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Pairing gaps in the Hartree-Fock-Bogoliubov theory with the Gogny D1S interaction
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As part of a program to study odd-A nuclei in the Hartree-Fock-Bogoliubov (HFB) theory, we have developed
a new calculational tool to find the HFB minima of odd-A nuclei based on the gradient method and using
interactions of Gogny’s form. The HFB minimization includes both time-even and time-odd fields in the energy
functional, avoiding the commonly used “filling approximation”. Here we apply the method to calculate neutron
pairing gaps in some representative isotope chains of spherical and deformed nuclei, namely the Z = 8, 50,
and 82 spherical chains and the Z = 62 and 92 deformed chains. We find that the gradient method is quite
robust, permitting us to carry out systematic surveys involving many nuclei. We find that the time-odd field
does not have large effect on the pairing gaps calculated with the Gogny D1S interaction. Typically, adding
the T -odd field as a perturbation increases the pairing gap by 100 keV, but the re-minimization brings the gap
back down. This outcome is very similar to results reported for the Skyrme family of nuclear energy density
functionals. Comparing the calculated gaps with the experimental ones, we find that the theoretical errors have
both signs implying that the D1S interaction has a reasonable overall strength. However, we find some systematic
deficiencies comparing spherical and deformed chains and comparing the lighter chains with the heavier ones.
The gaps for heavy spherical nuclei are too high, while those for deformed nuclei tend to be too low. The
calculated gaps of spherical nuclei show hardly any A dependence, contrary to the data. Inclusion of the T -odd
component of the interaction does not change these qualitative findings.
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I. INTRODUCTION

The Hartree-Fock-Bogoliubov (HFB) theory is now very
well developed for the Skyrme and Gogny families of inter-
actions. However, up to now the calculational tools for odd-A
nuclei and for other HFB wave functions that are not time-
reversal invariant have not reached the point where systematic
surveys can be easily carried out. The problems are less severe
in the so-called filling approximation, and that approximation
has become very commonplace in the literature. Two of us [1]
have proposed a methodology based on the gradient method
that avoids most of these computational issues. The first aim of
this work is to demonstrate that the method is practical under
“field conditions” of typical isotope chains across the chart of
nuclides. The second aim is to assess the error in the filling
approximation for an interaction in the Gogny family that has
been widely used, namely the D1S interaction [2].

There is a very large literature on the application of HFB to
odd-A systems and the filling approximation. References [3,4]
first showed how to using blocking to calculate odd-A nuclei in
the HFB theory. While exact blocking has been carried out with
realistic interactions and with schematic forces [4], the HFB
based on global energy density functionals has largely relied on
the filling approximation. There are exceptions dealing with
very specific examples like the high-spin study of Ref. [5]
with the Gogny force. The filling approximation is defined as
a full minimization of the HFB functional but neglecting spin-
dependent and other time-odd densities. This is equivalent to
neglecting the time-odd fields in the functional when expressed
as products of fields and densities.

The filling approximation can also be portrayed as a
statistical quantum system where the blocked orbital and its
time reversed partner share the same probability [6]. This

formulation may have advantages with respect to further
generalizations. The approximation was used for example in
setting the parameters of the Gogny functional in Ref. [7].
More recent applications with a Gogny functional are in
Refs. [8,9]. There was an early study of time-odd fields with the
Skyrme interaction [10], but most of the recent work has used
the filling approximation. Notably, it was used for surveys of
odd-A nuclei with Skyrme energy functionals in Refs. [11,12].
Very recently, the effect of time-odd fields in the Skyrme
functional has been re-examined in two surveys [13,14]. The
filling approximation has also been used with the relativistic
mean field theory [15], and the role of the time-odd fields there
have been examined in Refs. [16,17].

The physical quantity we calculate in this paper is the
neutron pairing gap, defined for odd-N nuclei as

�(3)
o (Z,N) = 1

2 (B(Z,N − 1) + B(Z,N + 1) − 2B(Z,N)),

(1)

where B(Z,N ) is the (positive) binding energy of the nucleus.
In the BCS theory it is calculated as the BCS gap parameter.
In finite nuclei there can be considerable rearrangement in
the wave functions from one nucleus to the next, and the gaps
should be determined from Eq. (1) using the calculated binding
energies. We use this definition in the present paper.

We consider a representative sample of isotope chains,
spanning the nuclear size range from oxygen to uranium
isotopes. We include both spherical and strongly deformed
nuclei in the survey, permitting us to examine effects of the
nuclear shape. As mentioned above, a particular focus in
our survey is the validity of the filling approximation. We
consider this to be important to examine because the filling
approximation can give rise to an unphysical self-energy of
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the odd particle, as explained in the Appendix. Beyond that,
our survey is extensive enough to uncover possible systematic
problems with the Gogny functional we employ. Particular
aspects are the overall mass-dependence of the pairing gaps,
and the possible differences between pairing is spherical and
deformed nuclei. Both these aspects can indicate nonpairing
contributions to the gaps [18,19].

II. COMPUTATIONAL ASPECTS

The calculations reported below were carried out with a new
code based on the program HFBAXIAL written by one of us [20]
to carry out HFB calculations for Gogny-type interactions. The
algorithm to find the HFB minima uses the analytic expression
for the derivative of the HFB energy function with respect to
a generalized Thouless transformation ([21], Eq. (7.32)) of
the HFB wave function. Other aspects of the HFBAXIAL that
are important for the algorithm are described in Ref. [1]. That
reference also introduces the generalization of the gradient
method to wave functions with odd particle numbers. We
defer details of our new code to later publication [22]. For the
present purposes, the main points on the computational side
are the definition of the basis states and the assumed block
structure of the Bogoliubov transformation matrices UV . We
use an oscillator basis with equal oscillator length parameters
in each direction. The basis states are cylindrically symmetric,
with orbitals labeled by nz, nr ,m, and sz. We assume a block
structure that preserves axial symmetry in the wave function
and does not mix neutrons and protons. Thus the blocks may
be labeled by tz, the nucleon isospin, and jz, the angular
momentum about the z axis. In fact we also have to include
−jz in the same block as jz because these are coupled by the
anomalous HFB field.

The original HFBAXIAL code assumes that the wave func-
tions are time-reversal invariant, and thus the HFB fields are
even under T , the time-reversal operator. The T -odd fields
added to the new code arise from various terms in the Gogny
interaction including the spin-orbit and density-dependent
contact terms. In addition, there is a T -odd field associated
with the exchange Coulomb interaction as well with the
two-body correction to the center-of-mass kinetic energy. It
should be mentioned that there is an intrinsic ambiguity in the
T -odd field of the density-dependent interaction; we evaluate
this term taking the density to be real. This term does not
contribute to the pairing field in first order due to its assumed
exchange character. However, it does contribute to the mean
field potential giving an impact on �(3).

Among the tests we made of the code, there are two that are
worthy of mention because they are very powerful in finding
inconsistencies in the coding. The first test is of the gradient
method itself. As mentioned above, the gradient of the energy
with respect to the degrees of freedom in the UV Bogoliubov
transformation is computed analytically. One can also monitor
the gradient numerically from the difference in energies when
the UV matrices are changed by a small amount. If these two
are not equal to the expected precision, there is a coding error
that must be corrected. The second test is a very simple one.
The interaction energy must vanish if the wave function is a

one-particle state.1 The vanishing is not trivial, as it comes
about by an exact cancellation of the direct and exchange
fields of the interaction. This provides a good test of exchange
part of the Gogny interaction, which is computed in a highly
optimized code.

There are two purely numerical parameters in the calcula-
tion. The first is the number of oscillator shell Nsh included
in the basis. We follow the Madrid practice taking Nsh in the
range 10 to 14 depending on mass region as given in the figure
captions. The oscillator length parameter is taken at a fixed
value b = 2.1 fm for all nuclei. Obviously one could do better
by including more shells and allowing the oscillator parameter
to vary. For our purposes here, the differences in total energies
largely cancel out. The reported pairing gaps are converged
to within several tens of keV, which is certainly acceptable
for this survey of pairing trends and the validity of the filling
approximation.

To find the HFB minima of odd-A nuclei, we start with the
converged wave functions for the even-even nuclei on either
side of the target nucleus, taking oblate, prolate and spherical
minima. A set of trial odd-A wave functions is generated
from them by the usual procedure of exchanging the U and
V components in one of the columns of the UV matrix.
Besides having odd particle number, these wave functions
can be characterized by the angular momentum K about the
symmetry axis, equal to ±jz of the block in which the U -V
interchange was carried out. Applying the gradient solver for
each of the trial wave functions, a large set of local minima
is obtained, many of which are identical. We select the lowest
of these. There is no guarantee that one will always find the
global minimum with this protocol. Still, for the spherical and
strongly deformed nuclei that we calculate here, the possibility
of other, deeper minima is slight.

III. RESULTS

We now compare the calculated neutron energy gaps for
a variety of nuclei ranging from light to heavy and including
both spherical and deformed isotope chains. We report three
treatments of the theory. Besides the full minimizations with
and without the time-odd fields, we report the results when
the time-odd field is treated perturbatively. That is, we take
the wave function from minimization without the field, and
then take the expectation value of the field as a first-order
perturbation to the energy of the state.

A. Spherical chains

We begin our survey with nominally spherical nuclei, pre-
senting results for neutron pairing gaps in the three semimagic
isotope chains, Z = 8, 50, and 82. The experimental data
shown in the figures are based on the Audi et al. mass table
Ref. [23] with some additions from Ref. [24]. We start with the
lightest chain in our survey, the Z = 8 (oxygen) isotopes with

1A one-particle wave function is necessarily of Hartree-Fock form
since the Bogoliubov transformation mixes particle numbers.
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FIG. 1. (Color online) Neutron pairing gaps �(3) in the oxygen
isotope chain. Energies were computed in the Nsh = 10 harmonic
oscillator space.

N > 8. These are calculated to have very large pairing gaps
when the d5/2 subshell is being filled and smaller gaps in the
upper sd shell. These qualitative features are the same in all
three approximations in our study. The shell differences is of
course expected because the shell degeneracy at the Fermi level
should be a strong determinant of the gap. There is an espe-
cially strong decrease at N = 15, corresponding to an open s1/2

shell. This “gap quenching” is a general feature of pairing gap
systematics as noted in Ref. ([12], see Table III). From Fig. 1,
we see experiment agrees with the theory at a qualitative level,
showing large gaps in the d5/2 shell and with a strong quench-
ing at N = 15. On a more quantitatively level, the calculated
pairing gaps are somewhat to low in the d5/2 filling region.

The next chain, the Z = 50 Sn isotopes, has 16 measured
pairing gaps and has been the subject of many theoretical
studies of pairing, e.g. [16,25,26]. Our calculated gaps are
shown in Fig. 2. As with the oxygen isotopes, the filling
approximation gives very similar results to the full calculation
with T -odd fields. The calculated gaps start out moderate at the
beginning of the N = 50–82 major shell, smoothly increase
through the shell with a mild dip around N = 65. The gaps
then smoothly decrease toward the end of the shell, and drop
sharply beyond the N = 82 shell closure. There is no gap
quenching associated with the s1/2 subshell, probably because
of a degeneracy with other subshells in the single-particle
spectrum. These features are also present in HFB calculations
based on the Skyrme [12] and the Fayans energy functionals
[26], so they seem to be generic for HFB with short-ranged
functionals. Experimentally, the gaps are rather large, and one
sees the sharp decrease at N = 83. However, other details
differ from the calculated pattern of gaps. The predicted
decrease at N = 53 is not seen experimentally. The mild
decrease in the middle of the shell is smoother in the theoretical
gaps than the experimental ones, which is very sharp at
N = 65. Overall, the predicted gap is somewhat too high.

Concerning the effect of the T -odd field, at a perturbative
level it makes the gap even larger, but the full calculation is
hardly distinguishable from the filling approximation.
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FIG. 2. (Color online) Neutron pairing gaps �(3) in the Sn isotope
chain. Energies were computed in the Nsh = 12 harmonic oscillator
space.

The heaviest spherical chain in our survey is the Z = 82 Pb
isotope chain, which also has the greatest number of measured
pairing gaps (18). The calculated gaps are shown in Fig. 3. The
theoretical gaps start out very large, decrease to moderate at the
upper end of the N = 82–126 major shell, and show the shell
quenching effect at the p1/2 shell. Again, all the theory curves
are similar. Experimentally, the gaps have these qualitative fea-
tures but the overall scale for the large gaps is markedly smaller.

In summary, the main qualitative features within an isotope
chain are reproduced by the theory with or without inclusion
of the T -odd field.

B. Deformed nuclei

The HFB energies of strongly deformed nuclei should be
interpreted more cautiously. The minima now correspond to
the bandheads of the rotational bands that characterize the
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FIG. 3. (Color online) Neutron pairing gaps �(3) in the Pb isotope
chain. Energies were computed in the Nsh = 12 harmonic oscillator
space.
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FIG. 4. (Color online) Neutron pairing gaps �(3) in the Sm isotope
chain. Energies were computed in the Nsh = 12 harmonic oscillator
space.

spectra of these nuclei. In a systematic study of ground state
spins of odd-A nuclei [27], it was found that only 40% of the
spins of deformed nuclei agreed with their self-consistent mean
field calculations. This raises an ambiguity in comparing the
�(3) to experiment, whether to take the ground state energies or
energies of states of the same spin. We will come back to this
point after reporting our comparison for ground state energies.

We first show the pairing gaps for the samarium isotope
chain, well known for showing the transition from spherical to
deformed nuclei. The calculated gaps are shown in Fig. 4. The
theoretical gaps are smaller than would be expected from the
systematics we found for the semimagic chains. As in the other
cases, the T -odd field is significant at the perturbative level but
hardly affects the gaps in the full treatment. The experimental
data are somewhat higher than theory, but the variations along
the chain follow the theory quite well.

The last isotope chain we consider is the uranium chain,
shown in Fig. 5. The first isotope shown, N = 131, is weakly
deformed but all the higher members have large (theoretical)
quadrupole deformations. One sees in the graph that the
calculated gaps are quite small throughout the chain. The
experimental gaps are reduced with respect to the systematics
for the semimagic nuclei, but not as much as the theory
predicts. Also, one sees that the T -odd field has a very small
effect in this very heavy chain, in fact negligible on the scale
of the accuracy of the theory.

In the two chains we treated above, 11 of the gaps were
for strongly deformed nuclei defined by the criterion that the
calculated deformation β2 satisfies β2 > 0.2. Of these, the
jz and parity of the ground state agrees with experiment in
five cases, including one where there is a near degeneracy of
the lowest states. This is roughly the proportion as found in
the very extensive survey of Ref. [27]. If we calculated the
theoretical �(3) demanding that the jz agree with the observed
ground state spin, the values would be some somewhat larger.
We note that in some cases the theoretical ground state has
mixed parity, so no spectroscopic identification is possible. For
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FIG. 5. (Color online) Neutron pairing gaps �(3) in the U isotope
chain. Energies were computed in the Nsh = 14 harmonic oscillator
space.

now, we take the present disagreement on the spectroscopy
identity of the levels as an indicator of the accuracy of
the mean-field theory. We anticipate extending the theory
to restore angular momentum symmetry, and then a more
complete comparison of the spectroscopy could be made.

IV. SYSTEMATICS

To better see the overall trends in the pairing gaps, we
show in Table I average values of the pairing gaps for each
isotope chain. The range of measured gaps in the isotope
chain and the experimental average is shown in the second and
third columns, respectively. One sees that the experimental
gaps vary smoothly with the size of the nuclei, undergoing
a mild decrease as a function of Z. If one takes the usual
phenomenological parametrization of pairing gaps, varying
as A−1/2, one finds that the gaps for deformed nuclei are
somewhat lower than one would expect from the spherical
A-systematics. This in not surprising, given that the pairing
depends on the single-particle level density at the Fermi
surface and the levels of deformed nuclei are more spread
out.

The last three columns of the table show theoretical results
for the filling approximation and the two treatments of the

TABLE I. Average measured pairing gaps in selected isotope
chains and the errors in the corresponding quantities for the various
treatments of the time-odd fields.

Z N Exp. Filling T -odd T -odd
range pert. full

8 9–15 1.51 −0.41 −0.07 −0.36
50 53–83 1.18 +0.06 +0.22 +0.06
62 75–99 0.99 −0.29 −0.21 −0.30
82 97–131 0.98 +0.27 +0.37 +0.27
92 135–147 0.64 −0.19 −0.13 −0.21
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FIG. 6. (Color online) Average pairing gaps in the four spherical
chains Z = 8, 20, 50, and 82, comparing theory and experiment.

T -odd fields. The entries in the table are the differences of
the average theoretical and experimental gaps, taking the same
nuclei to make the averages. For example, there are 4 measured
gaps in the Z = 8 chain with an average of �(3) = 1.51 MeV.
In the HFB theory with the filling approximation the average
gap of those triplets is 1.10 MeV for an error of −0.41 MeV.

The errors for HFB + D1S theory in the filling approxi-
mation are shown in the fourth column. Both positive and
negative errors are found, which we attribute to a dependance
on deformation and on size of the nucleus. Namely, the
theory predicts much smaller gaps in deformed nuclei than
in the spherical ones. Also, in the medium and heavy
nuclei the spherical nuclei are somewhat overpredicted while
the deformed nuclei are substantially underpredicted. This
highlights a deficiency of the HFB + D1S theory that cannot be
cured by simply adjusting the overall strength of the interaction
responsible for the pairing. Another deficiency of the theory
can be seen by comparing the spherical chains, namely that
there is very little Z dependence compared to experiment. This
be seen more clearly in Fig. 6, which includes the Z = 20 chain
along with the three other spherical chains in Table I. The lack
of a significant Z dependence affects in particular the Z = 8
chain, which is seriously underpredicted.

The effect of including the T -odd field as a first-order
perturbation is shown in the fifth column. The effect is to
increase the pairing gaps, in qualitative agreement with the
simple model described in the appendix. The increase is
rather uniform over the isotope chains in the table, and the
above-discussed deficiencies remain.

The full minimization of the HFB functional including the
T -odd field gives gap errors shown in the last column of
the table. One sees that the reminimization largely restores the
calculate gaps to the filling approximation values. Thus, the
filling approximation seems to be accurate enough to assess
the HFB + D1S theory to the point of uncovering its systematic
deficiencies.

The �(3) values shown in the figures are available as a table
(see Supplemental Material, Ref. [28]).

V. OUTLOOK

With our implementation of the new technique [1] for
finding HFB minimum of odd-A nuclei we showed that it
is a practical algorithm for the interactions in common use.
Note that there is nothing in method that restricts the wave
function to the one-quasiparticle space. We plan in the future to
apply the method to two-quasiparticle wave functions, starting
with the ground states of odd-odd nuclei. The energy splitting
of the states with different K quantum numbers in strong
deformed nuclei will provide a good test of the T -odd part of
the interaction [29].

Concerning the validity of the filling approximation, we
found that T -odd fields of the Gogny D1S interaction have a
small effect and their inclusion does not noticeably improve
the theoretical gaps. The same conclusion can be drawn for the
T -odd field of a Skyrme interaction, from the HF-BCS study
of gaps in Ref. [13] and HFB study of proton gaps in deformed
nuclei in Ref. [14].

Concerning the performance of HFB on reproducing the
experimental pairing, we found that the overall strength of the
pairing in the D1S functional is close to optimal that it could
reliably predict gap quenching. However, the mass dependence
and the deformation dependence seems to deviate from the
observed phenomenology.

This raises the question, what is missing in the theory that
could be significant for pairing gaps? First of all, although
the present T -odd effects are weak, the T -odd interaction
should be re-examined with a view to making better energy
functionals. In particular, the mean-field contribution to pairing
gaps could affect the overall A dependence [18,19].

There are a number of correlation effects that could affect
the pairing gaps. The most obviously ones are those that restore
broken symmetries that may occur in the HFB wave functions.
For example, projection of good particle number has been
shown to have a non-negligible effect on the performance
of Skyrme functionals [12,25,30]. However, improvement
comes mostly from nuclei having weak pairing condensates.
Restoration of angular momentum symmetry can be very
important, giving rise to correlation energies of the order of
several MeV in deformed nuclei. This is much larger than the
0.1 MeV accuracy scale of pairing gap energies we would
like to achieve. Particularly critical to odd-even differences is
the presence of so-called Coriolis coupling effects in odd-N
systems with small jz ([31], Chap. 4). Also, the energy gain by
angular momentum projection is quite different in spherical
and deformed nuclei, so it could affect the gaps in transitional
nuclei. We consider the problem of restoration of angular
momentum symmetry the most important computational issue
to be address in future work. It is needed to make spectroscopic
predictions, and it is needed to treat soft deformed nuclei on the
same footing as the others. Unfortunately, the computational
effort to carry out angular momentum restoration is heavy.

Another correlation is associated with the polarization of
the nucleus by the valence nucleons. The resulting induced
pairing interaction has been calculated to give as strong a
contribution as the nucleon-nucleon interaction in the pairing
channel [32], Such induced interactions are long-ranged
and energy-dependent, and vary from nucleus to nucleus
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depending on its structure. It would not be surprising that the
effects were beyond the scope of the simple energy functionals
in current use.

Lastly, there are correlation effects associated with the
parts of the Hamiltonian that are neglected in the HFB
theory. In the theory of the ground state, 4-quasiparticle
excitations are neglected. In the usual formulation of the
odd-N theory in terms of quasiparticle excitations of the
even-N wave functions, there is coupling to 3qp excitations
that give a significant contribution to the pairing gaps [33].
In our formulation, the odd-N wave function is an HFB
local minimum and therefore a quasiparticle vacuum. The 2qp
matrix elements of the Hamiltonian vanish because of the
minimization in the odd-N space. Thus only 4qp excitations
need to be considered. However, the quasiparticles energies
can be negative in odd-N systems, because the qp creation
operator can in effect unblock one of the orbitals. This
would give smaller energy denominators in the second-order
perturbative contribution for the H 40 term in the Hamiltonian.
Besides reducing the pairing gaps, its contribution might have
a different dependence on A and on deformation.
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APPENDIX

The HFB energy contains a spurious self-energy in the
filling approximation for the unpaired particle in the wave
function of an odd-A system. As a consequence, the filling
approximation cannot be considered reliable for calculating
quantities related to odd-even energy differences. This prob-
lem has been known for a long time in both condensed matter
physics [34] and nuclear physics [35]; see Ref. [36] and
its citations for recent discussions. Reference [36] considers
the Skyrme family of energy functionals and points out that
the problem disappears if the time-odd fields satisfy certain
constraints. In this appendix, we estimate the possible error
in the calculated pairing gaps when the time-odd fields are
neglected.

To see how this comes about, let us consider a the t0 term in
the Skyrme interaction, i.e. the simple δ-function interaction
v(r12) = t0δ

3(r12). The density entering the Skyrme functional

will be a matrix in spin and isospin, see, e.g., [37]. In the
absence of spin-orbit splitting, the density can be decomposed
into time-even and time-odd parts by dividing the orbitals
into two groups depending on the spin quantum number sz.
Labeling the groups by “+” and “−”, the t0 contribution to the
identical-particle energy functional is

〈v〉 = t0

∫
d3rρ+(r)ρ−(r). (A1)

Next the densities are decomposed into time-even and time-
odd densities as ρe,o = ρ+ ± ρ−. Then the interaction energy
becomes

〈v〉 = t0

4

∫
d3r(ρe)2 − t0

4

∫
d3r(ρo)2. (A2)

For the paired ground states, the second term is nonzero when
there is an odd number of particles, but it is dropped in the
filling approximation. To assess the magnitude of the error,
we examine the simplest cases: (a) a state with one particle;
(b) the two-particle state in which a particle is put into the time
reversed orbital. Let us call the ρ+ density associated with the
one-particle state ρ1. Then

ρe = ρo = ρ1 (1 particle). (A3)

Taking both T -even and T -odd terms in Eq. (A2), the terms
cancel giving zero interaction of a particle with itself. In the
filling approximation, the energy is

〈v〉1,f = t0

4

∫
d3r(ρ1)2. (A4)

This may be compared with the two-particle interaction energy
〈v〉2 given by Eq. (A2) with

ρe = 2ρ1; ρo = 0 (2 particles). (A5)

From this it follows that the spurious self-energy is related to
the two-particle matrix element by

〈v〉1f = 1
4 〈v〉2. (A6)

This can only be small if the diagonal two-particle interaction
matrix elements are small.

Of course in actual nuclei the spin-orbit field is very
important, contrary to what was assumed here. Nevertheless,
the model shows that T -odd fields can be significant, and are
likely to be repulsive in the perturbative limit for interactions
that are attractive in the filling approximation. We note further
that the problem of spurious self-energies is particularly
severe in theories that do not have an accurate treatment
of the exchange (Fock) interaction. For example, in the
relativistic mean field theory [17], the perturbative T -odd
contribution is always negative, i.e., opposite in sign to
HFB.
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