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The combinatorial model of nuclear level densities has now reached a level of accuracy comparable to that
of the best global analytical expressions without suffering from the limits imposed by the statistical hypothesis
on which the latter expressions rely. In particular, it provides naturally, non-Gaussian spin distribution as well
as nonequipartition of parities which are known to have a significant impact on cross section predictions at low
energies. Our previous global model [S. Goriely, S. Hilaire, and A. J. Koning, Phys. Rev. C 78, 064307 (2008)]
suffered from deficiencies, in particular in the way the collective effects—both vibrational and rotational—were
treated. We have recently improved the level density calculations using simultaneously the single-particle levels
and collective properties predicted by a newly derived Gogny interaction [S. Goriely, S. Hilaire, M. Girod, and
S. Péru, Phys. Rev. Lett. 102, 242501 (2009)], therefore enabling a microscopic description of energy-dependent
shell, pairing, and deformation effects. In addition, for deformed nuclei, the transition to sphericity is coherently
taken into account on the basis of a temperature-dependent Hartree-Fock calculation which provides at each
temperature the structure properties needed to build the level densities. This new method is described and shown
to give reasonable results with respect to available experimental data.
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I. INTRODUCTION

The knowledge of nuclear level densities (NLDs) plays a
key role in the evaluation of the nuclear data. It has been a
field of research for years going back at least to 1936 with
Bethe’s pioneering work [1]. Level densities are required for
modeling nuclear reactions as soon as the number of levels
to which decay occurs is too large to allow for an individual
description. With the development of new innovative facilities,
as well as for astrophysical purposes, nuclear data far from the
valley of stability are required. This challenges the nuclear
reaction models. Indeed, so far, cross section predictions have
mainly relied on more or less phenomenological approaches,
depending on parameters adjusted to scarce experimental data
or deduced from systematics. Such predictions are expected
to be reliable for nuclei not too far from experimentally
accessible regions, but are questionable when dealing with
exotic nuclei. To face such difficulties, it is preferable to rely
on as fundamental (microscopic) as possible methods based
on physically sound models.

Global microscopic models of NLD have been developed
over the last decades (see Ref. [2] and references therein),
but they are almost never used for practical applications
because of their lack of accuracy in reproducing experimental
data (especially when considered globally on a large data
set) or because they do not offer the same flexibility as do
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highly parametrized analytical expressions. We have therefore
developed a combinatorial approach and demonstrated that
it can clearly compete with the statistical ones in the global
reproduction of experimental data [2,3]. This approach pro-
vides energy, spin, and parity dependence of NLD, and, at low
energies, describes the nonstatistical limit which by definition
cannot be described by the traditional statistical formulas.
Such a nonstatistical behavior can have a significant impact on
cross section predictions, particularly when calculating cross
sections known to be sensitive to spin or parity distributions
such as isomeric production cross sections [4] or capture cross
sections. However, the combinatorial method described in
Ref. [2] still offers room for improvement because of the
phenomenological aspects of some ingredients it contains
which could hamper its microscopic nature, and consequently
its predictive power. For that reason, we have updated our
method in order to reduce this amount of phenomenology.

Section II recalls the main features of the previously
employed combinatorial method in order to shed light on
the phenomenological components from which it still suffers.
We describe in Sec. III the new features that have now been
included, in particular the new nucleon-nucleon interaction
together with the new structure properties that we use to
construct our NLD, as well as the temperature-dependent
treatment introduced to improve the description of the evo-
lution of the nuclear deformation with increasing excitation
energy. The obtained NLDs are compared with experimental
data in Sec. IV. Conclusions and prospects are finally drawn in
Sec. V.

©2012 American Physical Society
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II. COMBINATORIAL MODEL OF NUCLEAR
LEVEL DENSITIES

The combinatorial method has been extensively described
in Refs. [2,3,5] and is only summarized here. It consists
in using the single-particle level scheme obtained from the
axially symmetric Hartree-Fock-Bogoliubov (HFB) method
to construct incoherent particle-hole (ph) state densities
wpn(U, M, ) as functions of the excitation energy U, spin
projection M, and parity w. Once these incoherent ph state
densities are determined, collective effects are included.
Vibrational effects are first accounted for using the boson
partition function as introduced in Ref. [5] which includes
quadrupole, octupole, as well as hexadecapole vibrational
modes. This boson partition function depends only on the
phonon’s energies. In Ref. [5], only experimental data were
used. To be able to provide NLDs for any nuclei, analytical
systematics, adjusted on the tabulated data of Ref. [5], have
been introduced in Ref. [3] for quadrupole and octupole
vibrational modes and an extension for hexadecapole modes
was also proposed in Ref. [2] to improve, in particular,
the description of experimental s-wave mean spacings in
the actinide region. Once the vibrational and incoherent ph
state densities are obtained, they are folded in and yield
the total state densities wy (U, M, ). To account for the
damping of vibrational effects with increasing energies, we
restrict the folding to the ph configurations having a total
exciton number (i.e., the sum of the number of proton and
neutron particles and proton and neutron holes) Ny, < 4.
This restriction stems from the fact that a vibrational state
results from a coherent excitation of particles and holes, and
that this coherence vanishes with increasing number of ph
involved in the description. Level densities are then obtained
by constructing rotational bands if the nucleus is deformed or
using the classical expression relating state and level densities
for a spherical nucleus. For spherical nuclei, the level density
ps(U, J, ) is obtained from the relation

,OS(U, J,T[):(Utot(U,M: J,]T)_wlot(U,M: J+1,7T).
(1)

For deformed nuclei, within the axial symmetry hypothesis,
the NLD reads

1 J
paU, J,m) = - [ > oa(U-Eg K, n):|

K=—7,K+40
+ wtot(U - Erjo‘to, 0, 71)
X [8(7 evenySr=+) + 8(J 0dd) Sx=—)]- (2)

In the right-hand-side term of Eq. (2), the factor 1/2 accounts
for the fact that in mirror axially symmetric nuclei, the intrinsic
states with spin projections +K or —K give rise to the
same rotational levels. Moreover, in the second terms of the
summation, the symbol §(, (defined by §() = 1 if x holds true
and 0 otherwise) restricts the rotational bands built on intrinsic
states with spin projection K = 0 and parity 7 to the levels
sequences 0,2,4,... formr =+ and 1, 3,5,... for m = —.
Finally, the rotational energy is obtained with the well-known
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expression [6]

gk _ JUJ +1)— K>
rot - Zjl >

where 7, is the moment of inertia of a nucleus rotating around
an axis perpendicular to the symmetry axis.
In Ref. [2], J, was approximated by the rigid-body value

jfgid which reads
21+ > B
167"2)

for an ellipsoidal shape with axial quadrupole deformation
parameter S,.

Finally, because a deformed nucleus in its ground state
becomes spherical with increasing excitation energies [7], this
effect has to be taken into account. This was done in Refs. [2,3]
introducing a phenomenological damping function F such that

pU, J,m)=1[1—FlpsU, J, 7))+ FpsU, J, 7). (@Y)

3)

rigid 2
jJ_gd == ng

The expression of F has evolved between Ref. [3] and
Ref. [2], reflecting our lack of knowledge concerning this
shape transition. In Ref. [3], F depended both on the excitation
energy and the deformation of the nucleus, while in Ref. [2], it
has been simplified to depend only on the nucleus deformation
thus reducing the amount of phenomenology. The goal of this
function was twofold: first, to describe smoothly the evolution
from deformed to spherical shapes with increasing excitation
energies, and, second, to smooth out the sharp transition
appearing when one selects either Egs. (1) or (2) (i.e., one
decides if a nucleus is spherical or deformed) to determine
level densities. Such a binary choice would have indeed given
rise to sharp transitions within a given isotopic chain without
any other physical justification than the arbitrary criterion used
to decide when a nucleus is deformed or not.

To summarize, the collective features of the nuclei are
among the major sources of uncertainty in the previously
published methods. This concerns in particular the knowledge
of vibrational level energies, for which the analytic expression
of Refs. [2,3] is not satisfactory, as well as the evolution of the
nucleus deformation with excitation energy. To improve the
situation we have therefore modified our approach as we now
describe.

III. IMPROVING THE DESCRIPTION
OF COLLECTIVE EFFECTS

The starting point of our approach is a nucleon-nucleon
effective interaction which provides within the framework of
HFB calculation the single-particle level schemes upon which
combinatorial level densities are determined. In our previous
studies, the effective BSk14 Skyrme force [8] was used for this
purpose, mainly because of its ability to reproduce nuclear
binding energies with a relatively high accuracy. Indeed,
the root mean square (rms) deviation of the HFB-14 mass
model with respect to the 2149 measured masses [9] of nuclei
with Z, N > 8 is 0.729 MeV. An alternative to this Skyrme
interaction is the Gogny interaction, which has the advantage
of also providing a fairly good description of low-energy
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FIG. 1. Comparison between the energy of the experimental
quadrupole vibrational 0t and 2% levels and those predicted using the
approach described in Ref. [11] with the D1S and D1M interactions.

collective level properties [10,11]. The well-established D1S
parametrization [12], however, turned out to be inappropriate
for describing nuclear masses [13]. This situation has been
recently improved [14] by modifying the Gogny force parame-
ters in order to optimize the nuclear binding energy description
without degrading the other qualities of the interaction, and
in particular, the low-energy collective level properties. This
feature is illustrated in Fig. 1 where the vibrational 0" and 2+
levels obtained following the method described in Ref. [11]
for both the DIS and D1M parametrizations are compared
with experimental data of Ref. [5]. As can be observed, both
interactions provide results of similar quality. Analyzing these
results as in Ref. [10], we deduce that the predictions using
the DIM interaction overestimate experimental data by a
factor 1.28 for the 27 levels and 1.58 for the 0*. Coming
back to our combinatorial method, we can thus replace the
analytical approximation for quadrupole vibrational energies
introduced in our previous approaches by the D1M predictions.
It is, however, worth mentioning that we apply globally the
previously determined renormalization factors when using the
DIM vibrational quadrupole energies in our boson partition
function. Similar microscopic predictions would be required
for octupole as well as for hexadecapole modes. Such
predictions can be obtained using the quasiparticle random
phase approximation [15,16], but this systematic study has not
been performed yet.

Beyond the improved quadrupole vibrational energies, a
new treatment has also been implemented to improve the
description of the expected transition from deformed to
spherical shape at increasing excitation energies. For this
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purpose, the temperature-dependent HFB approach is applied,
following the method initially described in Ref. [17]. In
Ref. [17], the average value of an observable O can be obtained
from

[ Oexpl—F(q)/Tldgq
[expl—F(q)/Tldq

where the free energy F depends on the energy E, the
temperature 7, and the entropy S through the well-known
relation F(g) = E(q) — T S(g) and where g is the quadrupole
deformation considered to be the most relevant degree of
freedom to deal with deformation changes. Such a treat-
ment would require quite extensive calculations since for
each temperature a full potential energy surface has to be
determined. Therefore, as a first step, a simpler approach has
been adopted. It consists in determining the most probable
deformation B; by minimizing the free energy on the basis

0= , ®)

| (a) ]

54

Excitation energy (MeV)

100[~ .

Moment of Inertia
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FIG. 2. (Color online) (a) Excitation energy as a function of the
nuclear temperature 7. (b) Quadrupole deformation parameter 8 as
a function of T'. (c) Moment of inertia as function of 7.
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of a temperature-dependent HFB calculation at a selected
temperature 7; (corresponding to a given excitation energy
U).

The corresponding evolution of the excitation energy
U, quadrupole deformation B, and moment of inertia with
increasing temperatures are illustrated in Fig. 2 for a set
of nuclei covering a wide mass range and different initial
deformations in their ground state. As expected, we recover
the well-known U o< T2 relationship as well as the deformed
to spherical shape transition.

To estimate the NLD at an excitation energy U; and
consequently at the corresponding deformation §;, the same
combinatorial method as described in Sec. II is used with
the corresponding single-particle level scheme and pairing
properties at the temperature 7;. Itis also worth mentioning that
this temperature-dependent approach provides microscopic
moments of inertia which replace the rigid body value of
Ref. [2] for the construction of the rotational bands of Eq. (3).
The latter are also shown in Fig. 2 as functions of the
temperature. Note that these moments of inertia J, show
nontrivial evolutions with increasing temperature. Indeed, they
globally tend to increase at low T before decreasing at high
temperatures. This feature stems from the competition between
the deformation change and the gradual disappearance of
pairing. More precisely, for low temperature, deformation
changes are usually weak and the disappearance of pairing
correlations thus dominate and explain the increase of the
moment of inertia until the variations of 7, are essentially
driven by deformation changes.

As illustrated in Fig. 3, the level densities are affected by
the corresponding temperature-dependent nuclear input since
they display discontinuities stemming from the disappearance
(gradual or sudden) of the shell and pairing effects as well
as from the fact that we use a finite set of temperatures. In
principle the level density determined for a given temperature
is only valid at the corresponding excitation energy. However,
for practical reasons, we consider the NLD at 7; to be valid
over the excitation energy interval [U;, U;+1]. In that case, to
suppress the discontinuities, we consider that the level density
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FIG. 3. (Color online) Total NLDs for positive parities of 23U
calculated for several temperatures. Each level density curve covers
an energy interval which starts at the excitation energy corresponding
to the chosen temperature.
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FIG. 4. (Color online) Total NLDs for positive parities of 23¥U
calculated for several temperatures connected smoothly thanks to the
procedure described in the text. The reference points, i.e., those not
affected by the smoothing procedure, are identified by circles. The
level density obtained using the HFB ingredients determined with
T =0 at all excitation energies U is shown for comparison (lower
grey curve).

calculated at 7; corresponds to the energy U;, while the NLDs
above U; (up to U;4;1) have to be shifted in such a way as
to recover the NLDs calculated at U;,; on the basis of the
HFB ingredients at 7; . With this treatment, the discontinuity
shown in Fig. 3 in the T-dependent NLDs are smoothed out,
as shown in Fig. 4. In most cases, the temperature-dependent
NLD is found to be larger than that obtained with 7' = 0.
For low excitation energies, this feature is mainly due to the
vanishing of pairing correlations with increasing temperatures.
For higher energies, in particular when pairing correlations
disappear, the NLD enhancement stems from the increase
of the density of the single-particle levels around the Fermi
energy with increasing temperatures.

Last but not least, as we will see later, the damping function
avoiding sharp transitions between the spherical and deformed

10

300 Expt. D from RIPL3
expt

50 100 150 200 250
A

FIG. 5. (Color online) Ratio of HFB plus combinatorial (Dy,) to
the experimental (D) s-wave neutron resonance spacings [20]. The
temperature-dependent treatment is shown with circles and the 7 = 0
case with squares.
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FIG. 6. (Color online) Comparison of the cumulative number of observed levels (colored lines) with the current combinatorial method
(thick black line) as a function of the excitation energy for a sample of 24 nuclei. Experimental data for even-even, odd-A, and odd-odd
nuclei are shown by the blue, red, and green lines, respectively. Only for 2%®Pb, both curves have been shifted by 2 MeV, the energy range
corresponding consequently to [2-7] MeV instead of [0-5] MeV.

level densities, as explained in Sec. II, has been modified. where the parameters have been adjusted in order to reproduce
‘We now use an expression only depending on the quadrupole at best the s-wave mean spacings at the neutron separation
deformation parameter 8, which reads energy. It is important to insist here on the fact that this
damping function is used to suppress the discontinuities

F=1—=[1+ P019/002-1 (6) occurring between the spherical and deformed NLDs. This
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is needed to avoid a sharp transition from one nucleus to the
neighboring one when dealing with softly deformed nuclei,
but not to describe shape evolutions with increasing excitation
energies as was done in Ref. [3].

IV. RESULTS

The temperature-dependent NLD is found to be signif-
icantly different from that obtained at 7 =0, as already
illustrated in Fig. 4. The temperature effect may consequently
have a non-negligible impact in particular on the s-wave
spacings at S,,. To check that, we have applied the previously
described method to all the nuclei for which experimental
s-wave mean spacings Dy exist. The results are displayed
in Fig. 5 and compared with those obtained without any
temperature dependence. The improvement obtained with the
temperature-dependent method is quite clear. To measure
the dispersion between theoretical and experimental D, we
introduce as usual the fi,s factor defined as

1Y, oy 1"
foms = exp|:— > I’ —‘h} , 7
N.~=" D

expt

where Dy, (Dexpt) is the theoretical (experimental) resonance
spacing and N, is the number of nuclei in the compilation.
While fins =4 without accounting for the temperature de-
pendence (a value similar to the one obtained in Ref. [5] based
on the D1S interaction), fi,s = 2.7 with our new temperature-
dependent treatment. It should, however, be mentioned that
contrary to what has been done in Ref. [2], we have not
included here any hexadecapole vibrational phonon. In the cur-
rent situation, the only phenomenological ingredients are the
octupole vibrational phonon energies, the number of phonons

1000
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N(E)

10

[EN Y N A N — i
0o 1 2 3 4 1 2 3 4 5

Excitation energy (MeV) Excitation energy (MeV)

FIG. 7. (Color online) Same as Fig. 6, but for a sample of four
nuclei for which a worse agreement with experiment (thin red line)
than in Ref. [2] is observed. Theoretical predictions are obtained
using the rigid body value for the moment of inertia and either the
damping function of Ref. [2] (heavy black solid line) or the current
damping function (black dotted line) given by Eq. (6). See text for
more details.
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and ph configurations included in the vibrational-intrinsic
state density folding procedure and the damping function
[Eq. (6)]. The final f;ns is comparable to, even if slightly worse
than, our 2008 compilation [2] (fims = 2.3), the microscopic
plus statistical formula (fi,s = 2.1) of Ref. [18] as well as
the value of f,s = 1.8 obtained with the phenomenological
Back-Shifted Fermi Gas Model (BSFG) formula [19].

It is also important to check if the new level densities still
behave correctly for low-lying discrete levels as in Ref. [2].
For this purpose, we compare in Fig. 6, for quite a large set of
nuclei covering light and heavy as well as odd-odd, odd-A, and
even-even species, the cumulated histograms of experimental
low-energy levels with the theoretical predictions. As can be
observed, an overall reasonable description of experiment is
obtained.

When looking more carefully, a kind of systematic dis-
agreement is, however, observed for odd-A as well as odd-odd
nuclei. This feature has already been observed [21] and
stems from the simple treatment of the coupling between
particle-hole and vibrational states as currently implemented.
Further investigations are, however, required to confirm this
pattern. The description of a few nuclei, such as ®*Co, '97Cd,
127Te, or 1%4Ir, clearly appears to be worse than that obtained
with our previous model (see Fig. 6 of Ref. [2]). To understand
this problem, we have adopted, as in Ref. [2], the rigid body
value of the moment of inertia to construct the rotational
bands and used either the damping function of Ref. [2] or
the current one given by Eq. (6). The results are shown in
Fig. 7. As can be seen, the good description of experimental
data is recovered if one uses (i) a rigid body value for the
moment of inertia and (ii) the damping function (thick line)
of Ref. [2] while discrepancies are still clear when the current
damping function is adopted (dotted line). If this sheds light on
the difficulties related to the choice of the damping function,
it also shows that the agreement observed in Ref. [2] stems
from the use of a rigid body value for the moment of inertia,
which is clearly not justified for low excitation energies where
pairing correlations are known to strongly reduce the rotational

0 50 100 150 200 250 50 100 150 200 250

FIG. 8. (Color online) Current « and § values (red squares) and
those of Ref. [2] (black crosses) plotted as a function of the atomic
mass. See text for more details.
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FIG. 9. (Color online) Comparison between the total NLDs determined by the Oslo group (grey areas) [23-25] and the HFB combinatorial
predictions (thick lines). The full triangles correspond to the model-dependent normalization point derived by the Oslo group. See text for more

details.

moment of inertia. This remark is furthermore confirmed
by the better description of the low-energy experimental
discrete levels in actinides (Fig. 6) with the current treatment
of the moment of inertia. In other words, we believe that

the good agreement obtained in Ref. [2] results from the
compensation of the crude treatment of the coupling between
particle-hole and vibrational states by too strong a moment of
inertia.
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FIG. 10. (Color online) Comparison between theoretical and experimental NLDs for given spin and parity in “°Ca, *¥Ni, *°Zr, and *°Nb.
The experimental data (full squares) are taken from Ref. [26] for “’Ca and from Ref. [27] for **Ni, ®°Zr, and °*Nb. The blue dashed lines
correspond to the raw NLDs and the full red lines to the normalized ones.

When phenomenological NLDs are used for nuclear
physics applications, such as nuclear data evaluation or for
accurate and reliable estimations of reaction cross sections,
one often plays with the few parameters on which phenomeno-
logical expressions rely. Although our predictions are provided
in a table format, it is possible to renormalize them both
on the experimental level scheme at low energy and the
neutron resonance spacings at U = §, in a way similar to
what is usually done with analytical formulas. More precisely,
the renormalized level density can be obtained through the
expression

p(Uv ‘,7 P)renorm =e” =9 IO(U - 57 -,» P), (8)

where the energy shift § is essentially extracted from the
analysis of the cumulative number of levels and « from the
experimental s-wave neutron spacing. With such a renormal-
ization, the experimental low-lying states and the D, values
can be reproduced reasonably well as discussed in detail in
Ref. [22]. Equation (8) has been used to fit the 289 nuclides
for which both an experimental s-wave spacing (Dg) and a
discrete level sequence exist. The corresponding 6 and « values
for these nuclei are shown graphically in Fig. 8 and compared
with the same values obtained using our previous model (see
Fig. 8 of Ref. [2]). As can be seen, the o and § parameters show
no systematic trend or A dependence, and more particularly

no correlation with shell closures. A significant reduction
of the normalization factors appears in the actinide region,
essentially due to a better description of moments of inertia.
For an additional 846 nuclides, only the experimental discrete
level scheme with at least 10 levels are known. For those nuclei,
only the § shift is used to reproduce at best the low-lying levels.
Sets of § and o parameters have therefore also been tabulated
using the approach of Ref. [22].

We compare in Fig. 9 our predictions with the experimental
data extracted by the Oslo group [23,25] for a significant set
of nuclei covering quite a wide range of masses. As already
mentioned in Ref. [2], the experimental determination is,
however, model dependent since a normalization procedure
is followed by the Oslo group. The experimental points are
indeed normalized to the so-called experimental total NLD
at U = S, deduced from the measured s-neutron resonance
spacing on the basis of a BSFG-type formula (see the
corresponding points shown as full triangles in Fig. 9). A
similar procedure must be followed on the basis of our
combinatorial model, determining for each nucleus a value
a such that

Pn(Sn) X exp(ay/Sp) = Podo(Su)s )

and then plotting the normalized theoretical level densities
(see Ref. [22] for more details). As can be observed, the
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combinatorial NLD (thick line in Fig. 9) agrees globally quite
well with the so-called experimental values below S,,.

Our predictions are also compared in Fig. 10 with the
spin- and parity-dependent level density data extracted from
Refs. [26,27]. In this figure, the raw NLDs (blue dotted line) as
well as the normalized ones (full red line) are plotted. Note that
the normalizations have not been done to fit these experimental
data but are those corresponding to the fit to low-lying
experimental discrete levels and/or Dy. The agreement is not
perfect but both the experimental fluctuations and orders of
magnitude are fairly well reproduced by the normalized NLD.

To further compare the present NLDs with those of Ref. [2],
we plot in Fig. 11 the ratio of the Maxwellian-averaged (n, y)
rates (ov) at the stellar temperature of 7 = 10° K for Sn
isotopes obtained with the current and previous NLD. The
radiative capture rate at such a temperature essentially reflects
the cross section around hundred keV incident neutron energy.

At such energies, the radiative capture cross section is
known to be sensitive to the NLD below the neutron threshold.
As can be seen, the temperature-dependent NLDs provide
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FIG. 12. (Color online) Ratio of TALYS Maxwellian-averaged
(n, y) rates (ov)y, with experimental values [28] at T = 3 x 10® K.

The blue squares correspond to the current normalized NLDs and the
red dots to those of Ref. [2].
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results rather similar to the previous ones though for a few
exotic cases deviations by a factor up to 10 can be observed.

Comparisons of the Maxwellian-averaged (n, y) rates (o v)
at T = 3 x 10® K with experimental data for some 219 nuclei
heavier than *°Ca included in the compilation of Bao et al. [28]
are also shown in Fig. 12 using either the normalized NLDs
of our previous model or the current ones. The calculations
agree with experimental data roughly within a factor of 2
for both models. Note that additional uncertainties stemming
in particular from y-ray strength functions also affect the
predictions. In the present case, the microscopic y-ray strength
functions from Ref. [29] have been used. The corresponding
rms deviation [based on a relation identical to Eq. (7)] for
the 219 nuclei is fins = 1.60 using the old NLDs and 1.80
with the present ones. This difference is directly correlated to
the difference between the corresponding fi,s = 2.3 and 2.7
obtained with respect to the experimental D values (see Fig. 5
for the present NLDs).

V. CONCLUSIONS AND PROSPECTS

New developments have been brought to our combinatorial
method in order to determine on more solid microscopic
grounds NLDs and to be able to calculate them for nearly
8500 nuclei. The idea behind this update consists in trying to
reduce the amount of phenomenology necessary to determine
microscopic level densities usable for application. For this
purpose, the DIM Gogny interaction has been used instead
of the previously employed Skyrme force to determine the
nuclear structure information out of which the NLDs are built.
This choice has been made since the Gogny interaction has
shown its ability to predict quite well low-energy quadrupole
collective levels, both rotational and vibrational, thus enabling
us to believe in an improvement of the predictive power of
our calculations. Beyond that, we have also implemented
a temperature-dependent treatment of the nuclear properties
which provides us with a way to deal with the modifications
of the structure properties with increasing excitation energies
within a more solid physical framework than before. In
particular, the use of a microscopic moment of inertia to
construct rotational bands in deformed nuclei which evolves
with increasing energy enables us to improve the low-energy
level descriptions for well-deformed nuclei such as in the rare
earth or in the actinide region. The newly derived NLDs
are shown to provide fairly good results when compared
with experimental data up to the neutron separation energy.
Still several problems remain to be investigated, such as the
treatment of the coupling between particle-hole and vibrational
excited states or the control of the smoothing function enabling
the suppression of the discontinuities between spherical and
deformed NLDs. This smoothing function still remains the
weakest point of the current formalism. Further investigation is
required to be able to suppress such an arbitrary function. Other
possible improvements concern the microscopic determination
of octupole (and possibly hexadecapole) vibrational level
energies for which a phenomenological expression is still
employed.
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