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The covariant density functional theory with the point-coupling interaction PC-PK1 is compared with new
and accurate experimental masses in the element range from 50 to 91. The experimental data are from a mass
measurement performed with the storage ring mass spectrometry at Gesellschaft für Schwerionenforschung (GSI)
[Chen et al., Nucl. Phys. A 882, 71 (2012)]. Although the microscopic theory contains only 11 parameters, it
agrees well with the experimental data. The comparison is characterized by a rms deviation of 0.859 MeV. For
even-even nuclei, the theory agrees within about 600 keV. Larger deviations are observed in this comparison
for the odd-A and odd-odd nuclei. Improvements and possible reasons for the deviations are discussed in this
contribution as well.
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Nuclear masses play a vital role not only in the nuclear
physics but also in weak-interaction studies and astrophysics.
In particular, the mass of heavy neutron-rich nuclei is one
of the basic topics in nuclear physics and is essential
for understanding the rapid neutron-capture nucleosynthesis
process (r process).

During recent decades, great achievements in mass mea-
surements of neutron-rich nuclei have been made, thanks to
the applications of cyclotron, storage ring, and penning trap
facilities [1]. Despite the experimental progress, the masses of
a large number of neutron-rich nuclei relevant to the r process
remain unmeasured due to difficulties in production, separa-
tion, and detection. Therefore, reliable theoretical predictions
of the nuclear mass are imperative at the present time.

The theoretical determination of nuclear masses can be
traced to the von Weizsäcker mass formula, which was
proposed based on the famous liquid drop model (LDM) [2].
Since then, tremendous effort has been made in pursuing
different possible extensions of the LDM which are known as
the macroscopic-microscopic models, for example, the finite-
range droplet model (FRDM) [3], the extended Thomas-Fermi
plus Strutinsky integral with shell quenching (ETFSI-Q) model
[4], and the Weizsäcker-Skyrme (WS) model [5]. It turns out
that these macroscopic-microscopic models work pretty well
in the description of known nuclides, but their predictions show
a large deviation for very neutron-rich nuclides. In addition,
the local mass relations such as the isobaric multiplet mass
equation (IMME) [6], the Garvey-Kelson (GK) relations [7],
and the residual proton-neutron interactions [8] are also used
to give predictions of unmeasured masses.

In principle, an ideal mass formula would be one in which
the masses of all nuclei are derived from the basic nucleonic
interactions. In this regard, the microscopic-rooted mass
model, which treats the macroscopic part and the microscopic
corrections in a unified framework, is usually believed to have a
more reliable extrapolation to the unknown regions. In the past
decade, a series of microscopic-rooted mass models based on

the nonrelativistic density functional theory (DFT) have been
developed with the Hartree-Fock-Bogoliubov (HFB) method
and have achieved great success in the description of known
masses (see Refs. [9–11] and references therein). In these
models, the model parameters are fitted to essentially all the
experimental mass data.

Apart from the nonrelativistic DFT, the covariant density
functional theory (CDFT) has also received wide attention
due to its successful description of many nuclear phenomena
[12–15]. There exist a number of attractive features in the
CDFT, especially in its practical applications in the self-
consistent relativistic mean-field (RMF) framework. The most
obvious one is the natural inclusion of the spin degree of
freedom, and the relativistic effects are responsible for the
existence of the approximate pseudospin symmetry [16–21]
in the nuclear single-particle spectra and spin symmetry in
the antinucleon spectra [22]. Moreover, it is of particular
importance that the CDFT includes nuclear magnetism [23],
which plays an important role in the microscopic description of
the nuclear magnetic moments [24–28] and nuclear rotations
[29–32].

The first RMF mass table was reported in Ref. [33] for about
2000 even-even nuclei with 8 � Z � 120 up to the proton and
neutron drip lines but without including pairing correlations.
Later on, the ground-state properties of 1315 even-even nuclei
with 10 � Z � 98 were calculated by including the pairing
correlations with BCS method [34]. In Ref. [35], by using a
state-dependent BCS method with zero-range δ force, the first
systematic study of the ground-state properties of more than
7000 nuclei ranging from the proton drip line to the neutron
drip line was performed with the meson-exchange effective
interaction TMA. This mass table works well in the r-process
nucleosynthesis calculations [36–39].

Very recently, a new point-coupling effective interaction
PC-PK1 has been proposed by fitting to observables of 60 se-
lected spherical nuclei, including the binding energies, charge
radii, and empirical pairing gaps [40]. This effective interaction
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particularly improves the description for isospin dependence
of binding energies and it has been successfully used in
describing the Coulomb displacement energies between mirror
nuclei [41], fission barriers [42], nuclear rotations [30–32],
etc. On the other hand, a new opportunity has been opened
for a crucial test of the predictive power of the theories
with the comparison to accurate new mass values of 53
heavy neutron-rich isotopes from Sn to Pa measured with
the storage ring mass spectrometry at GSI [43]. This mass
measurement is characterized by a small systematic error
of about 10 keV, which is valid for all data. The overall
mean experimental accuracy is about 19 keV. From these 53
values, 31 have been measured for the first time, whereas for
the additional 22 nuclides the experimental error has been
significantly improved. Since none of these data have been
used to determine the parameters of the CDFT with PC-PK1
and most of them have not been used in the fitting of the
widely used mass models in the market, these data provide
a very good test for the mass-prediction power for nuclei in
this region. The work for all the measured masses with CDFT
definitely should be done in the future.

In this work, the CDFT with the point-coupling interaction
PC-PK1 is applied to investigate the new experimental masses
of 53 heavy neutron-rich isotopes at the storage ring mass
spectrometry at GSI, including 31 cases measured for the first
time [43]. The theoretical predictions are compared with the
experimental data as well as other theoretical results.

The starting point of the CDFT is a general effective
Lagrangian density where the nucleons are coupled with
zero-range point-coupling interaction [40,44,45]. By means of
the mean-field approximation and the no-sea approximation,
one could obtain the corresponding Kohn-Sham equation,
which has the form of a Dirac equation

[α · p + β(m + S) + V ]ψk = εkψk, (1)

with the scalar S(r) and vector V (r) potentials,

S(r) = αSρS + βSρ
2
S + γSρ

3
S + δS�ρS, (2a)

V (r) = αV ρV + γV ρ3
V + δV �ρV + eA0

+αT V τ3ρT V + δT V �τ3ρT V . (2b)

Here, m is the nucleon mass, and αS , αV , αT V , βS , γS , γV , δS ,
δV , and δT V are the coupling constants. The Coulomb field A0

is determined by Poisson’s equation.
The iterative solution of these equations yields the single-

particle energies and expectation values of total energy,
quadrupole moments, etc. Here, we present only the expec-
tation value of total energy
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where v2
k is the occupation probabilities of single-particle state

and ρS(r), ρV (r), and ρT V (r) are the local densities in scalar,
vector, and isovector-vector channels, respectively.

For open-shell nuclei, pairing correlations are taken into
account by the BCS method with a zero-range δ force. Thus,
we have to add to the functional Eq. (3) a pairing energy term,

Epair = −
∑

τ=n,p

Vτ

4

∫
d3rκ∗

τ (r)κτ (r), (4)

where Vτ is the constant pairing strength, and the pairing tensor
κ(r) reads

κ(r) = −2
∑
k>0

fkukvk|ψk(r)|2 (5)

with fk being a smooth cutoff factor [46,47].
As the translational symmetry is broken in the mean-field

approximation, the center-of-mass (c.m.) correction should
be made for the spurious c.m. motion. Here, we adopt the
microscopic c.m. correction [48,49]

Ec.m. = − 1

2mA

〈
P̂

2
c.m.

〉
, (6)

with A being the mass number and P̂c.m. = ∑A
i p̂i being the

total momentum in the c.m. frame.
Similarly, the rotational symmetry is also violated for

the deformed nuclei. Therefore, we further introduce the
correction energy

Erot = − h̄2

2I 〈Ĵ 2〉 (7)

with Ĵ being the angular momentum operator and I being the
moment of inertia calculated from the Inglis-Belyaev formula
[50–52].

Finally, the total energy for the nuclear system reads

E = EDF + Epair + Ec.m. + Erot, (8)

and the corresponding binding energy is EB = −E.
In this work, the Dirac equation is solved on the basis of an

axially deformed harmonic oscillator potential [53]. A basis
of 16 major oscillator shells is used in the calculations, and
convergence has been tested in the calculations with 18 major
shells.

In Table I, the calculated binding energies ECal
B , the

rotational correction energies (RCEs) Erot
B = −Erot, and the

quadrupole deformations β2 for nuclei with masses measured
at the storage ring mass spectrometry at GSI [43] are listed
together with the differences between the data E

Exp
B and the

calculated binding energies �E = E
Exp
B − ECal

B .
It is found that most nuclei are deformed except the nuclei

with proton number close to the magic numbers of 50 and 82.
Note that it is not necessary to make rotational correction to the
binding energy for a spherical nucleus, since it preserves the
rotational symmetry. Therefore, we here consider the RCEs
only for the deformed nuclei with |β2| > 0.02. The present
calculations with PC-PK1 reproduce the experimental data
very well and the root mean square (rms) deviation results
in 0.859 MeV for 53 nuclei and 0.805 MeV for the 31 cases
measured for the first time.
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TABLE I. The experimental binding energies E
Exp
B , calculated

binding energies ECal
B , rotational correction energies Erot

B , and
quadrupole deformations β2 with the PC-PK1, as well as the
differences between the data and the calculated results �E. The root
mean square (rms) deviation � is listed in the last row. The energies
are shown in million electron volts.

Element Z A E
Exp
B ECal

B Erot
B β2 �E

Sn 50 128 1077.20 1078.67 0.00 0.00 −1.47
Sb 51 133 1112.28 1113.70 0.00 −0.02 −1.42
Te 52 136 1131.28 1131.48 1.15 0.09 −0.20
La 57 144 1192.29 1191.36 0.71 0.19 0.93
Ce 58 146 1208.38 1208.25 2.00 0.20 0.13
Pt 78 202 1591.54 1590.09 0.00 0.00 1.45
Au 79 202 1592.40 1590.78 0.57 −0.08 1.62
Hg 80 207 1624.09 1624.17 0.00 −0.02 −0.08
Tl 81 213 1653.45 1652.30 0.00 0.00 1.15
Bi 83 217 1677.18 1677.10 0.87 −0.04 0.08
Bi 83 218 1680.77 1679.28 0.04 0.07 1.49
Po 84 219 1688.58 1687.34 0.33 0.11 1.24
Po 84 220 1694.07 1694.04 1.44 0.10 0.03
Po 84 221 1697.62 1696.21 0.34 0.12 1.41
Po 84 222 1702.98 1702.97 1.54 0.11 0.01
At 85 220 1694.15 1694.33 0.45 0.12 −0.18
At 85 221 1699.82 1701.19 1.47 0.12 −1.37
At 85 222 1703.72 1703.84 0.55 0.13 −0.12
At 85 223 1709.31 1710.26 1.21 0.13 −0.95
At 85 224 1713.10 1712.53 0.17 0.14 0.57
Rn 86 223 1711.56 1711.44 0.67 0.15 0.12
Rn 86 224 1717.56 1718.35 1.59 0.15 −0.79
Rn 86 225 1721.56 1720.80 0.41 0.16 0.76
Rn 86 226 1727.40 1728.04 1.71 0.16 −0.64
Rn 86 227 1731.32 1730.65 0.81 0.18 0.67
Rn 86 228 1737.06 1737.41 1.80 0.17 −0.35
Fr 87 224 1717.41 1716.91 0.42 0.14 0.50
Fr 87 225 1723.46 1724.75 1.79 0.14 −1.29
Fr 87 226 1727.81 1727.27 0.64 0.15 0.54
Fr 87 227 1733.74 1734.87 1.90 0.16 −1.13
Fr 87 228 1738.13 1737.28 0.64 0.17 0.85
Fr 87 229 1743.89 1744.20 1.93 0.20 −0.31
Fr 87 230 1748.12 1747.22 0.92 0.18 0.90
Fr 87 231 1753.64 1753.79 2.05 0.21 −0.15
Ra 88 231 1756.69 1756.10 1.81 0.24 0.59
Ra 88 232 1762.48 1762.41 2.27 0.24 0.07
Ra 88 233 1766.72 1765.72 1.69 0.26 1.00
Ra 88 234 1772.23 1772.06 2.26 0.25 0.16
Ac 89 229 1747.27 1747.36 1.88 0.23 −0.09
Ac 89 230 1752.19 1751.21 1.12 0.24 0.98
Ac 89 231 1758.34 1758.28 1.90 0.24 0.06
Ac 89 232 1763.02 1762.50 0.66 0.26 0.52
Ac 89 233 1768.94 1768.69 1.90 0.25 0.25
Ac 89 234 1773.47 1772.41 1.52 0.27 1.06
Ac 89 235 1779.03 1778.66 1.88 0.26 0.37
Ac 89 236 1783.24 1782.32 1.52 0.27 0.92
Th 90 235 1781.57 1780.76 1.80 0.28 0.81
Th 90 236 1787.40 1787.27 2.27 0.27 0.13
Th 90 237 1791.77 1791.08 1.84 0.28 0.69
Pa 91 235 1782.49 1782.02 1.40 0.27 0.47
Pa 91 236 1787.52 1786.25 1.12 0.28 1.27
Pa 91 237 1793.40 1792.37 1.03 0.27 1.03
Pa 91 238 1798.10 1796.41 0.73 0.28 1.69
� 0.859

FIG. 1. (Color online) Differences between the experimental data
[43] and the calculated binding energies by the covariant density
functional theory (CDFT) with the effective interaction PC-PK1 [40]
and TMA [35] as well as those from the mass models HFB-21 [11]
and FRDM [3].

In order to present the calculated results more plainly, in
Fig. 1, we show the differences between the experimental data
[43] and the calculated binding energies with the PC-PK1 [40]
in comparison with those obtained from the CDFT calculations
with TMA [35] as well as the mass models HFB-21 [11] and
FRDM [3].

It is found that the deviations given by both PC-PK1
and TMA are less than 1 MeV for most nuclei. Both cases
underestimate the binding energies for nuclei near N = 126
and overestimate them for nuclei near N = 82. Moreover, the
deviations for nuclei 144La and 146Ce in TMA are even as large
as 3 MeV. This indicates that PC-PK1 is more robust in the
predictions of nuclear masses, especially for the neutron-rich
nuclei. The up-to-date nonrelativistic mass model HFB-21 [11]
could also reproduce the data quite well. However, it should
be noted that there are more than 20 parameters in HFB-21
including the phenomenological corrections, and they are
determined by constraining the nuclear-matter parameters and
optimizing the fit to the full data set of the 2149 measured
masses with N,Z � 8 (both spherical and deformed) [54],
including some of the present data (improved masses in the
work [43]), while the functional PC-PK1 contains only 11
parameters, which are determined by fitting to the binding
energies of only 60 selected spherical nuclei and charge radii
for 17 ones [40]. It should be mentioned that the macroscopic-
microscopic FRDM also gives good agreement with the data.

Focusing on the heavy mass region in Fig. 1, especially for
the nuclei with A > 210, one can clearly see some systematic
regularities for the mass deviations. Both the PC-PK1 and
TMA results show linear-like increasing tendency with the
mass number, and the HFB-21 results exhibit the opposite
tendency. In addition, the results given by PC-PK1 could
be roughly classified into two branches. For FRDM, all the
deviations for the heavy mass region are concentrated around
0.6 MeV.

In order to investigate this in more detail, in Fig. 2, dif-
ferences between the data and the calculated binding energies
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FIG. 2. (Color online) Same as Fig. 1 but for the isotopic chains
from Z = 83 to Z = 91.

for nine isotopic chains from Z = 83 to Z = 91 are shown.
It can be seen that the deviations for FRDM remain constant
with mass number. For both PC-PK1 and TMA, the binding
energy differences of most isotopic chains grow steadily with
the neutron number, which indicates that the isotopes in most
isotopic chains become more underbound with the increase of
the neutron number. In contrast, for the mass model HFB-21,
the isotopes in most isotopic chains become more overbound
with the increase of the neutron number. Such difference may
result from the different recipes employed in the calculations
for treating the pairing correlations. In the CDFT calculations
with PC-PK1 and TMA, the pairing correlation is treated with
the simple BCS method, while in the mass model HFB-21, it is
treated with the sophisticated Bogoliubov transformation. For
the neutron-rich nuclei, the latter could describe the pairing
correlation with the continuum properly and therefore include
more correlations, which makes the nucleus more bound. It
was found in Ref. [55] that there is a general tendency for
overbinding with the HFB calculations in comparison with
the HF + BCS case, and the corresponding mass deviations
could be up to 1.5 MeV for open-shell nuclei. Therefore,
future efforts should be devoted to the sophisticated and heavy
Bogoliubov calculations with continuum for the neutron-rich
heavy nuclei as shown in Refs. [56,57] for the spherical case
and Refs. [58–60] for the deformed case.

Comparing the results given by PC-PK1 and TMA in Fig. 2,
one could see that there are noticeable odd-even staggering in
the results given by PC-PK1, which eventually leads to the
two linear-like branches of the deviations. This staggering
phenomenon influences the rms value to a great extent. In
Fig. 3, the rms deviations of the calculated binding energies
by the CDFT with PC-PK1 and TMA as well as those from the
mass models HFB-21 and FRDM are shown for the even-even,
odd-A, odd-odd, and the whole set of nuclei, respectively. For
the whole set of nuclei, the rms deviation given by PC-PK1
is about 0.8 MeV. This is larger than the rms value 0.7 MeV
given by HFB-21 but smaller than the value of 1.0 MeV given
by TMA. Specifically, for the 12 even-even nuclei, PC-PK1
achieves very good agreement with the data and the rms

FIG. 3. (Color online) The rms deviations of the calculated
binding energies by the CDFT with the effective interaction PC-PK1
and TMA as well as those from the mass models HFB-21 and FRDM
for the even-even, odd-A, odd-odd, and the whole set of nuclei.

deviation is about 0.6 MeV. This is at the same good level
as the HFB-21 mass model and much better than that given
by TMA. However, for the 25 odd-A nuclei and 16 odd-odd
nuclei, the rms values given by PC-PK1 become larger but still
within 1 MeV. In contrast to the microscopic frameworks, the
mass model FRDM gives very good agreement for the odd-odd
nuclei with a rms deviation less than 0.5 MeV. This lowers the
corresponding rms deviation for the whole set of nuclei to
0.6 MeV.

To explore the reason for this enhancement of the rms
values for odd particle systems, in Fig. 4, correlations between
the deviations of the calculated binding energies with PC-
PK1 from the data and the calculated rotational correction
energies are shown for even-even, odd-A, and odd-odd nuclei
respectively. It is clear that the rotational correction energy
plays an important role in the determination of the nuclear
masses with PC-PK1. In particular, for the odd-odd nuclei, the
rotation correction energies are systemically smaller than those
of the even-even nuclei even if they have similar deformations.
Apparently, this leads to the systematical underestimation of
the binding energies for odd-odd nuclei.

FIG. 4. (Color online) Correlations between the deviations of
the calculated binding energies with PC-PK1 from the data and
the calculated rotational correction energies for even-even, odd-A,
and odd-odd nuclei. Note that the order in different data sets is
independent.
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This may result from two reasons. On one hand, for the
odd particle system, the odd nucleon breaks the time-reversal
symmetry and the time-odd components of the vector potential
do not vanish. Although it is generally believed that the contri-
butions due to the time-reversal symmetry breaking contribute
little to the bulk properties such as binding energies, they may
significantly influence features like magnetic moment [24]
or moment of inertia [61], which depend on a few valence
nucleons. Here, the calculation of rotation correction energy
with Eq. (7) involves with the moment of inertia, which is
calculated without the time-odd components. Therefore, the
neglect of the time-odd components may affect the rotation
correction energy.

On the other hand, for odd particle systems, the unpaired
particle will block its occupied level in the BCS calculations;
that is, the Pauli principle prevents this level from the scattering
process of nucleon pairs by the pairing correlations. In
principle, the ground-state for odd particle systems should
be the state with the lowest energy determined by calculations
blocking each possible level near the Fermi surface. However,
this is incredibly time-consuming.

Here the blocking method adopted in the BCS method is the
following: For each step of the self-consistent calculation, the
level to be blocked is determined by the filling approximation
from the single-particle spectra obtained. Of course, it may oc-
cur that the state chosen by this procedure is not the true ground
state. As pointed out in Ref. [62], such wrong selection of the
blocking state generally leads to a difference less than 0.2 MeV
for the binding energy. However, this would remarkably
influence the moment of inertia and thus the rotation correction

energy. Therefore, further improvement in the evaluation of the
rotation correction energy, in particular the moments of inertia,
would be needed in the framework of CDFT.

In summary, the CDFT with the point-coupling interaction
PC-PK1 is applied to investigate the new experimental masses
of 53 heavy neutron-rich isotopes in the element range of
50 to 91. The experimental data are from a mass measurement
performed with the storage ring mass spectrometry at GSI [43].
The functional PC-PK1 contains only 11 parameters, which are
determined by fitting to the binding energies of 60 spherical
nuclei and charge radii for 17 ones. It is found that the CDFT
with PC-PK1 can reproduce the experimental data quite well
and the corresponding rms deviation is 0.859 MeV. For the 25
odd-A nuclei and 16 odd-odd nuclei, the rms values given by
PC-PK1 are a little large but still within 1 MeV, which may
be improved in the future by treating properly the time-odd
component and the moment of inertia. An excellent predictive
power with an accuracy of about 600 keV has been achieved
for even-even nuclei with the PC-PK1.
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[15] T. Nikšić, D. Vretenar, and P. Ring, Prog. Part. Nucl. Phys. 66,

519 (2011).

[16] J. N. Ginocchio, Phys. Rep. 414, 165 (2005).
[17] J. Meng, K. Sugawara-Tanabe, S. Yamaji, and A. Arima, Phys.

Rev. C 59, 154 (1999).
[18] J. Meng, K. Sugawara-Tanabe, S. Yamaji, P. Ring, and A. Arima,

Phys. Rev. C 58, R628 (1998).
[19] H. Liang, P. Zhao, Y. Zhang, J. Meng, and N. V. Giai, Phys. Rev.

C 83, 041301 (2011).
[20] J.-Y. Guo, Phys. Rev. C 85, 021302 (2012).
[21] B.-N. Lu, E.-G. Zhao, and S.-G. Zhou, Phys. Rev. Lett. 109,

072501 (2012).
[22] S.-G. Zhou, J. Meng, and P. Ring, Phys. Rev. Lett. 91, 262501

(2003).
[23] W. Koepf and P. Ring, Nucl. Phys. A 493, 61 (1989).
[24] J. M. Yao, H. Chen, and J. Meng, Phys. Rev. C 74, 024307

(2006).
[25] A. Arima, Sci. China: Phys., Mech. Astron. 54, 188 (2011).
[26] J. Li, J. Meng, P. Ring, J. M. Yao, and A. Arima, Sci. China:

Phys. Mech. Astron. 54, 204 (2011).
[27] J. Li, J. M. Yao, J. Meng, and A. Arima, Prog. Theor. Phys. 125,

1185 (2011).
[28] J. Wei, J. Li, and J. Meng, Prog. Theor. Phys. S196, 400 (2012).
[29] A. V. Afanasjev, P. Ring, and J. König, Nucl. Phys. A 676, 196

(2000).
[30] P. W. Zhao, J. Peng, H. Z. Liang, P. Ring, and J. Meng, Phys.

Rev. C 85, 054310 (2012).
[31] P. W. Zhao, J. Peng, H. Z. Liang, P. Ring, and J. Meng, Phys.

Rev. Lett. 107, 122501 (2011).

064324-5

http://dx.doi.org/10.1103/RevModPhys.75.1021
http://dx.doi.org/10.1103/RevModPhys.75.1021
http://dx.doi.org/10.1007/BF01337700
http://dx.doi.org/10.1006/adnd.1995.1002
http://dx.doi.org/10.1006/adnd.1995.1002
http://dx.doi.org/10.1016/0370-2693(96)01071-4
http://dx.doi.org/10.1016/0370-2693(96)01071-4
http://dx.doi.org/10.1103/PhysRevC.82.044304
http://dx.doi.org/10.1103/PhysRevC.82.044304
http://dx.doi.org/10.1103/PhysRevC.55.2407
http://dx.doi.org/10.1103/PhysRevC.77.041304
http://dx.doi.org/10.1103/PhysRevC.84.034311
http://dx.doi.org/10.1103/PhysRevLett.102.152503
http://dx.doi.org/10.1103/PhysRevLett.102.152503
http://dx.doi.org/10.1103/PhysRevLett.102.242501
http://dx.doi.org/10.1103/PhysRevLett.102.242501
http://dx.doi.org/10.1103/PhysRevC.82.035804
http://dx.doi.org/10.1103/PhysRevC.82.035804
http://dx.doi.org/10.1016/0146-6410(96)00054-3
http://dx.doi.org/10.1016/j.ppnp.2005.06.001
http://dx.doi.org/10.1016/j.physrep.2004.10.001
http://dx.doi.org/10.1016/j.ppnp.2011.01.055
http://dx.doi.org/10.1016/j.ppnp.2011.01.055
http://dx.doi.org/10.1016/j.physrep.2005.04.003
http://dx.doi.org/10.1103/PhysRevC.59.154
http://dx.doi.org/10.1103/PhysRevC.59.154
http://dx.doi.org/10.1103/PhysRevC.58.R628
http://dx.doi.org/10.1103/PhysRevC.83.041301
http://dx.doi.org/10.1103/PhysRevC.83.041301
http://dx.doi.org/10.1103/PhysRevC.85.021302
http://dx.doi.org/10.1103/PhysRevLett.109.072501
http://dx.doi.org/10.1103/PhysRevLett.109.072501
http://dx.doi.org/10.1103/PhysRevLett.91.262501
http://dx.doi.org/10.1103/PhysRevLett.91.262501
http://dx.doi.org/10.1016/0375-9474(89)90532-0
http://dx.doi.org/10.1103/PhysRevC.74.024307
http://dx.doi.org/10.1103/PhysRevC.74.024307
http://dx.doi.org/10.1007/s11433-010-4224-6
http://dx.doi.org/10.1007/s11433-010-4215-7
http://dx.doi.org/10.1007/s11433-010-4215-7
http://dx.doi.org/10.1143/PTP.125.1185
http://dx.doi.org/10.1143/PTP.125.1185
http://dx.doi.org/10.1016/S0375-9474(00)00187-1
http://dx.doi.org/10.1016/S0375-9474(00)00187-1
http://dx.doi.org/10.1103/PhysRevC.85.054310
http://dx.doi.org/10.1103/PhysRevC.85.054310
http://dx.doi.org/10.1103/PhysRevLett.107.122501
http://dx.doi.org/10.1103/PhysRevLett.107.122501


P. W. ZHAO, L. S. SONG, B. SUN, H. GEISSEL, AND J. MENG PHYSICAL REVIEW C 86, 064324 (2012)

[32] P. W. Zhao, S. Q. Zhang, J. Peng, H. Z. Liang, P. Ring, and
J. Meng, Phys. Lett. B 699, 181 (2011).

[33] D. Hirata, K. Sumiyoshi, I. Tanihata, Y. Sugahara, T. Tachibana,
and H. Toki, Nucl. Phys. A 616, 438 (1997).

[34] G. A. Lalazissis, S. Raman, and P. Ring, At. Data Nucl. Data
Tables 71, 1 (1999).

[35] L. S. Geng, H. Toki, and J. Meng, Prog. Theor. Phys. 113, 785
(2005).

[36] B. Sun, F. Montes, L. S. Geng, H. Geissel, Y. A. Litvinov, and
J. Meng, Phys. Rev. C 78, 025806 (2008).

[37] Z. M. Niu, B. H. Sun, and J. Meng, Phys. Rev. C 80, 065806
(2009).

[38] Z. Li, Z. M. Niu, and B. Sun, Acta Phys. Sin. 61, 072601
(2012).

[39] X. D. Xu, B. Sun, Z. M. Niu, Z. Li, Y.-Z. Qian, and J. Meng,
arXiv:1208.2341 [nucl-th].

[40] P. W. Zhao, Z. P. Li, J. M. Yao, and J. Meng, Phys. Rev. C 82,
054319 (2010).

[41] B. Sun, P. Zhao, and J. Meng, Sci. China: Phys., Mech. Astron.
54, 210 (2011).

[42] B.-N. Lu, E.-G. Zhao, and S.-G. Zhou, Phys. Rev. C 85, 011301
(2012).

[43] L. Chen et al., Nucl. Phys. A 882, 71 (2012).
[44] B. A. Nikolaus, T. Hoch, and D. G. Madland, Phys. Rev. C 46,

1757 (1992).
[45] T. Bürvenich, D. G. Madland, J. A. Maruhn, and P.-G. Reinhard,

Phys. Rev. C 65, 044308 (2002).

[46] S. J. Krieger, P. Bonche, H. Flocard, P. Quentin, and M. S. Weiss,
Nucl. Phys. A 517, 275 (1990).

[47] M. Bender, K. Rutz, P.-G. Reinhard, and J. A. Maruhn, Eur.
Phys. J. A 8, 59 (2000).

[48] M. Bender, K. Rutz, P.-G. Reinhard, and J. A. Maruhn, Eur.
Phys. J. A 7, 467 (2000).

[49] P. Zhao, B. Sun, and J. Meng, Chin. Phys. Lett. 26, 112102
(2009).

[50] D. Inglis, Phys. Rev. 103, 1786 (1956).
[51] S. Belyaev, Nucl. Phys. A 24, 322 (1961).
[52] A. B. Volkov, Phys. Lett. B 41, 1 (1972).
[53] P. Ring, Y. K. Gambhir, and G. A. Lalazissis, Comput. Phys.

Commun. 105, 77 (1997).
[54] G. Audi, A. H. Wapstra, and C. Thibault, Nucl. Phys. A 729,

337 (2003).
[55] M. Samyn, S. Goriely, P. Heenen, J. Pearson, and F. Tondeur,

Nucl. Phys. A 700, 142 (2002).
[56] J. Meng and P. Ring, Phys. Rev. Lett. 77, 3963 (1996).
[57] J. Meng, Nucl. Phys. A 635, 3 (1998).
[58] S.-G. Zhou, J. Meng, P. Ring, and E.-G. Zhao, Phys. Rev. C 82,

011301(R) (2010).
[59] L. Li, J. Meng, P. Ring, E.-G. Zhao, and S.-G. Zhou, Phys. Rev.

C 85, 024312 (2012).
[60] Y. Chen, L. Li, H. Liang, and J. Meng, Phys. Rev. C 85, 067301

(2012).
[61] W. Koepf and P. Ring, Nucl. Phys. A 511, 279 (1990).
[62] L. Geng, Ph.D. thesis, Osaka University, 2005 (unpublished).

064324-6

http://dx.doi.org/10.1016/j.physletb.2011.03.068
http://dx.doi.org/10.1016/S0375-9474(97)00115-2
http://dx.doi.org/10.1006/adnd.1998.0795
http://dx.doi.org/10.1006/adnd.1998.0795
http://dx.doi.org/10.1143/PTP.113.785
http://dx.doi.org/10.1143/PTP.113.785
http://dx.doi.org/10.1103/PhysRevC.78.025806
http://dx.doi.org/10.1103/PhysRevC.80.065806
http://dx.doi.org/10.1103/PhysRevC.80.065806
http://arXiv.org/abs/arXiv:1208.2341
http://dx.doi.org/10.1103/PhysRevC.82.054319
http://dx.doi.org/10.1103/PhysRevC.82.054319
http://dx.doi.org/10.1007/s11433-010-4222-8
http://dx.doi.org/10.1007/s11433-010-4222-8
http://dx.doi.org/10.1103/PhysRevC.85.011301
http://dx.doi.org/10.1103/PhysRevC.85.011301
http://dx.doi.org/10.1016/j.nuclphysa.2012.03.002
http://dx.doi.org/10.1103/PhysRevC.46.1757
http://dx.doi.org/10.1103/PhysRevC.46.1757
http://dx.doi.org/10.1103/PhysRevC.65.044308
http://dx.doi.org/10.1016/0375-9474(90)90035-K
http://dx.doi.org/10.1007/s10050-000-4504-z
http://dx.doi.org/10.1007/s10050-000-4504-z
http://dx.doi.org/10.1007/PL00013645
http://dx.doi.org/10.1007/PL00013645
http://dx.doi.org/10.1088/0256-307X/26/11/112102
http://dx.doi.org/10.1088/0256-307X/26/11/112102
http://dx.doi.org/10.1103/PhysRev.103.1786
http://dx.doi.org/10.1016/0029-5582(61)90384-4
http://dx.doi.org/10.1016/0370-2693(72)90350-4
http://dx.doi.org/10.1016/S0010-4655(97)00022-2
http://dx.doi.org/10.1016/S0010-4655(97)00022-2
http://dx.doi.org/10.1016/j.nuclphysa.2003.11.003
http://dx.doi.org/10.1016/j.nuclphysa.2003.11.003
http://dx.doi.org/10.1016/S0375-9474(01)01316-1
http://dx.doi.org/10.1103/PhysRevLett.77.3963
http://dx.doi.org/10.1016/S0375-9474(98)00178-X
http://dx.doi.org/10.1103/PhysRevC.82.011301
http://dx.doi.org/10.1103/PhysRevC.82.011301
http://dx.doi.org/10.1103/PhysRevC.85.024312
http://dx.doi.org/10.1103/PhysRevC.85.024312
http://dx.doi.org/10.1103/PhysRevC.85.067301
http://dx.doi.org/10.1103/PhysRevC.85.067301
http://dx.doi.org/10.1016/0375-9474(90)90160-N



