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We present an estimate of the nuclear electric polarizability αE of the 6He halo nucleus based on six-
body microscopic calculations. Wave functions are obtained from semirealistic two-body interactions using the
hyperspherical harmonics expansion method. The polarizability is calculated as a sum rule of the dipole response
function using the Lanczos algorithm and also by integrating the photoabsorption cross section calculated via
the Lorentz integral transform method. We obtain αE = 1.00(14) fm3, which is much smaller than the published
value α

exp
E = 1.99(40) fm3 [Pachucki and Moro, Phys. Rev. A 75, 032521 (2007)] extracted from experimental

data. This points toward a potential disagreement between microscopic theories and experimental observations.
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I. INTRODUCTION

The nuclear electric polarizability αE is related to the
response of a nucleus to an externally applied electric field. It is
an interesting observable because it encapsulates information
about the excitation spectrum of a nucleus. Recently, it
has attracted a lot of attention both for light nuclei (see,
e.g., [1]) and for heavy nuclei (see, e.g., [2]). For light systems
the nuclear polarizability is relevant in the extraction of nuclear
quantities from atomic spectroscopic measurements. The
atomic energy levels are affected by polarization of the nucleus
due to the electric field of the surrounding electrons. Such
nuclear structure correction, which is proportional to Z3αE/a0

[3] where a0 is the Bohr radius, needs to be considered in
the sophisticated quantum electrodynamics calculations of the
atomic levels that allow the extraction of charge radii from
isotope shift measurements of unstable nuclei (see Refs. [4,5]
and [6] for 6He and 8He, respectively). An even larger effect of
the nuclear structure correction coming from the polarizability
is expected in muonic atoms, as the muon mass is larger than
the electron mass and the orbital radius is smaller. This will
be relevant to the proposed μ4He and μ3He experiments [7]
that aim at measuring the nuclear charge radius of 4He and 3He
from the Lamb shift, to be compared to electron scattering data.

The nuclear electric polarizability of helium isotopes is
interesting for several of the above-mentioned reasons. It has
been already directly measured or extracted from experimental
data for the 3,4,6He isotopes [1]. In the case of 3He it is
worth mentioning that the data from elastic scattering on Pb
at energies below the Coulomb barrier [8] are in disagreement
with estimates based on calculations of the photoabsorption
cross section [1], the latter being about a factor of 2 smaller.
It is also worth noticing that the theoretical calculations are
in agreement with photoabsorption experiments, and that
the band spanned by using different Hamiltonians in the
calculations is smaller than the difference between the data
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taken from photoabsorption cross section and ion scattering
experiments. The data analysis involved in the latter approach
is quite delicate, because one has to separate effects of the
nuclear force from Coulomb effects.

In Ref. [9] the polarizabilities of several hydrogen and
helium isotopes were calculated with ab initio methods.
Among the helium isotopes, 3He and 4He were dealt with,
but no prediction for 6He was provided. It is the aim of this
paper to fill this gap.

6He is known as a halo nucleus, where a tightly bound
4He core is surrounded by two neutrons [10]. It happens to
be the lightest of the known halo nuclei and it is a Borromean
nucleus, because the two-neutron and neutron-core subsystems
are unbound, but the three-body system is held together. Due
to the very small separation energy which characterizes halo
nuclei, one expects the polarizability of 6He to be much larger
than that of the tightly bound 4He isotope. Experimental data
indicate this behavior. In this paper we would like to see
whether microscopic calculations reproduce the experimental
values and lead to a result where αE(6He) � α(4He).

We perform a microscopic study of the nuclear polariz-
ability αE for 6He and compare it to 4He. We limit our
study to simple semirealistic two-body forces. For that we
use the hyperspherical harmonics method with an effective
interaction, EIHH, to speed up the convergence [11,12].
The polarizability is calculated as a sum rule of the dipole
response function using the Lanczos algorithm and also
integrating the photoabsorption cross section calculated with
the Lorentz integral transform method [13].

This paper is organized as follows. In Sec. II we describe
in details the theoretical calculation of the polarizability. In
Sec. III we present our results and in Sec. IV we make a
comparison with experiment. Finally, we conclude in Sec. V.

II. THEORETICAL ASPECTS

The nuclear electric polarizability in the unretarded dipole
approximation is defined by the expression

αE = 2α
∑
n�=0

|〈n|Dz|0〉|2
En − E0

, (1)
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where α is the fine-structure constant, Dz is the unretarded
dipole operator, and E0 and En are the energies of the nuclear
ground and excited states |0〉 and |n〉, respectively. This ob-
servable is clearly related to the photoabsorption cross section
and to the dipole response function. The photoabsorption cross
section σγ (ω) of a nucleus is given by

σγ (ω) = 4π2α ω R(ω), (2)

where R(ω) is the response function. In the unretarded dipole
approximation

R(ω) =
∑
n,0̄

|〈n|Dz|0〉|2 δ(ω − En + E0), (3)

where 0̄ indicates an average on the initial angular mo-
mentum projections. The dipole operator is given by Dz =∑A

i=1 ziτ
3
i /2, where A is the number of nucleons and τ 3

i and
zi are the third component of the isospin operator and the
coordinate of the ith particle in the center-of-mass frame,
respectively. One can recover the expression for αE in Eq. (1)
by calculating sum rules of the photonuclear cross section. The
various moments of σγ are defined as

mn(ω̄) ≡
∫ ω̄

ωth

dω ωn σγ (ω), (4)

where ω is the photon energy and ωth and ω̄ indicate threshold
energy and upper integration limit, respectively. Assuming
that σγ (ω) converges to zero and utilizing the closure of the
eigenstates of the nuclear Hamiltonian H , one can relate the
polarizability to the n = −2 sum rule,

αE = m−2(∞)

2π2
= 2α

∑
n

|〈n|Dz|0〉|2
En − E0

. (5)

The polarizability αE can be calculated with the Lanczos
algorithm using a proper pivot. It is useful to rewrite Eq. (5) as

αE = 2α〈0|D†
z

1

H − E0
Dz|0〉

= −2α〈0|D†
zDz|0〉〈φ0| 1

E0 − H
|φ0〉, (6)

with

|φ0〉 = Dz|0〉√〈0|DzDz|0〉 . (7)

Starting from the “pivot” of Eq. (7) where the ground state
|0〉 is obtained by solving the Schrödinger equation, αE can
be expressed as a continued fraction containing the Lanczos
coefficients [14]

ai = 〈φi |H |φi〉, bi = 〈φi+1|H |φi〉, (8)

where the |φi〉 form the Lanczos orthonormal basis {|φi〉, i =
0, . . .}. In fact one has

αE = −2α〈0|D†
zDz|0〉 1

E0 − a0 − b2
1

E0 − a1 − b2
2

E0 − a3 . . .

.

(9)

In this work we calculate the polarizability in two different
ways. On the one hand we utilize Eq. (9). On the other
hand we obtain m−2 by integrating our results for the total
photoabsorption cross section calculated with the Lorentz
integral transform (LIT) method [13]. In Refs. [15,16] we
have presented microscopic calculations of the 6He σγ with
semirealistic potential models. Here we use larger model
spaces which are nowadays available. The LIT, an integral
transform with a Lorentzian kernel, is defined as

L(σR, σI ) =
∫

dω
R(ω)

(ω − σR)2 + σ 2
I

. (10)

The LIT is also typically calculated using the Lanczos tech-
nique explained above (see [17]). In fact it can be reexpressed
as

L(σR, σI ) = − 1

σI

〈0|DzDz|0〉 Im

{
〈φ0| 1

z − H
|φ0〉

}
, (11)

with z = E0 + σR + iσI . It is evident that the LIT in (11) is
also a continued fraction as in Eq. (9), where E0 is replaced by
a complex z = E0 + σR + iσI . Once L(σR, σI ) is calculated,
one can invert the LIT [18] to get R(ω) and thus m−2. The
two methods have to agree within the numerical uncertainty.
However, with the first method one avoids the complications
introduced by the inversion procedure.

Given the Hamiltonian H , the calculation of αE in both
ways is based on the EIHH [12] expansion of the wave
function. This approach is translationally invariant, being
constructed with the Jacobi coordinates. We use different
semirealistic potential models for our calculations. Following
Ref. [15], we will use the Minnesota (MN) potential [19]

Vij = [
VR + 1

2

(
1 + P σ

ij

)
VT + 1

2

(
1 − P σ

ij

)
VS

]
× [

1
2u + 1

2 (2 − u)P r
ij

]
, (12)

where P
σ,r
ij are spin and space-exchange operators, VR , VT ,

and VS are parametrized as linear combinations of Gaussians
of the two-body relative distance, and u is a parameter. This
force reproduces the S-wave nucleon-nucleon phase shifts and
correctly binds the deuteron. It renormalizes the effects of the
tensor force into its central component. A typical value for u

in the Minnesota potential is u = 1, as we used in [15]. Here
we will explore the variation of this parameter by choosing
u � 1. The mixing parameter u does not affect the dominant
1S0 and 3S1 waves in the nucleon-nucleon (NN) interaction
but only affects the s = 1, t = 1 channels, where the dominant
components are the P waves (1P1 and 3P0,1,2). For u = 1 there
are no P waves; they contribute only for u > 1. Thus, changing
u mostly affects 6He, without substantially changing 4He.
Because in [15,16] we also used the Malfliet-Tjon (MTI-III)
[20] and the Argonne AV4′ [21] potentials, we will present
some results with these interactions as well. The Minnesota
potential has been recently used in a microscopic cluster
model calculation of 6He [22] and in the Gamow shell-model
approach [23] for 6He and 8He.
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III. RESULTS AND DISCUSSION

The main focus of this work is to study 6He polarizability.
We start, however, the discussion with the 4He nucleus. In
Fig. 1, we show the results of αE calculated via the Lanczos
coefficients, as in Eq. (9). The ground state |0〉 and the Lanczos
pivot |φ0〉 are given in terms of the EIHH expansions. While
for the ground state the expansion is characterized by an even
hyperspherical grand angular quantum number Kmax and total
isospin T = 0, Tz = 0, Dz|0〉 has to be expanded on odd grand
angular quantum number K ′

max, where the isospin in the final
state is T ′ = 1. Figure 1 shows the convergence of αE as a
function of Kmax, where for each point Kmax + 1 is used for
the Lanczos pivot. We show our results for the Minnesota
potential with u =1 and 1.20. The convergence is very good,
the dependence on u is mild, and the results are very close
to calculations where realistic NN and three-nucleon (3N)
forces have been used. For the latter, results for effective
field theory potentials were presented in [9], leading to
αE = 0.0683(8)(14) fm3 [corresponding to the upper light
(blue) band in Fig. 1]. The error bar of this calculation is
accounting for the convergence error of 0.0008 fm3 and also
for the uncertainty in the underlying dynamics, 0.0014 fm3.
We also show the results of αE for the Argonne v18 two-body
force and Urbana IX three-body force of Ref. [24], leading
to αE = 0.0655(4) [corresponding to the lower light (blue)
band in Fig. 1], where the error bar comes from convergence
only. The experimental data are shown as a darker (green)
band. These include the more recent evaluation of Ref. [1]
based on the Arkatov et al. [26] experimental measurement of
the photoabsorption cross section and an older result reported
in Ref. [25], based on earlier measurements by Arkatov
et al. [27]. We would like to point out that the semirealistic
Minnesota potentials lead to a value of the polarizability
which is consistent with realistic calculations and is only
about 15% smaller than the average value in the experimental
band.
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0.08

0.085

 α
E[f

m
3 ]

u=1
u=1.20 4He
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NN+3N

FIG. 1. (Color online) 4He polarizability: calculations with the
Minnesota potential for two different u values as a function of the
grand angular momentum quantum number Kmax. The polarizabilities
obtained from realistic two- and three-body interactions [9,24] are
presented as a light (blue) band. Experimental data from [1,25] are
given by the dark (green) band.

We can also calculate the polarizability by integrating the
photoabsorption cross section obtained with the LIT method.
We get perfect agreement as with the Lanczos coefficients. For
example, for the standard Minnesota potential where u = 1 and
for a Kmax = 12/13 model space, the Lanczos method gives
αE = 0.06360 fm3 and integrating σγ up to 120 MeV we get
0.06336 fm3, with just a 0.4% difference.

Now we move to the 6He nucleus. We first calculate αE from
the Lanczos coefficients. Also in this case the ground state
is expanded on even hyperspherical grand angular quantum
number Kmax, but the total isospin is T = 1, Tz = −1, and
Dz|0〉 is expanded on odd K ′

max = Kmax + 1. In this case
though, the final isospin can be T ′ = 1 or T ′ = 2. This leads
to two possible isospin channels that are calculated separately
and that open up at different energies. Experimentally, the
T = 1 channel opens up at photon energy ωth = 0.975 MeV,
while the T = 2 channel opens up at ωth = 22.77 MeV, with
γ 6He → 3H n np. Due to the inverse energy weight in Eq. (5),
the T = 2 channel is expected to be less relevant to αE . From
our calculations we find that the percentage contribution of the
T = 2 isospin channel to the total polarizability changes from
2% to 4% when varying u from 1 to 1.20 in the Minnesota
potential.

In Fig. 2, we present a plot similar to Fig. 1 for 6He
with semirealistic interactions. We observe a much slower
convergence of αE for 6He than for 4He with all the potentials
employed. By looking at the different u values in the Minnesota
potential, we see that the convergence rate and the value of αE

substantially change with u. This is related to the variation
of the binding energy and consequently of the two-neutron
separation energy, whose numerical values are shown in Table I
for completeness. By increasing u we are adding more P -wave
interactions, which bring additional binding to the 6He nucleus,
while leaving 4He almost unaffected. Naively, this makes 6He
more tightly bound and thus more difficult to polarize; i.e., αE

gets smaller. For the value of u = 1 the convergence of the
polarizability is particularly slow, due to the fact that 6He is
barely bound, with S2n = 0.56 MeV, which is about a factor
of 2 smaller than the experimental value. With the MTI-III
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FIG. 2. (Color online) The polarizability of 6He as a function
of the grand angular momentum Kmax for different semirealistic
interactions: the Minnesota potential with u = 1–1.2 and the MTI-III
potential.
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TABLE I. Results of the EIHH calculation with Kmax = 12 for
different u values of the Minnesota potential. The values for the
energies are in MeV.

Potential E0(4He) E0(6He) S2n(6He)

Minnesota
u = 1.00 −29.949 −30.45 0.50
u = 1.05 −29.978 −31.13 1.15
u = 1.10 −30.007 −31.88 1.87
u = 1.15 −30.037 −32.72 2.68
u = 1.20 −30.069 −33.65 3.59
MTI-III −30.760 −32.24 1.48

potential we get a convergence pattern which is close to the
Minnesota potential for u = 1.05, because the prediction of S2n

is similar with these two potentials (see Table I). The informa-
tion that one gains from Fig. 2 is that by increasing S2n we can
change the overall slope of the convergence pattern of αE .

For any considered value of u though, it is clear that our
calculations reproduce the fact that the polarizability of the
halo nucleus of 6He is much larger than that of the tightly
bound 4He, the ratio being almost an order of magnitude.

Here we would like to point out that Brida and Nunes
[22] have used the Minnesota potential with u = 1.15 in a
microscopic cluster model and obtained a separation energy
S2n = 0.90(5) MeV. This result is different from the value we
obtain and report in Table I. Their calculation is performed
without the Coulomb force, but its effect cancels in the
separation energy. Because for 4He the value reported in [22]
for the binding energy is −30.85 MeV, which is in agreement
with our value of −30.86(1) MeV (with no Coulomb force),
we think that the difference is due to the cluster assumption
made for 6He. We do not make such an assumption and, in
convergence, the EIHH result is exact. In Fig. 3, we show that
the separation energy S2n is very well converged within the
model space available for all these potentials.

We can also calculate the polarizability by integrating the
photoabsorption cross section obtained with the LIT method
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u=1.20
Exp
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6He

FIG. 3. (Color online) 6He two-neutron separation energy as a
function of the grand angular momentum Kmax for the Minnesota
potential and different u parameters. The experimental value is also
shown.
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FIG. 4. (Color online) Correlation between αE and S2n in 6He
obtained with the Minnesota potential and varying the parameter u.
The MTI-III and AV4′ results are also shown.

and then compare it to the above results. We quote numbers for
the Minnesota potential with u = 1.05 in the largest available
model space Kmax = 12/13. The Lanczos method gives αE =
0.7542 fm3 and integrating σγ up to 40 MeV (60 MeV) we get
0.7711 (0.7827) fm3. Integrating the cross section we have a
3%–4% difference, which is due to the fact that the LIT is not
completely converged and the inversion procedure introduces
some numerical error.

Now we would like to investigate the dependence of the
polarizability on the two-neutron separation energy. This can
be achieved for example by plotting αE versus S2n for the
different values of the parameter u in the Minnesota potential.
In Fig. 4, we can see that we find a correlation between αE

and S2n. Calculations have been performed with Kmax = 12
(K ′

max = 13). As an estimate of the theoretical error bar in the
few-body method we take the difference between the largest
possible calculation with Kmax = 12 and the Kmax = 8 result.
We also present the data for the MTI-III and AV4′ potential
(as used in [16]) for completeness. The error bars for the
polarizability increase as the separation energy gets smaller.
This is a reflection of the slower convergence observed in
Fig. 2. For the Minnesota potential S2n has a negligible error,
which is hardly visible in Fig. 4. For the MTI-III and AV4′
potentials the error in S2n is large because these interaction
models are not as soft as the Minnesota force.

In Ref. [9] it was argued that the polarizability should
roughly scale like the inverse square of the binding energy
of a nucleus. For a halo system, such as 6He, the relevant scale
parameter is the separation energy, rather than the binding
energy. The αE-S2n dependence empirically observed in Fig. 4
is compatible with such a behavior.

In order to reproduce the polarizability of a halo nucleus,
it is expected that the halo structure, and thus S2n, should be
correctly modeled, even if the absolute binding of 4He and
6He are not reproduced. Thus, one can estimate the value
of αE by choosing S2n to be around the experimental
value and then calculate the corresponding polarizability. A
value of u that gives S2n close to experiment is u = 1.05,
where the convergence of αE is slower than for larger values
of u. From a closer look at Fig. 2 and Fig. 3 we can see
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that also for u = 1.20 the polarizability αE is still increasing
when Kmax becomes larger, even though the separation
energy is converged. This means that the convergence of the
polarizability is not only influenced by S2n. Another observable
that is naturally related to the polarizability in the unretarded
dipole approximation is the radius operator.

In recent papers [28,29] the correlation between the polar-
izability and the neutron skin of the 208Pb nucleus was studied
within the nuclear density functional theory framework. In the
following, we will investigate the same correlation for 6He,
even though 6He is a different system. For halo nuclei, one
refers to the halo radius, rather than the skin radius, but clearly
the observable

rskin = rn − rp, (13)

where rn and rp are the mean point-neutron and point-proton
radii, can be uniquely defined. In our recent work [30], such ob-
servables have been calculated for 6He from realistic two-body
potentials in the EIHH method. Here, instead, we use the same
semirealistic interaction as for the αE calculations. In Fig. 5,
we show a plot of αE versus rskin for different model spaces
and for three different values of u in the Minnesota potential.
The four points for each u value correspond to calculations
with Kmax = 6, 8, 10, and 12, from the lowest to the largest
value of αE , respectively. For Kmax � 8 we clearly see a linear
dependence between αE and rskin for all three u values where
the coefficients depend on the separation energy as

αE = a(S2n) + b(S2n)rskin. (14)

Because S2n is converged and because of the linear dependence
displayed in Fig. 5 we deduce that the calculation of αE is not
fully converged because the radii, and especially rn, are not
fully converged. The calculation of a radius of the ground state
does not require an expansion on the dipole excited states as in
Eq. (7) and as such is less computationally demanding and can
be performed for larger model spaces, where radii are better
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rskin [fm]

0.3
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3 ]

u=1.05
u=1.10
u=1.15

6He

FIG. 5. (Color online) Correlation between the nuclear electric
polarizability of 6He and the skin radius with the Minnesota potential
with different u. The four points for each u value correspond to
calculations with Kmax = 6, 8, 10, and 12, moving from the left to
the right.

converged. Thus, the approach we take to estimate αE from our
calculations is to fit the coefficients a(S2n) and b(S2n) from the
αE results in the available model spaces and, assuming that this
physical linear dependence will be unchanged in larger model
spaces, we will use the coefficients to obtain αE from a bound-
state calculation of rskin. Starting with u = 1.05, so that S2n is
close to experiment, we fit the parameters a and b to the results
of our calculations using the available values of Kmax � 6. We
test this procedure on the available model space by varying
the largest Kmax. For model space with largest Kmax = 10,
we obtain a = −0.7 ± 0.2 fm3 and b = 1.83 ± 0.3 fm2 by
fitting to three points, Kmax = 6, 8, and 10. By using these
values and the value rskin = 0.776 fm, calculated in the next
largest model space Kmax = 12, our linear ansatz of Eq. (14)
yields αE = 0.7 ± 0.3 fm3. The calculated value of αE from
the hyperspherical harmonics expansion up to Kmax = 12 is
0.754 fm3, which is within our estimated error band. Now
we will repeat this procedure utilizing our best three values
Kmax = 8, 10, and 12 (where we omitted the Kmax = 6 point
as it does not fall in line with the other points). The resulting
values are a = −1.27 ± 0.04 fm3 and b = 2.62 ± 0.05 fm2.
We then calculate rskin up to the largest grand angular momen-
tum value accessible with our computational facility, Kmax =
16. Using the corresponding rskin = 0.82 fm and propagating
the fit errors on a and b in the linear ansatz, we obtain αE =
0.88 ± 0.06 fm3. For the skin radius, one can clearly see from
Fig. 6 that convergence is approached. Extrapolating these
points with an exponential ansatz of the form rskin(Kmax) =
rskin(∞) − ce−κKmax we get rskin(∞) = 0.87(5) fm. As an error
estimate we take the difference between rskin(Kmax = 16) and
rskin(Kmax = 12). The theoretical value is somehow larger than
the experimental data. In fact, combining different measure-
ments of the matter radius [31–33] with the most recent evalua-
tion of the proton radius [5], one can infer rn and consequently
the skin radius, which is found to be 0.52� r

exp
skin �0.62 fm. The

variation on r
exp
skin is fairly large, due to the large uncertainty in

the matter radius determination from ion scattering.
Because the extrapolated skin radius is our best estimate

of this observable, we use this value in Eq. (14) to estimate
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FIG. 6. (Color online) Neutron skin radius rskin of 6He with the
Minnesota potential and u = 1.05, as a function of the grand angular
momentum quantum number Kmax. The curve is a fit to the calculated
points, used to extrapolate to infinite model space.
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the polarizability. We then propagate its error considering it
independent from the fit errors on a and b. Finally, our estimate
of the theoretical nuclear electric polarizability of 6He is αE =
1.00(14) fm3. This value is consistent with what we obtained
without extrapolating the radius, showing that the error bars
are based on conservative estimates. If we were to use Eq. (14)
with the experimental values of the skin radius, one would
obtain a nuclear electric polarizability of αE = 0.08–0.34 fm3,
which is even smaller than the estimate based solely on theory.

IV. COMPARISON WITH EXPERIMENT

In Ref. [1] an evaluation of the experimental number for
the polarizability of 6He was presented, leading to α

exp
E =

1.99(40) fm3. This was obtained from the inverse-energy-
weighted integral of experimental and theoretical B(E1)
response functions for 6He. The experimental distribution was
measured by Aumann et al. [34] from the Coulomb breakup
of 6He on lead and carbon at 240 MeV/u up to 8 MeV above
threshold. In order to obtain the polarizability, data were ex-
trapolated up to 12.3 MeV, where the threshold for the breakup
into two tritons opens up. The theoretical curve was taken from
a calculation of the dipole transition to the 1− continuum [35]
in a three-body model with phenomenological n-n and n-α
interactions plus an effective three-body force, also calculated
up to the two-tritons threshold. The estimate was done in two
steps: (i) an average of the experimental data and theoretical
curve was taken up to 12.3 MeV; (ii) to account for the higher
energies, the polarizability of 4He was added. The latter one ba-
sically comes from integrating the photodissociation data from
Arkatov et al. [26]. Because we can access the full response
functions using the LIT method at any energy below the pion
production threshold, we can verify these two approximations.
First, it is interesting to study the convergence of αE calculated
as a sum rule of the response [see Eqs. (4) and (5)] to investigate
the validity of (i). In Fig. 7, we present both the integrand
function σγ (ω)/2π2ω2 versus ω and the convergence of the
integral m−2(ω̄)/2π2 versus ω̄. At ω̄ = 8 MeV the sum rule
is exhausted only up to 75%. Thus only 75% of the α
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FIG. 7. (Color online) Double inverse-energy-weighted cross
section as a function of the energy ω and sum rule m−2(ω̄)/2π 2

as a function of ω̄ for 6He with the Minnesota potential and u = 1.05.
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FIG. 8. (Color online) Double inverse-energy-weighted cross
section as a function of the energy ω for 4He and 6He with the
Minnesota potential and u = 1.05.

based solely on experimental data. At ω̄ =12.3 MeV, where
the two-3H channel opens up the sum rule is exhausted up to
90%. We observe that one needs to integrate up to 40 MeV of
energy to have the sum rule exhausted at the 98% level.

To verify approximation (ii) we can compare the integrand
function σγ (ω)/2π2ω2 for 6He and 4He at energies beyond
12.3 MeV. In Fig. 8 we observe that the two curves agree
with each other for ω > 35 MeV, where the sum rule is
almost exhausted. In the region beyond the 4He disintegration
threshold and below about 35 MeV one would overestimate the
sum rule integrating the 4He curve, because one gets 0.044 fm3,
to be compared to the 0.027 fm3 obtained when correctly
integrating the 6He curve. On the other hand, neglecting the
part of the cross section for ω > 12.3 MeV and below the
4He disintegration threshold one underestimates the sum rule.
The contribution of this portion is 0.037 fm3, about 5% of
the sum rule. These two effects almost cancel out so that,
approximation (ii) does not lead to a big error.

We think that the main reason for the disagreement
between the estimate from Ref. [1] and our calculations
comes from the difference in the low-energy part of the
response. In our previous work [15,16] we have shown that
our calculations with semirealistic potentials underestimate
the data from Aumann et al. [34]. Thus, what we observe for
the polarizability is consistent with this fact. We would like to
point out that (i) nuclear corrections might affect the results in
the ion scattering experiment of [34] and that (ii) as discussed
earlier, similar experiments for 3He lead to a large discrepancy
with photodissociation results. Nevertheless, to measure αE

from the dipole response function it would be desirable to
have data up to energies higher than 12.3 MeV. Additional or
alternative measurements of αE would help to better constrain
this observable.

V. CONCLUSIONS

We summarize our results as follows. We have carried out
an estimate of the nuclear polarizability of 6He based on the
hyperspherical harmonics expansion with simple semirealistic
potentials. Our calculations clearly reproduce the fact that
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the polarizability of the halo nucleus of 6He is much larger
than that of the tightly bound 4He. For 4He the semirealistic
Minnesota potentials lead to a value of the polarizability
which is consistent with realistic calculations and is about
15% smaller than the average value in the experimental band.
Nevertheless, a large disagreement is found for 6He. In order
to estimate αE we have chosen a potential that reproduces
the separation energy and then we investigated the correlation
of the polarizability with the skin radius. Our final result is
αE = 1.00(14) fm3, which is about a factor of 2 smaller than
the estimates from experimental data. This points toward a
disagreement of microscopic theory and experiments. To shed
light on this, it would be nice to have more data or alternative

measurements of αE . Concerning the theoretical calculations,
it is desirable to extend these results to realistic potentials
including also three-body forces. We leave this subject to a
future work.
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