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Description of two-particle transfer in superfluid systems
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Exact results of pair transfer probabilities for the Richardson model with equidistant or random level spacing
are presented. The results are then compared either to particle-particle random-phase approximation (ppRPA)
in the normal phase or quasiparticle random-phase approximation (QRPA) in the superfluid phase. We show
that both ppRPA and QRPA are globally well reproducing the exact case although some differences are seen
in the superfluid case. In particular, the QRPA overestimates the pair transfer probabilities to excited states in
the vicinity of the normal-superfluid phase transition, which might explain the difficulty in detecting collective
pairing phenomena as, for example, the giant pairing vibration. The shortcoming of QRPA can be traced back to
the breaking of particle number that is used to incorporate pairing. A method based on direct diagonalization of
the Hamiltonian in the space of two quasiparticles projected onto good particle number is shown to improve the
description of pair transfer probabilities in superfluid systems.
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I. INTRODUCTION

The importance of pairing correlations in nuclear systems
has been established in several aspects: binding energies
of nuclei, odd-even effects, superfluid phenomena, and pair
transfer mechanisms, to mention just a few. However, despite
the fact that pairing is anticipated to play a significant
role in the pair transfer process, the existence of collective
effects, such as giant pair vibration (GPV) [1–6], leading
to an increase in the pair transfer from a superfluid nuclei,
still challenges the experimental nuclear physics [7]. On the
theoretical side, mean-field methods based on Hartree-Fock-
Bogolyubov (HFB) sometimes augmented by quasiparticle
random phase approximation (QRPA) have been used to
predict pair transfer probabilities either from ground state to
ground state or from ground state to excited states [8–12]. A
common conclusion of most of these studies is the sensitivity
of one- or two-nucleon transfer process to the internal topology
of pairing in nuclei. In the present work, exact results of pair
transfer probability are obtained for the Richardson model
[13], consisting of a set of single-particle levels interacting
through a pure pairing interaction. This model can be seen as
the valence space of the last occupied level in nuclei where
nucleons can be either added (pickup reactions) or removed
(stripping reactions). The exact solution of the pair transfer
in the Richardson model has been obtained in Ref. [14]. The
possibility to perform exact calculations opens new perspec-
tives to understand the pair transfer process and provides a
benchmark for approximate treatments. In the following, we
first discuss the pair transfer mechanism from a general point
of view and estimate pair transfer probabilities in the pairing
model.

We are interested here in a process where two particles
are either added or removed in a system that is initially in
its ground state formed of N particles. In the following, we
denote by |ν,A〉, respectively, the eigenstates of the systems
with A particles associated to the set of energies EA

ν and,
by convention, ν = 0 is taken for ground state. During its
evolution, the system wave function can be decomposed

as [15]

|�(t)〉 = e−itEN
0 /h̄

{∑
ν

cN
ν e−it(EN

ν −EN
0 )/h̄|ν,N〉

+
∑

ν

cN−2
ν e−it(EN−2

ν −EN
0 )/h̄|ν,N − 2〉

+
∑

ν

cN+2
ν e−it(EN+2

ν −EN
0 )/h̄|ν,N + 2〉

}
,

where the first line describes the possibility that the system
remains in its ground state or in one of its excited states without
changing its particle number. The second (third) line contains
the information on the removal and/or addition process. The
explicit form of the coefficients cA

ν depends on the physical
process under interest, such as the stripping or pickup reactions
in nuclear physics. On the theoretical side, information of these
processes can be obtained by studying the small-amplitude
response of the system to an external field T̂ that changes the
particle number by two units. Then, information on the transfer
reduces to the knowledge of the response function, given by

S(E) =
∑

ν

|〈N + 2, ν|T̂ |N, 0〉|2δ(E − �EN+2
ν

)
+

∑
ν

|〈N − 2, ν|T̂ |N, 0〉|2δ(E − �EN−2
ν

)
≡ SAdd(E) + SRem(E), (1)

where �EN±2
ν = EN±2

ν − EN
0 . In the following, SAdd(E)

(SRem(E)) will be referred to addition (removal) strength
function. A common choice of T̂ [6] to excite pairing modes is

T̂ =
∑

i

(Tiīa
†
i a

†
ī
+ T ∗

iī
aīai), (2)

where a
†
i a

†
ī

corresponds to creation operators of a pair of
time-reversed single-particle states. In the present article,
we are interested in a physical process where two particles
are either added or removed. In that case, it is more suitable
to consider directly the non-Hermitian addition (removal)
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transition operator, denoted by T̂ Add (T̂ Rem) defined through

T̂ Add =
∑

i

Tiīa
†
i a

†
ī
, T̂ Rem =

∑
i

T ∗
iī
aīai, (3)

respectively, associated to SAdd(E) and SRem(E). From the
expression of the strength, we see that the understanding of the
two-particle transfer passes through a good knowledge of the
spectroscopy of initial and final states as well as of the capacity
to provide the addition or removal probabilities defined here as

P Add
ν = |〈N + 2, ν|T̂ |N, 0〉|2, (4)

P Rem
ν = |〈N − 2, ν|T̂ |N, 0〉|2. (5)

If the many-body problem can be solved exactly, such quan-
tities as well as the exact eigenvalues of the Hamiltonian can
be used to have a precise estimate of the strength function (1).
In most realistic situations, such treatment is impossible and
an educated guess should be used. In the present work, we are
interested in an initial system where pairing correlation plays
a role. This case has been first considered in Refs. [1,16,17],
leading to the concept of pairing vibration, that is, a coherent
excitation of pairs of particles that is expected to show up in the
enhancement of pair transfer probabilities. The standard way
to incorporate pairing correlation is to use the BCS or HFB
approach as a starting point [18,19]. This technique is indeed
standardly used in nuclear physics to estimate the transfer
either from ground state to ground state [9,12,20] or from
ground state to excited states. In the latter case, the response
is obtained using QRPA [4,5,11] or its time-dependent version
[6]. For a comprehensive introduction, please refer to Ref. [21].

With the increase of computational powers, it is possible
nowadays to study exactly pair transfer in schematic model that
approaches realistic situations and to quantify the predictive
power of mean-field based approaches. In the present work,
we first present exact results of pair transfer probabilities
for the Richardson model with equidistant or random level
spacing. The exact results are then used to benchmark standard
approaches, namely ppRPA and QRPA.

II. EXACT DESCRIPTION IN THE RICHARDSON MODEL

A system of � doubly degenerated single-particle levels
interacting via a pairing force with parameter G is considered.
The Hamiltonian is given by [13]

H =
�∑

i=1

εiN̂i − G

�∑
i,j=1

P̂
†
i P̂j , (6)

where the particle-number operator N̂i and pair cre-
ation/annihilation operators P̂

†
i , P̂i are given by

N̂i = a
†
i ai + a

†
ī
aī , P̂

†
i = a

†
i a

†
ī
, P̂i = (P̂ †

i )†. (7)

For not-too-large model space �, exact solutions can
be obtained using standard diagonalization techniques in
subspace of given seniority [22]. As a test case here, a system
of N = 8 particles with � = 10 doubly degenerated levels is
considered here. Assuming a simple transition operator (2)
with Tiī = 1 for all pairs, illustrations of addition strength
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FIG. 1. (Color online) Addition strength function as a function
of the excitation energy E for different pairing strength G obtained
using exact eigenvalues and eigenstates in Eq. (1) (red solid line)
for a system of N = 8 particles to N = 10 in the case of � = 10
equally spaced levels. From top to bottom: (a) G/�ε = 0.1, (b) 0.3,
(c) 0.5, (d) 0.7, and (e) 0.9 are shown. The results of the ppRPA (blue
dashed line) and QRPA (black dot-dashed line) are also presented.
Note that in panel (c), the result of ppRPA obtained at the collapse
point G = 0.48�ε is also reported. The QRPA are shown only above
the BCS threshold G = 0.33�ε.

function obtained for the Richardson model are shown in
Fig. 1, in solid (red) lines, for equidistant level spacing, that
is, εi = i�ε (i = 1, �), for different values of the pairing
interaction and �ε = 1 MeV. In the following the excitation
energies are calculated with respect to the ground state of the
system with N = 10 particles consistently in all the theories.
The presented result is exact in the sense that the exact
eigenvalues and eigenstates of the system with N = 8 and
N = 10 have been used to compute Eq. (1). Note that in
the present work, we are mainly interested in the transition
from ground state to excited states of the N + 2 nucleus and
the contribution of the ground state to ground state transfer
has been omitted in the figure. Moreover, to make simpler
the comparison between different results, we have folded the
discrete spectra with a Lorentzian function with a width of 1
MeV. For completeness, we also show in Fig. 2 similar results
obtained with a randomly spaced system whose single-particle
energies are 0.551, 2.176, 4.033, 5.142, 6.444, 7.029, 7.827,
8.343, 9.226, and 9.571 in MeV units. This situation could be
considered closer to realistic cases.

In the exact calculations, we observe a shift of the excitation
spectrum toward higher energies as the pairing strength G

increases while the pair transfer probabilities of the excited
states get smaller. On the contrary, as it is shown below that
the pair transfer probability from ground state to ground state
increases as G increases.
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FIG. 2. (Color online) Same as Fig. 1 obtained for randomly
spaced single-particle energies. See the text for more details. The
QRPA are shown only above the BCS threshold G = 0.44 MeV.

III. PPRPA VS QRPA APPROACHES TO PAIR TRANSFER

As already mentioned, in most cases, exact evaluation
of the pair transfer probabilities cannot be performed and
approximations for the many-body states are necessary. The
most common strategy used in nuclear physics is to first
apply the HFB or BCS theory and minimize the energy in
the Hilbert space of quasiparticle vacuum imposing a mean
particle number equal to N . This leads to an approximation
for |0, N〉. Using standard notations, the quasiparticle vacuum
is given by

|0, N〉 � |0, QP〉 =
∏
i>0

[αiαī]|−〉, (8)

where |−〉 is the bare vacuum and |0, QP〉 is the vacuum of
the quasiparticle annihilation operators αi defined through the
Bogolyubov transformation:

αi = Uiai − Via
†
ī
, (9)

αī = Uiaī + Via
†
i . (10)

In the HFB approach, the above transformation automatically
implies that the single-particle basis identifies with the canon-
ical basis.

In the present model, the Hamiltonian (6) is already written
in the canonical basis for the HFB theory. This theory is
particularly suitable to provide estimates for ground state
(GS) to GS transfer probabilities [9,12]. Because we want to
compare with exact results, at the BCS/HFB and QRPA level
the contribution to the particle-hole channel of the pairing
interaction is taken into account. The result of the HFB theory
for this probability is shown in Fig. 3 and compared to the exact
solution. Note that below the pairing threshold (denoted by Gcr

and equal to 0.33 and 0.44 MeV for the eight-particle system

P
A

d
d
(E

)

G(MeV )

FIG. 3. (Color online) Illustration of the application of mean-field
theory to provide estimate of GS to GS addition pair probability. The
exact result (red circles), BCS (black triangles), and BCS projected
on good particle number (blue open squares) are shown here for the
equidistant single-particle level case. The result of the P-QTDA(GS)

is also presented with green solid diamonds.

in the equally spaced and random spaced case, respectively),
the HFB reduces to HF and probability is 1. As illustrated in
this figure, while the HF theory (not shown) would have failed
to reproduce the exact probabilities, the HFB framework gives
estimations that are already rather close to the exact ones in
the superfluid regime.

Owing to the absence of residual coupling between quasi-
particle excitations, it is known that HFB alone cannot properly
describe excited states. Then, linear response theory including
possible particle-particle (pp), hole-hole (hh), or particle-hole
(ph) excitations is applied to describe excited states, and then
transfer probabilities, within the QRPA approach. In QRPA,
the excited states, denoted by |ν〉, are obtained by considering
coherent superposition of two quasiparticle (2QP) excitations.
This leads to

|ν〉 = Q†
ν |0〉, (11)

where Q†
ν are QRPA phonons written as

Q†
ν =

∑
i

(
Xν

j α
†
i α

†
ī
− Y ν

j αīαi

)
, Qν = (Q†

ν)†, (12)

while |0〉 is the phonon vacuum, defined through the conditions
Qν |0〉 = 0. In practice, the components Xν and Y ν , as well as
the energies of the excited states ων , are deduced by solving
the QRPA eigenvalue problem [23]. Because these techniques
are rather standard [18], we only recall here the expressions of
the pair transfer probability.

In QRPA, the addition transition probability is given by

P Add
ν = |〈0|T̂ Add|ν〉|2 =

∣∣∣∣∣
∑

i

(
V 2

i X
(ν)
i − U 2

i Y
(ν)
i

)∣∣∣∣∣
2

. (13)

It is well known that the first solution of the QRPA equations
corresponds to the spurious mode, which is then not considered
in the evaluation of the strength function.

In the weak coupling limit, below a certain threshold value
of G denoted by Gcr, the minimization of the energy in HFB
identifies to the Hartree-Fock approach with no pairing. Then
the mean-field vacuum is a pure Slater determinant where the
lowest hole states are occupied. In this case, labeling by h

the hole state (Vh = 1, Uh = 0) and p (Vp = 1, Up = 1) the

064320-3



DANILO GAMBACURTA AND DENIS LACROIX PHYSICAL REVIEW C 86, 064320 (2012)

particle states associated to this vacuum, the excited states are
described by using the particle-particle RPA (ppRPA), where
the phonon creation operators (12) can be written as

Q†
ν =

∑
p

Xν
pa†

pa
†
p̄ +

∑
h

Y ν
h a

†
ha

†
h̄
, (14)

while the addition probability is simply written

P Add
ν =

∣∣∣∣∣
∑

p

Xν
p −

∑
h

Y ν
h

∣∣∣∣∣
2

. (15)

Note that in the ppRPA case, contrary to the QRPA case, the
U(1) symmetry associated to particle number conservation is
not broken. Explicit forms of the ppRPA and QRPA equations
for the model considered here can be found in Refs. [24–26]

In Figs. 1 and 2, the ppRPA (dashed line) and QRPA
(dot-dashed line) are compared to the exact results. Above a
given threshold GRPA

cr , ppRPA collapses and leads to imaginary
energies making not possible a direct comparison with the
exact and QRPA results. However, in Fig. 1 we show in the
panel (c) corresponding to a pairing strength G = 0.5 MeV
the ppRPA results obtained at the collapse point, that is,
GRPA

cr = 0.48, to show that its description is still reasonable
even in the superfluid phase.

From these comparisons, the following conclusions can
be drawn. (i) The ppRPA does reproduce perfectly the exact
results (energies and probabilities) in the normal phase. (ii) The
QRPA provides a global reproduction of the pair transfer prob-
abilities in the superfluid phase. In particular, the threshold in
energy that is directly related to pairing correlation is properly
accounted for. It is worth mentioning that such a threshold can
only be described in a mean-field theory by breaking particle
number symmetry. Finally, it is also clearly seen that some dif-
ferences exist between the exact and QRPA. In general, QRPA
leads to peaks in the strength that are at slightly higher energies
compared to the exact solution while probabilities are slightly
overestimated. These differences are even stronger in the
random space case and can stem from different origins. First,
while part of the four quasiparticles (4QP) are accounted for
in the QRPA GS correlations, the complete inclusion of 4QP
excitations is known to modify excited-state energy spectrum
[18,27]. Second, a systematic error exists owing to the breaking
of the particle number. Panel (c) of Fig. 1 illustrates that when
ppRPA is applicable in the superfluid phase G � 0.48 MeV,
it gives a better agreement with the exact result compared
to QRPA. Because ppRPA is a particle-number-conserving
theory, this is a first indication that the breaking of U(1)
symmetry might pollute the QRPA predictions.

A. Role of particle number in the estimation of pair transfer
probabilities

At this stage, it is most likely to conjecture that the failure
of QRPA to reproduce two-particle transfer processes stems
from the mixing of systems with different particle numbers.
The QRPA approach implicitly assumes that the states |ν〉 are
relatively good approximations for the eigenstates of systems
with N + 2 (or N − 2) particles. As an illustration of the
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FIG. 4. (Color online) (Bottom) Mean number of particles Nν of
the QRPA states as a function of their excitation energy h̄ων . (Top)
Mean number of particles Nk of 2QP states as a function of (εk − λ),
where λ is the Fermi energy.

correctness of this assumption, the mean number of particles
Nν = 〈ν|N̂ |ν〉 is displayed in the bottom panel of Fig. 4 as a
function of the excitation energy ων . Nν has been estimated
using the quasiboson approximation, leading to

Nν =
∑

i

2
(
U 2

i − V 2
i

)(
Xν2

i + Y ν2
i

) + 〈N̂〉, (16)

where 〈N̂〉 is the number of particles in the QP vacuum.
In the same figure, the mean-particle number of the 2QP

excited states |k〉 as a function of (εk − λ) is also shown, where
λ is the Fermi energy. The 2QP states are defined through

|k〉 = α
†
kα

†
k̄
|0,QP 〉, (17)

where the GS has N particles on average. The mean particle
number in |k〉 is given by

Nk = 〈k|N̂ |k〉 = 〈N̂〉 + 2U 2
k − 2V 2

k . (18)

This expression as well as the illustration in Fig. 4 clearly
shows that the 2QP states will be close to a state with N +
2 (N − 2) particles only if Uk → 1, that is, well above the
Fermi energy λ (Uk → 0, i.e., well below the Fermi energy),
but will be a bad approximation if the 2QP state involves a
single-particle state in the vicinity of λ. Consequently, QRPA
states will also suffer from the same problems if the state is
constructed from 2QP states that are close to the Fermi energy.
While the QRPA results are in a reasonable agreement with
the exact case, the effect of particle number conservation on
the pair transfer is largely uncontrolled within QRPA. This is
anticipated to be especially crucial in exotic nuclei as the level
spacing is reduced close to the drip line.
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IV. IMPROVED TREATMENT OF PAIR TRANSFER IN
SUPERFLUID SYSTEMS

The effect of particle number conservation on pair transfer
from GS to GS has been already studied in Ref. [12]. It has
been empirically found that the breaking of U(1) symmetry
has a rather small impact on the estimated probabilities. As a
further illustration, we show in Fig. 3 estimations of transfer
probabilities with Eq. (4) using the GS quasiparticle vacua
projected either on N or on N + 2 particle numbers (see
Ref. [12] for technical details). As seen in Fig. 3, the BCS
approach reduces to HF below the threshold and is not able to
reproduce the transfer probability at low G. The projection
after variation (open square) obviously does not cure this
problem but considerably improves the probability above the
threshold, especially in the strong coupling regime. As a
conclusion, the HFB and/or BCS approach augmented by an
a posteriori projection is already very good to describe GS
to GS transition in the superfluid regime. Therefore, in the
following we concentrate the discussion on excited state where
it is necessary to go beyond HFB.

From previous discussion, we are facing the following
dilemma: To describe the physics of pairing and in particular
the gap in energy between the GS and the first excited state in a
superfluid system, it is necessary to break the U(1) symmetry.
However, this symmetry breaking seems to be at the origin
of some discrepancies between QRPA and exact pair transfer
probabilities.

The most direct extension of the projection technique
to estimate transition from GS to GS would be to directly
estimate the transition from the BCS/HFB GS projected onto
N particles to the QRPA eigenstates projected onto N + 2
particles. This has, however, two disadvantages. (i) In practice
we found that the pair transfer probabilities are much smaller
than the exact ones. (ii) QRPA states are no longer orthogonal
after projection, leading to some difficulties in interpreting the
probabilities themselves.

Alternatively, one can try to develop a RPA-like approach
directly in the space of projected 2QP states. Following the
Tamm-Dancoff approximation spirit, a set of states |�k〉
defined through

|�k〉 = P̂N+2α
†
kα

†
k̄
|0,QP 〉 (19)

are introduced, where P̂N+2 is the projector on N + 2 particles
[19]. Then, excited states of the system with N + 2 particles
decompose as

|ν,N + 2〉 =
∑

k

Xν
k |�k〉. (20)

This strategy has been analyzed in Ref. [28], as well as its RPA
generalization following Refs. [29] (see also Ref. [30]).

A proper description would require a full projected QRPA
calculation whose practical implementation would be rather
cumbersome, especially in realistic calculations. A simpler
approach is to introduce what could be considered as a
projected version of a two quasiparticle Tamm-Dancoff ap-
proximation. Again, it should be mentioned that, contrary
to standard TDA, states |�k〉 are neither normalized nor
orthogonal with each other. Therefore, special attention has

to be paid when formulating the approach. In practice, this
implies to diagonalize the overlap matrix Okl = 〈�k|�l〉 prior
to write the TDA eigenvalue problem. A practical method has
been proposed in Ref. [28] to obtain the TDA equation in the
projected space. Following Ref. [28], the excited states are
written in terms of new states,

|ν,N + 2〉 =
∑

k

Xν
k |(�k)〉. (21)

States |(�k)〉 are defined through

|(�k)〉 = |�k〉 − |0N+2〉〈0N+2|�k〉, (22)

which guarantees the orthogonality of these states with respect
to |0N+2〉, corresponding here to the approximated GS with
N + 2 particles. While in the original article, this GS was
anticipated to be obtained with a variation after projection
(VAP) procedure, below it is simply taken as |0N+2〉 �
P̂N+2|0, QP〉. Then the TDA eigenequation is solved in the
space of |(�k)〉 states. In the following, this approach is
referred to projected two quasiparticle TDA (P-QTDA).

Consistent with the present approach, addition pair transfer
probabilities are computed using the expectation value of the
transition operator between the quasiparticle vacuum projected
on particle N and the excited states (21):

P Add =
∣∣∣∣∣
∑

ν

Xν
k 〈0, QP|P̂N T̂ P̂N+2|(�k)〉

∣∣∣∣∣
2

. (23)
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FIG. 5. (Color online) Same as Fig. 1 for (a) G = 0.5 MeV, (b)
G = 0.7 MeV, and (c) G = 0.9 MeV. The exact result (red solid line)
is compared to the P-QTDA (black dashed line) and P-QTDA(GS)

(blue dot-dashed line).
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FIG. 6. (Color online) Same as Fig. 5 for the case of random level
spacing.

The projection onto different particle numbers in the expres-
sion does not induce extra difficulty using the fact that

〈0, QP|P̂N T̂ P̂N+2|�k〉 = 〈0, QP|T̂ P̂N+2|�k〉
= 〈0, QP|P̂N T̂ |�k〉.

Therefore, expectation values entering in expression (23) can
be performed using standard projection techniques. In practice,
the projection on particle number is made by discretizing the
gauge angle integration using the Fomenko approach with 199
points [31,32]. A useful expression to express the overlaps as
well as the Hamiltonian expectation value in a projected basis
can be found in the appendix of Ref. [27].

Illustration of the method proposed in Ref. [28] applied
to pair transfer are shown in Figs. 5 and 6, respectively,
for the equidistant and random single-particle level spacing.
These figures clearly demonstrate that the projected TDA
approach provides a much better description of the energy
peak positions of the excited states in the system with N + 2
particles. However, probabilities of transfer are underestimated
especially as G decreases.

Further improvements can a priori be made by including
more correlations in the ground state |0N+2〉. Here, we
simply used a projection after variation (PAV) approach to
approximate this state. A better treatment would be to perform
a VAP as originally proposed in Ref. [28]. Further correlations,
such as correlations induced by the coupling to 4QP states
might be included using the projected QRPA instead of the
projected TDA approach. The projected QRPA approach has
also been formulated previously (Sec. III B of Ref. [28]). In that
case, not only the projected 2QP states but also the projected
4QP states should be explicitly introduced.

The use of VAP and/or the introduction of 4QP, although
possible in the present model [27,33,34], will considerably
increase the complexity of the approach in realistic situations
(see, for instance, [35–37] for the VAP). Below, we propose
a simpler method inspired from P-QTDA and able to grasp
part of the GS correlations without increasing the numerical
complexity.

Contrary to standard linear response theory based on HF
(HFB), the GS projected onto good particle number is not
orthogonal to the particle-hole (2QP) excited states. Similarly,
the projected 2QP states are themselves not orthogonal to the
projected 4QP or higher-order excitations. At first glance,
this might be seen as a disadvantage compared to RPA or
QRPA because additional orthonormalization is required. On
the contrary, one might take advantage of the presence of
higher-order components to improve the description of the GS
itself.

The aim of the P-QTDA approach was to describe excita-
tions with respect to the projected GS. Then, the latter state
has been naturally removed before solving the eigenvalues
equation [Eq. (22)]. Let us assume that we restart from
expression (20), where the projected mean field is also included
in the sum (with the convention that |�0〉 = P̂N+2|0,QP 〉).
Then, coefficients Xν

k can be obtained by diagonalizing
the Hamiltonian in the {�k} (with proper treatment of the
nonorthonormality of the states). This direct approach, called
below P-QTDA(GS), not only provides a way to get excited
states but might also improve the description of the GS itself.
This is indeed what we observed empirically. For instance,
for G = 0.5 MeV and equidistant level spacing, the new
GS has an energy 300 keV lower than the energy of the
original projected mean-field GS. The difference reduces as

0
0.2
0.4
0.6
0.8

1

P gs
/P

to
t

Exact
ppRPA
QRPA
P-QTDA(GS)

0.2
0.4
0.6
0.8

P ex
/P

to
t

0 0.2 0.4 0.6 0.8 1
G (MeV)

0

2

4

6

P ex
/P

gs

(a)

(b)

(c)

FIG. 7. (Color online) Ratios of probabilities estimated with
different theories for the equidistant level case. The exact (red solid
line), QRPA (black dashed line), and P-QTDA (green solid circles) are
shown. The ppRPA is also shown (dotted line) up to G = 0.48 MeV.
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G increases. At G = 0.9 MeV the reduction is only 30 keV.
For completeness, the probability to transfer from GS to GS
within the P-QTDA(GS) is also shown in Fig. 3. This probability
is slightly improved compared to the BCS case below the BCS
threshold while it follows the PAV results above.

It turns out that this approach improves the description
of pair transfer from GS to excited states. Results of the
P-QTDA(GS) method are presented in Figs. 5 and 6 by dashed
lines. A clear improvement is observed especially at low
excitations and low G. The remaining difference with the
exact solution is acceptable in view of the simplified approach
presented here.

To further quantify the predictive power of the P-QTDA(GS)

method, some ratios of pair transfer probabilities are shown in
Fig. 7. In this figure, Pgs, Pex, and Ptot correspond, respectively,
to the probability to transfer to the GS, the sum of probabilities
to transfer to any excited states, while Ptot = Pgs + Pex. Below
the pairing threshold, the P-QTDA(GS) reduces to a ppTDA(GS),
where the diagonalization is made in a reduced space of Slater
determinant. In that case, the result are of the same quality as
for the ppRPA. This figure clearly confirms that while QRPA
is rather far from the exact results in the superfluid phase, espe-
cially in the vicinity of the BCS threshold, the projected theory
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FIG. 8. (Color online) Exact (red thick solid line), QRPA (black
dashed line), and P-QTDA(GS) (blue thin solid line) addition strength
function as a function of excitation energy E for different N to
N + 2 systems. Calculations are made with � = N + 2 equally
spaced levels: (a) N = 6, (b) N = 12, and (c) N = 40. In all cases
the pairing strength G used is G/�ε = 0.5. In panel (c) only the
QRPA and P-QTDA(GS) results are shown because in this case the full
diagonalization cannot be performed.

provides a much better reproduction of GS to excited state pair
transfer probabilities. Moreover, theoretical predictions based
on the QRPA [38] might significantly overestimate the GPV
cross section, as suggested also in Ref. [7], especially in the
vicinity of the normal-superfluid transition.

To analyze the dependence of the results on the system
size, we present in Fig. 8 the addition strength function for
different N to N + 2 systems with (a) N = 6, (b) N = 12, and
(c) N = 40. In each case, � = N + 2 equally spaced levels are
taken while the pairing strength is set to G = 0.5�ε. Because
of the size of the matrix involved, for the N = 40 case, the
exact calculation cannot be performed and only the QRPA
and P-QTDA(GS) results are shown in panel (c), showing at
the same time the feasibility of the P-QTDA(GS) for large
systems. As a general feature, by comparing with the exact
solution in panels (a) and (b), we can see that the P-QTDA(GS)

is able to give a better description of the position of the energy
peaks compared to the QRPA. Conjointly, while the overall
strength is globally well reproduced, the transfer probability
is slightly underestimated in P-QTDA(GS) pointing out some
missing effect of more complex configurations that play a
role in the exact case. The QRPA generally overestimates the
collectivity of the states.

For completeness, we also show in Fig. 9 the effect of
enlarging the model space size. Panels (a), (b), and (c)
correspond, respectively, to � = 10, � = 12, and � = 14
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FIG. 9. (Color online) Exact (red thick solid line), QRPA (black
dashed line), and P-QTDA(GS) (blue thin solid line) addition strength
function as a function of excitation energy E for the transfer from
N = 8 to N = 10. Calculations are made with (a) � = 10, (b) � =
12, and (c) � = 14 equally spaced levels and G/�ε = 0.5.
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doubly degenerated single-particle levels for the transfer from
N = 8 to N = 10. We see that the increase of � does not
change the conclusions drawn above and that the P-QTDA(GS)

always leads to a significant improvement compared to the
QRPA result.

V. CONCLUSIONS

In this work, the QRPA description of the two-particle
transfer mechanism is tested against the exact solution in the
Richardson model for several conditions of pairing interaction
strength and level spacing. It is seen that both ppRPA in the
normal phase and QRPA in the superfluid region are able to
grasp the gross feature of the pair transfer process. However,
some differences are observed. At variance with other kinds
of resonance states mainly built in terms of particle-hole
excitations (see, for instance, Fig. 1 of Ref. [39]), the particle
number conservation seems to play an important role when

the particle number change during the physical process of
interest. A method is proposed here to improve the description
of pair transfer in finite superfluid systems. The new method
is based on the direct diagonalization of the Hamiltonian in
a reduced space of the projected GS plus two quasiparticle
states. This theory improves considerably the description of
the pair transfer process. On the practical side, the P-QTDA(GS)

requires only to solve the BCS or HFB problem in the
initial nucleus and, except for the additional numerical cost
of projection, it does not need more effort than the original
QRPA. Work is in progress to apply it to nuclear transfer
reactions.
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