions, there are however cases, such as 12C + 13C, in which
such an assumption may not be valid. The method of barrier
analysis we have just developed in Sec. II may be used to
diagnose the pathological case. We shall discuss the collision
of 12C + 13C in Sec. V.

By replacing the sum in Eq. (3) by an integral in the
continuum approximation, the reaction cross section can be
integrated to yield the analytical formula of Eq. (1) [5]. Such a
replacement of the discrete l variable by a continuous variable
incurs errors. It is desirable to find the magnitude of the errors
and ways to correct for these errors, if a higher accuracy is
required. For brevity of notation, we introduce a and g to
rewrite fl as

fl = f (l) = 2l + 1

1 + exp{[al(l + 1) − ε)]/�} ≡ 2l + 1

1 + g
, (16)

where g = exp{[al(l + 1) − ε]/�}, ε = E − E0, and a =
h̄2/2μR2

0 .
Our effort to examine the errors brings us to partition the

contributions in Eq. (4) into two groups: (i) one group of l

states for which the continuum approximation is a reasonable
concept and analytical results can be readily obtained and
(ii) another group of discrete l states which remain as they
are, without applying the continuum approximation, and
their contributions to the total reaction cross section can be
subsequently singled out for scrutiny.

The l = 0 state is important in sub-barrier fusion and it is
not suitable for the continuum approximation. We shall keep
f0 to remain as it is in Eq. (4). We can express fl with l � 1
as a continuous integral with a correction 	fl :

fl =
∫ l+1/2

l−1/2
dlf (l) + 	fl. (17)

The function f (l) has an indefinite integral∫
dlf (l) = −�

a
ln

{
1 + exp

[
ε − al(l + 1)

�

]}
≡ F (l).

(18)

In terms of the function F (l), we have

fl = F (l + 1/2) − F (l − 1/2) + 	fl. (19)

By definition, the correction term 	fl is then given by

	fl = f (l) − [F (l + 1/2) − F (l − 1/2)]. (20)

Treating l as a continuous variable in the above equation and
expanding the function F (l ± 1/2) about l in a Taylor series
with 	l = 1/2, we obtain explicitly

	fl = −2
∑

n=2,4,..

(	l)n+1

(n + 1)!

dn

dln
f (l). (21)

We thus obtain the central result that, in the continuum
approximation, any term fl with l � 1 in the series of Eq. (4)
can be replaced by Eq. (19) of the known function F (l), with
	fl given by Eq. (21). For example, if we wish to partition
the partial wave into those with [0, lL] as a discrete sum, with
those in [lL + 1,∞] in the continuum approximation, then we
obtain for such a partition

σr

πλ 2
=

lL∑
l=0

f (l) − F (lL + 1/2)

− 2
∑

l=lL+1,lL+2,...

{ ∑
n=2,4,...

(	l)n+1

(n + 1)!

dn

dln
f (l)

}
. (22)

064603-3



CHEUK-YIN WONG PHYSICAL REVIEW C 86, 064603 (2012)

We can use the relation

πλ 2 �

a
= πR2

0
�

E
(23)

to write the reaction cross section as

σr = πλ 2(f0 + f1 + · · · + fL)

+πR2
0
�

E
ln

{
1 + exp

[
ε

�
− (lL + 1/2)(lL + 3/2)a

�

]}

− 2πλ 2
∑

l=lL+1,lL+2,...

{ ∑
n=2,4,...

(	l)n+1

(n + 1)!

dn

dln
f (l)

}
.

(24)

In the special partition by singling out only the lowest lL = 0
wave for special consideration, then up to the third order (	l)3,
we obtain

σr = πλ 2

1 + exp{ε/�} + πR2
0
�

E
ln

{
1 + exp

(
ε

�
− 3a

4�

)}

− πλ 2

24

∑
l=1,2,3,...

d2

dl2
f (l), (25)

where the derivative in the correction term is

d2

dl2
f (l) = 6(2l + 1)

(
a

�

)[
− g

(1 + g)2

]

+ (2l + 1)3

(
a

�

)2[
− g

(1 + g)2
+ 2g2

(1 + g)3

]
.

(26)

Terms on the right-hand side of Eq. (25) have direct physical
meanings. The first term corresponds to the contribution from
the lowest l = 0 partial wave, and the second term corresponds
to the contribution from l � 1 partial waves in the continuum
approximation, and the last term is the correction due to the
continuum approximation up to the third order in 	l = 1/2.

The above considerations can be generalized. For the most
general case [12],

σr

πλ 2
=

∑
lν

[1 + η(−1)lν ]f (lν), (27)

where (i) η = 0 and lν = ν = 0, 1, 2, 3, . . . for unequal nuclei,
(ii) η = 1 and lν = 2ν = 0, 2, 4, . . . . for identical spin-0
nuclei or for identical spin-1/2 nuclei with symmetric spatial
and antisymmetric spin wave functions, and (iii) η = −1 and
lν = 2ν + 1 = 1, 3, 5, . . . for identical spin-1/2 nuclei with
antisymmetric spatial and symmetric spin wave functions.
The sum over lν can be converted into a sum over ν with
ν = 0, 1, 2, . . . . We obtain, up to the third order (	ν)3 with
	ν = 1/2,

σr = πλ 2 dlν

dν

2l0 + 1

1 + exp{[al0(l0 + 1) − ε)]/�}
+πR2

0
�

E
ln

{
1 + exp

[
ε

�
− l1/2(l1/2 + 1)a

�

]}

− 2πλ 2

(
dlν

dν

)3
( ∑

ν=1,2,3,...

(	ν)3

3!

d2

dl2
ν

f (lν)

)
. (28)
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FIG. 1. (Color online) (a) The comparison of experimental fusion
cross section for 16O + 14N [13] with theoretical results. (b) The ratio
of the cross sections from Formulas I, II, and III relative to the
Hill-Wheeler cross section.

IV. NUMERICAL RESULTS AND COMPARISON
WITH DATA

In presenting our numerical results, we shall label Eq. (1) as
Formula I, the sum of the first two terms in Eq. (25) [or (28)]
as Formula II, and the sum of all three terms in Eq. (25)
[or (28)] as Formula III. In simple physical terms, Formula I
corresponds to the earlier result of Ref. [5] using the continuum
approximation for all partial waves. Formula II is obtained
by writing out the contribution from the lowest l = 0 partial
wave explicitly and treating the higher l � 1 partial wave
contributions in the continuum approximation. Formula III
involves Formula II with the inclusion of corrections up to
the third order in 	l = 1/2. Following Esbensen [3], we shall
label the cross section obtained in the sum of Eq. (3) over the
Hill-Wheeler penetration probability, under the assumption of
Eqs. (9) and (10), as the Hill-Wheeler cross section.

We examine the sample case for the collision of 16O + 14N,
where the experimental data [13] are shown in Fig. 1(a). We
show the fit to the fusion cross section obtained with E0 =
8.8 MeV, � = 0.40 MeV (h̄ω = 2.51 MeV), and r0 = 1.45
fm as curves in Fig. 1(a). The differences among the three
formulas cannot be distinguished in the logarithmic plot. In
order to see the differences, we plot the corresponding ratios
of the cross sections relative to the Hill-Wheeler cross section
in Fig. 1(b). In the sub-barrier region, we find that Formula I
gives an error of about 4.5%, Formula II gives an error of less
than 1%, and Formula III gives an error of less than 0.01%. In
the high-energy region, all three formulas give small errors, of
the order of at most 0.3%.

We conclude from the results of Fig. 1 that for unequal
nuclei Formula I is adequate for the sub-barrier region if errors
of 5% are permitted, Formula II gives a more accurate result
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FIG. 2. (Color online) (a) Comparison of fusion cross section
data for the collision of identical spin-0 nuclei 16O + 16O [14,15]
with theoretical curves. (b) The ratio of cross sections from Formulas
I, II, and III relative to the Hill-Wheeler cross section.

in all regions with less than 1% error, and Formula III gives
even smaller errors in all regions.

In Fig. 2, we examine next the fusion cross section for the
collision of 16O + 16O, where the experimental data [14,15]
are shown in Fig. 2(a) and the theoretical results from
the three different formulas calculated with the parameters
E0 = 9.5 MeV, � = 0.4 MeV, and r0 = 1.3 fm are shown as
curves. In this case with identical spin-0 nuclei with spatially
symmetric wave functions, only the even-l partial waves
contribute to the reaction cross section. Formula II consists
of the first two terms on the right-hand side of Eq. (28) and
Formula III consists of all three terms in Eq. (28).

On the logarithmic scale of Fig. 2(a), the results from all
three formulas cannot be well distinguished. The agreement of
the experimental data with the theoretical curves may appear
reasonable. However, in Fig. 2(b) we examine the ratio of
the cross section obtained with the three different formulas
relative to the Hill-Wheeler cross section. In the sub-barrier
region, Formula I gives errors of order 6%, Formulas II and
III give errors of less than 0.3%.

In the high-energy region, all three formulas give errors
oscillating regularly about zero as a function of E. The magni-
tude of the oscillation is nearly constant for Formula II at high
energies, but it increases as the energy increases for Formula
III. These results are in agreement with the earlier observation
of Esbensen [3], who noted that, as a result of the spatial
symmetry of the wave function such that only even-l states
contribute, the energy separation between the contributing l

state and the l + 2 state increases as energy increases, and the
total reaction cross section exhibits a stepwise increase when
a high-l state enters into the formation of a fused system. As
a consequence, the continuum approximation contains large
and oscillating errors. In mathematical terms, the large error
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Two Partitions

FIG. 3. (Color online) Comparison of fusion cross section data
for 12C + 13C [8,9] with theoretical curves.

arises from the fact that even though the expansion parameter
	ν = 1/2 is less than unity in Eq. (28), it is multiplied by the
factor dlν/dν with dlν/dν = 2. Thus the effective expansion
parameter is (	ν)(dlν/dν) = 1 and the expansion in Formula
III does not properly converge.

We conclude from Fig. 2 that, for the collision of identical
spin-0 nuclei at high energies, the continuum approximation
incurs large errors. Formulas I and II give errors of about 5%
while Formula III gives even greater errors up to 15%. On the
other hand, near the sub-barrier region Formula II gives very
small errors.

V. BARRIER ANALYSIS FOR 12C + 13C

The results in the last few sections pertain to the collisions
of both light and heavy nuclei. In the collision of heavy nuclei,
however, there is the complication that the correction term
C(l, El) for low-l partial waves for the barrier analysis must
be properly taken into account in an iterative procedure, as
specified by Eqs. (14) and (15). In contrast, for light nuclei
collisions, the width parameter � is found to be substantially
smaller than the separation between adjacent barriers so that
these correction terms can be neglected in the barrier analysis,
leading to a great simplification of the problem. For simplicity,
we shall therefore specialize to light nuclei collisions in
subsequent sections.

Our ability to reach the simple results in the last sections
relies on the assumption that the fusion barrier El for the l

partial wave is a linear function of l(l + 1), as given by Eq. (9).
There may be nuclear collisions in which such an assumption
may not be valid.

We examine 12C + 13C, where the data are shown in
Fig. 3. The data can be explained well by a coupled-channels
calculation with the ingoing-wave boundary condition (IWBC)
and the M3Y+repulsive potential [8]. Nevertheless, it is useful
to examine these data from a complementary perspective in
barrier-penetration points of view. One then finds that the
12C + 13C data [8,9] cannot be described by Formula I, II,
or III. Any fit to the data near the threshold will miss the data
at some other energy region. We show in Fig. 3 the results of
Formulas I and II obtained with the parameters E0 = 4.7 MeV,
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FIG. 4. (Color online) The dimensionless quantity (σr/πλ 2) as
a function of E, on a linear scale (a) and on a logarithmic scale (b),
for the collision of 12C + 13C. In the barrier analysis, the value of
E at which (σr/πλ 2) is l(l + 1) + 1/2 is the fusion barrier El . The
horizontal lines indicate the l(l + 1) + 1/2 values shown as numbers
given along the right vertical axis. The vertical lines indicate the
positions of the fusion barriers El at which σr/πλ 2 = l(l + 1) + 1/2.
Data points are from [8,9].

� = 0.15 MeV, and r0 = 1.3 fm as the dashed curve and
the dash-dotted curve, respectively. The region around E ∼
5 MeV is not well reproduced. From the viewpoint of barrier
penetration and the simple model with the assumption of
El = E0 + al(l + 1) in Eq. (9), the shape of the fusion cross
section in the collision of 12C + 13C poses a problem.

To check whether the assumption of Eq. (9) is valid for
12C + 13C, we can carry out a “barrier analysis” by plotting
σr/πλ 2 as a function of E, as shown in Fig. 4. The plots
in Fig. 4(a) are on a linear scale and those in Fig. 4(b) are
on a logarithm scale. The rule in Eq. (14) stipulates that
the barrier El is the value of energy E at which σr/πλ 2 is
l(l + 1) + 1/2 + C(l, El). For light nuclei collision for which
the width � is substantially smaller than the spacing between
adjacent barriers, the correction term C(l, El) is small and can
be neglected. We plot σr/πλ 2 = l(l + 1) + 1/2 as horizontal
lines in Fig. 4. The energy values E where the horizontal lines
meet the data points give the locations of the fusion barriers
El in Fig. 4.

On plotting the barrier El obtained in the analysis of Fig. 4
as a function of l(l + 1), one observes in Fig. 5 that El is not
a linear function of l(l + 1), as assumed in Eq. (9). While the
linear relationship is reasonable for l � 2, the systematics of
El for l � 2 appears to be different from those with l � 2.

To examine the problem of barrier penetration, we partition
the partial waves into two parts in the intervals [0, lL] and
[lL+1,∞]. We assume the Hill-Wheeler penetration probabil-
ity for the partition in [0, lL] and describe the cross section
from the partition [lL+1,∞] by the continuum approximation.
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FIG. 5. (Color online) The fusion barrier El as a function of
l(l + 1) in the collision of 12C + 13C.

As given by Eq. (24) the reaction cross section with the neglect
of the correction term and the assumption of �l = � is

σr = πλ 2
∑

l=0,1,...,lL

2l + 1

1 + exp{(El − E)/�}

+πR2
0
�

E
ln

{
1 + exp

[
ε

�
− (lL + 1/2)(lL + 3/2)a

�

]}
.

(29)

Figure 5 indicates that the dependence of the fusion barriers
El on l(l + 1) deviates from a linear relationship, for the first
three partial waves with l = 0, 1, and 2. Consequently, we
partition the partial waves into two partitions of [0, 2] and
[3,∞] with lL = 2. The values of E0, E1, and E2 can be
read off from Fig. 5 as the starting point for parameter search,
with minor fine tuning. The results with E0 = 4.7 MeV, E1 =
5.4 MeV, E2 = 5.85 MeV, � = 0.15 MeV, and r0 = 1.3 fm are
shown as the solid curve in Fig. 3. We observe that, although
the fit of Eq. (29) to the experimental data is not perfect,
the agreement with experimental data around E ∼ 5 MeV is
substantially improved. The simple comparison indicates that
a possible solution of the peculiar shape of the fusion cross
section may involve fusion barriers increasing in a nonlinear
way as a function of l(l + 1), corresponding to a fusion radial
distance occurring at a much reduced separation for the lowest
partial waves in 12C + 13C collisions. This may be related to
the need for a repulsive core in the interaction and the mutual
excitation between the colliding nuclei, as shown in [8].

VI. BARRIER ANALYSIS FOR THE COLLISION OF
IDENTICAL LIGHT NUCLEI

The results in the last section illustrate the application of
the rule for barrier analysis in the collision of unequal nuclei.
The reaction cross section for the collision of identical nuclei
will need to obey the symmetry of the total wave function
with respect to the interchange of the colliding nuclei. As a
consequence, the barrier height analysis rule will be modified
for the collisions of identical nuclei.
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For the collision of identical spin-0 nuclei, the quantity
(σr/πλ 2) is given by

(σr/πλ 2) = 2
∑

l=0,2,4,....

2l + 1

1 + exp{(El − E)/�l} . (30)

For light nuclei collisions, |El − El±1| � �l and we can
evaluate the above quantity (σr/πλ 2) at the fusion barrier
El analytically. For the collision of identical spin-0 nuclei, the
quantity (σr/πλ 2) at the fusion barrier El (with even l value)
is

(σr/πλ 2)|El
= l(l + 1) + 1. (31)

For the collision of identical spin-1/2 nuclei, the total spin can
be S = 0 or S = 1, with a weight of 1/4 and 3/4, respectively.
As a consequence, the reaction cross section is given by

(σr/πλ 2) = 2 × 1

4

∑
l=0,2,4,....

2l + 1

1 + exp{(El − E)/�l}

+ 2 × 3

4

∑
l=1,3,5,7,....

2l + 1

1 + exp{(El − E)/�l} .

(32)

The barrier analysis rule is different for El with even-l or
odd-l partial waves. Assuming |El − Ej | � �l for l �= j for
light nuclei collisions, we find that, for the collision of identical
spin-1/2 nuclei, the quantity (σr/πλ 2) at the barrier El with
even l is given by

(σr/πλ 2)|El
= l(l + 1) + 1

4 , (33)

and the quantity σr/πλ 2 at the barrier El with odd l is given
by

(σr/πλ 2)|El
= l(l + 1) + 3

4 . (34)

These equations can be utilized to determine the fusion barriers
from experimental (σr/πλ 2) data for the collision of identical
or nonidentical light nuclei.

We can summarize the rules for the barrier analysis as
follows. The dimensionless measure of the reaction cross
section (σr/πλ 2) at the fusion barrier El is

(σr/πλ 2)|El
= l(l + 1) + K, (35)

where K is given by

K =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
2 , nonidentical nuclei,

1, identical spin-0 nuclei,
1
4 , even-l, identical spin- 1

2 nuclei,
3
4 , odd-l, identical spin- 1

2 nuclei.

(36)

The differences of (σr/πλ 2)|El
in the different cases are

large for the lowest l = 0 partial wave. The differences of
(σr/πλ 2)|El

in the different cases are small, in comparison
with the first term l(l + 1), when l is large.

VII. PENETRATION PROBABILITY ANALYSIS AND
RESONANCES FOR LIGHT NUCLEI COLLISIONS

The penetration probability Pl(E) for the l partial wave is
a physical quantity that reveals important information on the

dynamics of the fusion process. The energy E at which Pl(E)
is 1/2 is at the top of the fusion barrier, and the shape of
the potential barrier is governed by the shape and the energy
dependence of Pl(E). It is desirable to extract such a quantity
from experimental data for light nuclei collisions for which the
width � is substantially smaller than the separation between
adjacent barriers.

A. Collision of unequal light nuclei

We shall consider first the collision of unequal light nuclei
and express the dimensionless cross section (σr/πλ 2) in terms
of the penetration probability Pl(E) as

σr

πλ 2
=

∑
l=0,1,2,3,...

(2l + 1)Pl(E). (37)

The dimensionless cross section (σr/πλ 2) appears so fre-
quently that it is appropriate to abbreviate it by �(E), which
is explicitly a function of the energy E.

The penetration probability Pl(E) can be extracted from
the dimensionless cross section �(E) = (σr/πλ 2) if we
assume that the contributions of different partial waves to
the dimensionless cross section are well separated in energy
as in light nuclei collisions. Under such an assumption, we
can consider the contributions to Pl(E) from different partial
waves. In the domain of E in which Pl(E) is significant, the
contribution from each of the lower l′ < l partial waves is
saturated to Pl′ (E) = 1 while the contribution form each of the
higher l′ > l partial waves is negligible. We can decompose
the sum over l in Eq. (37) into individual contributions. For the
l partial wave in the collision of unequal nuclei, the penetration
probability is then given by

Pl(E) = �(E) − B(l)

2l + 1
�[T (l) − �(E)]�[�(E)−B(l)],

(38)

where � is the step function, T (l) is the top delimiter of
�(E), and B(l) is the bottom delimiter of �(E). For unequal
nuclei collisions, the sum of l is over l = 0, 1, 2, 3, . . ., and
the delimiters can be shown to be

T (l) = (l + 1)2, (39)

B(0) = 0, and B(l) = T (l − 1) for l � 1. (40)

If �(E) = (σr/πλ 2) is measured experimentally as a function
of E, the penetration probability Pl(E) for different partial
waves can be determined.

In Fig. 6 we show the penetration probability Pl(E)
as a function of E for various l partial waves in the
collision of 12C + 13C, obtained by using Eq. (38) and data
from [8,9]. For a given l, it is possible to determine the
fusion barrier El as the energy at which Pl(E) = 0.5, as
discussed in an equivalent procedure in Secs. II and V.
We can also extract an empirical width �l , where 2�l is
defined as the separation of E between Pl(E) = 1/(1 +
e−1) = 0.731 and Pl(E) = 1/(1 + e) = 0.269. This empirical
�l would be the same as the �l in the Hill-Wheeler for-
mula, if the penetration probability follows the Hill-Wheeler
formula.
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FIG. 6. (Color online) The penetration probability Pl(E) as a
function of E on a linear scale (a) and on a logarithmic scale (b)
for different partial waves l extracted from the data of [8,9] for the
collision of 12C + 13C.

In Table II, we list the fusion barrier El and the width �l

extracted from Pl(E) in such a procedure for 12C + 13C. As
one observes, the widths for most of the partial waves are about
equal to 0.15 MeV except for the l = 1 and 2 partial waves,
which are about 0.11–0.12 MeV.

B. Collision of identical spin-0 nuclei

We shall consider next the collision of two identical spin-0
nuclei. The dimensionless cross section (σr/πλ 2) in terms of
the penetration probability Pl(E) is

σr

πλ 2
= 2

∑
l=0,2,4,6,...

(2l + 1)Pl(E). (41)

Under the assumption that |El − Ej | � �l for l �= j for light
nuclei collisions, the contributions of different partial waves to
the dimensionless cross section are well separated in energy.
For the even-l partial wave in the collision of equal spin-0 light
nuclei, the penetration probability is given by

Pl(E) = �(E) − B(l)

2(2l + 1)
�[T (l) − �(E)]�[�(E) − B(l)],

(42)

TABLE II. The empirical values of El and �l from Pl(E), as
extracted from the data of [16] for the collision of 12C + 13C.

l 0 1 2 3 4 5

El (MeV) 4.91 5.48 5.97 6.43 6.91 7.51
�l (MeV) 0.16 0.11 0.12 ∼0.16 ∼0.15 ∼0.16
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FIG. 7. (Color online) The penetration probability Pl(E) as a
function of E on a linear scale (a) and a logarithmic scale (b) extracted
from the 12C + 12C data of [16].

where we find

T (l) = l(l + 1) + 2l + 2, (43)

B(0) = 0, and B(l) = T (l − 2) for l � 2. (44)

The penetration probability Pl(E) extracted from the
experimental 12C + 12C data [16] and Eq. (42) is shown on
a linear scale in Fig. 7(a) and on a logarithmic scale in
Fig. 7(b). One finds the fusion barrier for the l = 0 partial
wave, E0, at 5.46 MeV, at which Pl=0(E) = 0.5. The boundary
between the l = 0 and l = 2 partial waves is approximately at
E = 5.6 MeV. One observes that Pl(E) exhibits resonances.
The resonances below E = 5.6 MeV are most likely l = 0
resonances whereas those resonances above E = 5.6 MeV are
most likely l = 2 resonances.

C. Collision of identical spin-1/2 nuclei

We shall consider next the collision of two identical spin-
1/2 nuclei. The dimensionless cross section (σr/πλ 2) written
in terms of the penetration probability Pl(E) is

σr

πλ 2
= 2

[
1

4

∑
l=0,2,4,6,...

+ 3

4

∑
l=1,3,5,7,...

]
(2l + 1)Pl(E).

(45)

Under the assumption that |El − Ej | � �l for l �= j for light
nuclei collisions, the contributions of different partial waves to
the dimensionless cross section are well separated in energy.
In the collision of identical spin-1/2 nuclei, the penetration
probability for the even-l partial wave is given by

Pl(E) = �(E) − B(l)

(2l + 1)/2
�[T (l) − �(E)]�[�(E) − B(l)],

(46)
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FIG. 8. (Color online) The penetration probability Pl(E) as a
function of E on a linear scale (a) and a logarithmic scale (b) extracted
from the 13C + 13C data of [17].

where T (l) with even l is given by

T (l) = l(l + 1) + (l + 1)/2, (47)

and the function B(l) is given by

B(0) = 0, and B(l) = T (l − 1) for l � 1. (48)

In the collision of identical spin-1/2 nuclei, the penetration
probability for the odd-l partial wave is

Pl(E) = �(E) − B(l)

3(2l + 1)/2
�[T (l) − �(E)]�[�(E) − B(l)],

(49)

where T (l) with odd l is

T (l) = l(l + 1) + (3l + 3)/2, (50)

and the function B(l) is given again by

B(0) = 0, and B(l) = T (l − 1) for l � 1. (51)

Using Eq. (46) or (49) and the 13C + 13C data from [17], we
extract the penetration probability Pl(E) as a function of E for
various l partial waves. The results are shown on a linear scale
in Fig. 8(a) and on a logarithmic scale in Fig. 8(b). In Table III,
we list the fusion barrier El and the width �l extracted from
Pl(E) in such a procedure for 13C + 13C. As one observes, the
widths for the even-l states and the widths from the odd-l states
appear to fall into two different groups, with � for the even-l

TABLE III. The empirical values of El and �l from Pl(E), as
extracted from the data of [17] for the collision of 13C + 13C.

l 0 1 2 3 4 5

El (MeV) 4.70 5.59 6.04 6.68 7.16 7.86
�l (MeV) 0.12 0.19 0.07 0.22 0.10 0.20

states in the 0.7–0.12 MeV range, while the width parameters
� for the odd-l states lie in the 0.19–0.22 MeV range. There
seems to be strong dependence on the even or odd property of
the angular momentum l of the fused system.

It should be noted that, in deriving the barrier and
penetration probability rules, we have made the assumption
that |El − Ej | � �l for l �= j . The results in Table II and III
for El and �L indicate that such an assumption is substantially
valid and is a reasonable and approximate idealization for light
nuclei collisions. The extracted barrier height and penetration
probabilities are approximate quantities that reveal the gross
features of the fusion process.

VIII. CONCLUSIONS AND DISCUSSION

By treating the angular momentum as a continuous variable,
the reaction cross section can be evaluated in a simple
analytical form. The continuum approximation of the discrete
angular momentum variable carries errors, and these errors
can be evaluated and amended to previous results.

Three different formulas have been presented in the present
formulations. Formula I corresponds to the earlier result of
Ref. [5] using the continuum approximation for all partial
waves. Formula II is obtained by writing out the contribution
from the lowest l = 0 partial wave explicitly and treating
the higher l � 1 partial wave contributions in the continuum
approximation. Formula III involves Formula II with the
inclusion of corrections up to the second order in 	l = 1/2.

For the collision of unequal nuclei, the better formula is
Formula II, which incurs errors of order 0.7% in the sub-
barrier regions and errors of order 0.2% at high energies. The
simpler Formula I incurs errors of about 4.4% in the sub-barrier
region and errors of about 0.4% at high energies. Higher order
corrections in Formula III can be used if high accuracy is
desired, with errors of about 0.005% in the sub-barrier region
and errors of about 0.12% at high energies.

For the collision of identical spin-0 nuclei, the application
of these formulas incurs substantial errors. The best formula
for identical spin-0 nuclei is Formula II, which incurs errors
of about 0.2% in the sub-barrier regions and errors of about
5.0% at high energies. On the other hand, the simpler Formula
I incurs errors of about 6.0% in the sub-barrier region and
errors of about 5.5% at high energies.

Simple rules have been presented to determine the barriers
El and the penetration probabilities Pl(E) for different l partial
waves from experimental data for the collision of identical
or nonidentical light nuclei. The direct determination of the
physical quantities as a function of l gives new insight into the
fusion process. The barrier analysis rule has been successfully
applied to examine the relation between the fusion barrier and
l for the pathological case of 12C + 13C. The application of
the penetration probability analysis reveals quantitatively the
resonance structure in 12C + 12C collisions.

We note that the partitioning of the partial waves into the
lowest l region and the higher l region has some advantages in
phenomenology. There are situations in which the properties
of the potential barriers for the lowest l states may deviate
from the systematics of those for the higher l states. These
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lowest l states may need to be specially handled. One may
provide a different description of the penetration probabilities
for the lowest partial waves, with contributions from higher
l partial waves represented analytically in the continuum
approximation. By this partition, the new degrees of freedom,
if any, can be incorporated into the penetration probability
to provide a clearer picture of the dynamics of the fusion
process.

For simplicity, we have carried out the barrier analysis and
the penetration probability analysis for light nuclei collisions.
For collision with heavy nuclei, however, � is not small
compared to adjacent barrier separations |El − El±1|. The
barrier analysis for low-l partial waves needs to be carried out
iteratively. While analytical expressions have been obtained to

carry out such an iterative procedure, whether such a barrier
analysis for heavy-nuclei collisions may be practical remains
to be investigated.
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