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The neutron-deficient nucleus 75Kr has been studied in two EUROBALL experiments. The analysis yielded
a considerably extended level scheme including two newly observed excited high spin bands. The results
are interpreted in the framework of the cranked Nilsson-Strutinsky approach. The calculations compare well
to the experimentally established level scheme and predict the nucleus to be mainly prolate or triaxially
deformed at high spin. Evidence for an oblate-prolate shape coexistence could not be found at high
spin.
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I. INTRODUCTION

The neutron-deficient nucleus 75Kr belongs to the transi-
tional mass region with A ≈ 70−80 which includes nuclear
systems ranging from weakly deformed nuclei at the shell
closures at N = Z = 28 to the strongly deformed nuclei
around 80Zr [1]. The nuclear behavior is dominated generally
by the low single-particle level density and in particular by
the proximity of the g9/2 orbit to the Fermi surface for both
protons and neutrons. This leads to a multitude of different
nuclear shapes at low spin [2–4].

This feature may ostensively be explained by the single-
particle energies in the asymmetrically deformed Woods-
Saxon potential as illustrated in Fig. 1. In this mass region
the spherical shell gaps at N,Z = 28, 40, and 50 are found to
lose importance. In contrast, new stabilizing energy gaps occur
for N,Z = 34, 36, 38, and 42 at oblate and prolate shapes of
various strength. Responsible for the stabilization of these de-
formed shell gaps are the g9/2 and d5/2 intruder orbits (N = 4).
In the case of the neutron-deficient Kr isotopes the shell gaps
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for N,Z = 36 at oblate deformation, for N = 38 at prolate
deformation, and for N = 40 at a spherical shape are expected
to be of major importance. For 72Kr, the consequence should
be a favored oblate deformation, whereas in 73,74Kr the prolate
component should get more pronounced. In 75,76Kr even
influences of the spherical gap on the structure maybrk occur.

Exactly this has been experimentally discovered for the
even-mass Kr isotopes. In the nucleus 72Kr indications for
an oblate deformation in the main component of the ground-
state band at low spin have been found [6–9]. In contrast, for
74Kr [6,10–12] the unperturbed oblate and prolate states are
nearly degenerate, leading to strongly mixed configurations in
the ground-state band. Finally, in 76Kr [13,14] the influences
of the oblate or spherical shell gaps are found to be very
small. The result is a nearly pure prolate deformation in the
ground-state band.

For the case of the odd-mass neutron-deficient Kr isotopes
the first evidence for coexisting prolate and oblate shapes
was found in 75Kr [15,16]. The large mixing ratios deduced
for the transitions connecting the low-spin yrast states were
interpreted as a consequence of a mixture of oblate and
prolate components. Encouraged by this unique experimental
result the major aim of the present work is to investigate the
development of the nuclear shapes of 75Kr with rising spin.
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FIG. 1. (Color online) The single-particle energies in a sym-
metrically deformed Woods-Saxon potential as a function of the
quadrupole deformation parameter β2 [5].

II. EXPERIMENTS

Two experiments were performed at the XTU tandem ac-
celerator of the Laboratori Nazionali di Legnaro to investigate
the high-spin states of 75Kr. Population of the demanded
high-spin entry states in 75Kr has been assured by applying
the fusion-evaporation reaction 40Ca(40Ca,4p1n)75Kr at beam
energies of 180 MeV and 185 MeV, respectively. In the first
experiment a 1 mg/cm2 layer enriched to 99.965% in 40Ca
was evaporated onto a 16 mg/cm2 gold backing, whereas the
target in the second experiment consisted of a 0.9 mg/cm2

self-supporting 40Ca foil.
The evaporation codes EVAPOR [17] and CASCADE [18]

predict 11.6% of the total cross section of about 1 b for the
channel leading to 75Kr at a beam energy of 180 MeV. This
cross section of more than 100 mb indeed ensures a sufficient
population of states in 75Kr. On the other hand the relative cross
section of less than 12% in combination with the expected
entry states at angular momenta above 35h̄ clearly points out
the need for a high granularity of the γ spectrometer and a
very good reaction-channel selectivity.

The required granularity was provided by the very efficient
γ spectrometer EUROBALL [19]. For a proper reaction-
channel selection, additional ancillary detectors were used
in the two experiments. For the identification of charged
particles the Italian Silicon Sphere (ISIS) was used [20]. It
consists of 40 silicon telescope detectors covering 78% of the
total solid angle. Each of them consists of a 130 μm thick
�E and a 1 mm thick E detector. The ISIS detectors were
mounted inside the EUROBALL spectrometer symmetrically
around the target. Furthermore, the EUROBALL section
including tapered germanium detectors under forward angles
with respect to the beam direction was replaced by 50
BC501A scintillation detectors in the experiment with the
self-supporting target. These detectors form the Neutron Wall
(NWALL) [21] providing the coincident detection of neutrons
evaporated during the reaction process. In particular, these
neutron detectors were essential to provide the selectivity

which was extremely important for the analysis of the 4p1n

reaction channel leading to 75Kr.
The data were taken in both experiments for about 6 days.

They were stored on magnetic tape under the condition that
at least three germanium detectors were hit. In the second
experiment an additional trigger condition demanding one
neutron in coincidence to two hits of germanium detectors
was used. In total, about 175 and 279 GB, respectively, of
list-mode data were written to tape in the two experiments.

III. DATA ANALYSIS

The experimental data of the two experiments were ana-
lyzed with respect to two major aims. The first was to identify
new excited levels by its depopulating γ transitions. The
second was to assign spins by analyzing the multipole orders
of the γ transitions.

All spectra of the germanium detectors were first energy-
calibrated and corrected for thermal instabilities resulting from
the electronics. Furthermore, the data of the composite detec-
tor systems were processed by recombining γ -ray energies
deposited in neighboring crystals [22]. In the case of the
experiment with the self-supporting target the Doppler shift
due to the emission in flight was taken into account by another
linear recalibration. Within this energy correction also the
kinematical effects of the evaporated α particles onto the
recoil velocity were considered. Random coincidences and
delayed coincidences were suppressed by setting a prompt
time window of approximately 50 ns width.

The charged-particle identification was performed by set-
ting two-dimensional gates in the �E − �E + E matrices
corresponding to the 40 silicon telescope detectors. Hereby the
mass and charge dependence of the energy deposition in the
�E detectors has been used. The neutron-γ discrimination has
been achieved by measuring the time of flight and by analyzing
the shape of the detector pulse.

Optimizing the gates with respect to a minimal misidentifi-
cation yielded particle identification efficiencies of 30%, 21%,
and 18% for protons, α particles, and neutrons, respectively.

The nucleus 75Kr was predominantly analyzed in the three-
dimensional neutron-gated and non-particle-gated Eγ cubes.
In the spectra mentioned below, e.g., the label (179, 254; 1115)
is equivalent to a sum gate at 179 keV and 254 keV on the
first and a gate at 1115 keV on the second axis of a three-
dimensional symmetrical γ -energy cube.

To identify new γ -transitions and excited levels, many
different particle-gated spectra were analyzed. This included
symmetrical cubes up to a dimension of four. The effective
detection angle for the γ rays was between 123◦ and 129◦ in
the case of the experiment with the self-supporting target. This
is a consequence of the combination of at least two detector
types in the EUROBALL spectrometer having very different
γ -ray detection efficiencies. In the calculation of the effective
detection angle the symmetry of the angular distributions
relative to 90◦ as well as the efficiencies of the individual
detectors were taken into account.

To minimize systematic errors as a consequence of the high
density of peaks in the spectra, two different methods for the
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background subtraction were utilized [23,24]. The level order
inside the bands was, in the case of levels depopulated by
a single γ transition, determined by the relative intensities
of the transitions. The multipole orders of the γ transitions
were deduced from directional correlations from oriented
states (DCO) [25,26]. The DCO analysis was carried out by
exploring up to three-dimensional particle-gated and nongated
spectra. In the case of three dimensions, the first gate was
applied to provide a clean DCO matrix containing mainly
data of the nucleus of interest. The DCO matrices were
constructed by sorting the γ -ray energies registered in the
cluster section against the ones detected in the clover section.
The effective angles for these detector groups were 103.3◦
and 139.4◦, respectively. In this analysis it was possible to
clearly distinguish stretched �I = 2 and �I = 1 transitions.
In contrast, for large admixtures of �I = 2 components to the
�I = 1 transitions and for �I = 0 transitions, the difference
of the DCO ratio to stretched �I = 2 transitions vanishes.
Hence, for the unambiguous assignment of spins to the levels,
two additional arguments were applied. The first results from
the reaction type, in which the final nuclei are populated at
very high spin. Consequently, the deexcitation via statistical
and discrete depopulations to levels close to the yrast line takes
also place at very high spin. Hence, the population of levels
more than 1 MeV above the yrast sequence at low spin as well
as decreasing or persisting spin values with rising excitation
energy are unlikely. The second argument is related to the
different probabilities for E1, M1, E2, and M2 transitions of a
certain energy. In the case of, e.g., a level being depopulated by
an E1 and an M2 transition of less than 1 MeV, the M2 branch
should be suppressed and should have a small branching
ratio.

IV. PREVIOUS RESULTS FOR 75Kr

In the past two decades, many analyses of the nucleus
75Kr have been performed and a comprehensive excitation
scheme could be established [16,27–33]. The most complex
γ -spectroscopic investigation has thereby been the one in
Ref. [16]. Within this analysis, data of four different exper-
iments were used to identify formerly unknown γ transitions
and excited levels and to derive level lifetimes, spins, parities,
and mixing ratios. This analysis yielded a level scheme
consisting of three major bands. Their deexcitation pattern
indicates the nucleus to reside in the strong coupling limit.
Furthermore, some low-spin band heads and two high-spin
side bands were established. The deviation of the experimental
data from results of rigid triaxial-rotor-plus-particle (RTRP)
calculations has, within the interpretation, been tentatively
attributed to a coexistence of oblate and prolate shapes at low
spin. This assumption is supported by total Routhian surface
(TRS) calculations, which for low rotational frequencies
predict coexisting oblate and prolate minima.

Level lifetimes of nine positive-parity states up to Iπ =
33/2+ and seven negative-parity states up to Iπ = 27/2− were
deduced using the Doppler-shift attenuation method [34] and
the resulting transition quadrupole moments were compared
with predictions of the projected shell model [35].

V. EXPERIMENTAL RESULTS

Positive-parity states in 75Kr are shown in Fig. 2. Band 1,
based on the Iπ = 5/2+ ground state [36], could be extended
up to spin Iπ = (53/2+) at an excitation energy of 16 661 keV.
The in-band and interband transitions determine the level
sequence up to the 9650 keV level, whereas the order of
higher-lying levels is based on relative γ -ray intensities. Spins
and parities are proposed according to the assignments of
Ref. [16] and are supported by the derived DCO ratios listed in
Table I. For the 2036 keV and the 2671 keV transitions DCO
ratios could not be deduced. Hence, the spins and parities for
the 11 686 and 16 661 keV levels are given tentatively. The
spectra shown in Fig. 3 contain mainly peaks corresponding to
transitions in band 1. At this point it has to be mentioned that in
the two lowest excited states of band 1 the intensity flow shows
some irregulaties for which a physical explanation cannot be
given. The intensity of the 187 keV transition depopulating
the 7/2+ state at 187 keV is 20% smaller than the sum of the
intensities of the feeding transitions (584 and 191 keV) and
the sum of the intensities of the transitions (378 and 191 keV)
depopulating the 9/2+ state at 378 keV is 10% smaller than
the sum of the intensities of the feeding transitions (690 and
393 keV). Neither the lifetimes nor the internal conversion may
explain this deviation. Most likely, this hints to a systematic
error in the determination of the intensities of the 187 and
191 keV transitions from the projection of the neutron-gated
γ -ray energy matrix.

Band 5 built on the 727 keV state has been extended up to
an excitation energy of 17 605 keV and a spin of I = (57/2).
It is connected to band 1 by four transitions (see Fig. 2). The
DCO ratios of the 540, 1152, and 1513 keV linking transitions
support the Iπ = 9/2+ and the Iπ = 13/2+ assignments for
the 727 and the 1530 keV levels, respectively [16]. The �I = 2
type of the 1051 and 1513 keV transitions hints to I = 17/2
for the 2581 keV state. Due to the regular band structure, the
parities of this state and of the levels at higher excitation energy
in this band are most likely positive.

The DCO ratio of the 1009 keV transition favors the
assignment Iπ = 21/2+ for the 3590 keV level. The placement
of the 1009 keV transition is determined by the populating
1139 keV transition.

The sequence of the in-band transitions was fixed by their
relative intensities. Thereby the placement of the 1642 keV
transition above the 1501 keV transition is not unambiguous,
but is probable due to the development of the transition ener-
gies in the band. The spins assigned up to the 8405 keV level
are supported by the DCO ratios of the in-band transitions.
Above the 8405 keV state the proposed spins and parities
are considered most likely due to the regularity of the band.
The in-band transitions are clearly seen in the spectra (top
and middle panel) in Fig. 4. The strong appearance of the
897 keV transition in the upper spectrum could hint to an
unknown transition feeding band 1. This may also explain the
comparably low intensity of the transitions depopulating the
positive-parity yrast states above the 9906 keV level deduced
in the present work.

Band 6 is connected to band 1 via the 1816, 1673, 1660,
and 1877 keV transitions (see Fig. 2). The �I = 2 character
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FIG. 2. Positive-parity states in 75Kr and their connections to negative-parity states.

of the 1660 and 1673 keV transitions in combination with
the DCO ratios of the 946 and 1216 keV in-band transitions
supports the assumption of spin I = 21/2 for the 3782 keV
level. The assigned parities are given tentatively, because a
change in parity cannot be excluded from the experimental
data. The spins and the parities tentatively assigned to the
7439 and 9139 keV levels are most likely with respect to
the regular band structure. The bottom spectrum in Fig. 4
proves the coincidence of the 1655 and 1660 keV transitions
populating and depopulating the 5942 keV level, respectively.
The bands 7 and 8 feed the 8396 keV level in band 1 via
the 1792 keV transition (see Ref. 2). The DCO ratios of the
1792 and 1892 keV transition support the spin and parity
assignments of Iπ = 41/2(+) and Iπ = 45/2(+) to the 10 189
and 12 081 keV states, respectively. The parities are assigned
tentatively, because a change cannot be ruled out. The upper
spectrum in Fig. 5 shows the in-band transitions. The strong
appearence of transitions in the negative-signature branch of

band 1 is a consequence of partly gating on the 1801 keV
γ ray.

The band head of band 9 is well established via the three
transitions to bands 1 and 5, respectively. The spin of the
1758 keV level is limited to an upper value of 13/2 due to
the 1030 keV transition to the 9/2+ state in band 5. The
connection to the 13/2+ state of band 1 restricts the spin
on the other hand to a lower limit of 9/2. In combination
with the DCO ratios of the 987 and 1030 keV transitions
and the considerations in Sec. III, the 1758 keV level has most
probably Iπ = 13/2+. The position of the 1212 keV transition
above that at 1062 keV is unambiguously given by the
relative intensities. The DCO ratio of the 1062 keV transition
favors spin and parity Iπ = 17/2+ for the 2820 keV state.
In the bottom spectrum of Fig. 5 the branch populating the
negative-signature state at 771 keV of band 1 is selected. The
987 keV transition is as clearly visible as the 1212 keV in-band
transition.
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TABLE I. Excited states and γ rays assigned to 75Kr.

Ei (keV)a Iπ
i

b Eγ (keV)c Iπ
f

d Irel
e Irel

f RDCO
g Rh Ri

0 5/2+

179.3(2) 3/2− 179.3(2) 5/2+ 399(77)
187.4(2) 7/2+ 187.4(2) 5/2+ 200(10) 0.98(7)
358.6(2) 5/2− 171.3(2) 7/2+ 5.1(3) 2(2) 0.26(2) 0.01(1)

179.0(1) 3/2− 307(61) 0.90(24)
358.5(3) 5/2+ 15(1) 31(8) 0.53(22) 0.74(6) 0.09(3)

378.4(2) 9/2+ 191.0(2) 7/2+ 193(10) 1.01(9) 0.73(5) 0.74(2)
378.3(3) 5/2+ 71(4) 0.59(5) 0.27(2) 0.26(1)

612.4(2) 7/2− 234.3(2) 9/2+ 1.4(2) 5(3) 0.006(1) 0.02(1)
253.7(2) 5/2− 181(9) 194(2) 0.96(5) 0.73(5) 0.73(3)
433.0(3) 3/2− 65(4) 71(3) 0.63(8) 0.26(2) 0.25(1)

672.5(4) 313.9(3) 5/2− 1.4(3) 0.62(16)
493(1) 3/2−

727.4(4) 9/2+ 349.0(4) 9/2+ 10(2) 0.49(8)
540.1(7) 7/2+ 10.7(6) 1.16(16) 0.51(5)

771.1(3) 11/2+ 392.8(3) 9/2+ 107(5) 104(4) 1.09(7) 0.62(4) 0.62(3)
583.5(3) 7/2+ 65(3) 72(3) 0.35(19) 0.38(2) 0.38(2)

787.5(5) 5/2− 428.7(5) 5/2− 7(1) 0.21(5)
608.4(7) 3/2− 26(5) 0.79(21)

906.1(3) 9/2− 293.8(2) 7/2− 102(5) 94(2) 1.01(6) 0.51(3) 0.52(2)
547.4(3) 5/2− 98(6) 109(8) 0.56(8) 0.49(4) 0.48(2)

1068.8(3) 13/2+ 297.9(2) 11/2+ 74(4) 67(3) 1.01(6) 0.29(2) 0.26(2)
690.3(4) 9/2+ 184(9) 191(9) 0.55(5) 0.71(5) 0.74(4)

1100.4(3) 7/2− 427.9(3) 5(1) 0.24(8)
741.8(4) 5/2− 17(4) 23(8) 0.76(25)

1266.9(3) 11/2− 360.9(2) 9/2− 74(4) 66(2) 0.98(7) 0.40(3) 0.41(4)
654.4(4) 7/2− 112(6) 104(4) 0.56(4) 0.60(4) 0.58(5)

1365.0(5) 9/2− 577.2(6) 5/2− 19(2) 28(8) 0.43(7) 0.49(16)
752.7(5) 7/2− 24(2)j 22(5) 0.85(22) 0.57(7) 0.51(14)

1529.9(7) 13/2+ 802.2(7) 9/2+ 5.2(8) 0.76(46) 0.25(5)
1151.9(9) 9/2+ 16(3) 14(2) 0.60(15) 0.75(15)

1596.0(4) 15/2+ 527.3(3) 13/2+ 57(3) 40(7) 1.1(1) 0.43(3) 0.41(4)
824.8(4) 11/2+ 77(5) 67(3) 0.50(5) 0.57(5) 0.59(5)

1648.2(3) 13/2− 381.4(3) 11/2− 42(3) 35(3) 1.03(9) 0.29(2) 0.30(3)
741.9(4) 9/2− 102(5) 95(12) 0.55(4) 0.71(5) 0.70(6)

1757.7(6) 13/2+ 689.2(5) 13/2+ 9(1) 0.33(7)
987.0(7) 11/2+ 7.3(8) 1.33(41) 0.27(4)

1029.5(7) 9/2+ 11(3) 0.57(9) 0.40(11)
1760.9(5) 11/2− 660.5(4) 7/2− 20(3) 15(6) 0.52(5) 0.61(9) 0.56(24)

854.7(8) 9/2− 13(1) 12(2) 0.39(5) 0.44(11)
1966.5(4) 17/2+ 370.5(2) 15/2+ 34(2) 24(1) 0.98(8) 0.16(1) 0.15(2)

897.5(5) 13/2+ 176(11) 150(18) 0.51(4) 0.84(7) 0.85(9)
2111.4(4) 15/2− 463.5(3) 13/2− 35(3) 28(2) 1.02(11) 0.24(2) 0.19(3)

844.2(4) 11/2− 112(10) 107(8) 0.51(4) 0.76(9) 0.81(6)
2115.0(7) 13/2− 749.7(6) 9/2− 39(4) 28(2) 0.54(18) 0.57(7) 0.67(6)

848.4(8) 11/2− 30(3) 14(2) 1.05(54) 0.43(5) 0.33(4)
2320.5(8) 1251.7(7) 13/2+ 10(1) 0.58(6)
2565.0(4) 17/2− 453.7(3) 15/2− 21(2) 14(2) 1.02(10) 0.17(2) 0.11(2)

916.7(5) 13/2− 102(6) 100(12) 0.56(5) 0.83(6) 0.89(12)
2581(1) 17/2+ 1050.7(7) 13/2+ 20(4) 14(2) 0.51(6) 0.72(15) 0.67(13)

1513(1) 13/2+ 8.0(9) 7(2) 0.58(14) 0.28(5) 0.33(11)
2613.2(8) 15/2− 852.3(7) 11/2− 21(4) 11(2) 0.54(9)
2632.0(5) 19/2+ 665.7(4) 17/2+ 32(2) 24(1) 1.10(9) 0.28(3) 0.27(4)

1035.6(5) 15/2+ 81(6) 65(8) 0.46(4) 0.72(7) 0.73(10)
2658.1(8) 15/2− 897.2(7) 11/2− 12(2)
2819.7(9) 17/2+ 1062.0(8) 13/2+ 15(2) 0.53(7)

064310-5



T. STEINHARDT et al. PHYSICAL REVIEW C 86, 064310 (2012)

TABLE I. (Continued.)

Ei (keV)a Iπ
i

b Eγ (keV)c Iπ
f

d Irel
e Irel

f RDCO
g Rh Ri

2821.1(6) 15/2− 500.6(7) 3.0(6) 0.83(51) 0.20(5)
854.9(8)k 17/2+ 7.0(9) 0.49(4) 0.46(8)
1554(1) 11/2− 5(2) 0.35(11)

2960.1(9) 17/2− 302.7(3) 15/2− 4(1) 1.27(13) 0.13(5)
844.5(4) 13/2− 27(7) 46(8) 0.55(7) 0.87(32)

3042.2(8) 17/2− 927.2(5) 13/2− 13(4) 5(4) 0.52(7)
3052.9(5) 21/2+ 421.1(3) 19/2+ 18(2) 7(1) 1.13(19) 0.11(1) 0.06(1)

1086.2(5) 17/2+ 144(9) 116(14) 0.51(3) 0.89(7) 0.94(16)
3113.8(5) 19/2− 549.0(3) 17/2− 20(1) 6(2) 1.06(13) 0.18(2) 0.08(2)

1002.0(5) 15/2− 91(9) 80(8) 0.51(4) 0.82(11) 0.92(12)
3345.3(6) 19/2− 385.2(3) 17/2− 8(1) 6(2) 1.27(10) 0.25(5) 0.44(16)

687.5(4) 15/2− 8(1) 0.47(15) 0.27(5)
732.7(8) 15/2− 5.3(9) 0.62(6) 0.17(3)

1233.5(7) 15/2− 9(1) 8(3) 0.30(4) 0.56(26)
3516.1(7) 19/2− 473.2(6) 17/2− 1.5(4) 0.86(29) 0.08(2)

695.5(5) 15/2− 11(2) 0.54(15) 0.59(14)
858(1)l 15/2−

902.9(7) 15/2− 6(2) 0.34(11)
3590(1) 21/2+ 1009.0(7) 17/2+ 25(5) 0.40(6)
3627.3(6) 21/2− 513.8(3) 19/2− 10(1) 1.10(11) 0.12(1)

1061.8(5) 17/2− 73(5) 60(6) 0.52(3) 0.88(7)
(3647(1)) 1033.9(8) 15/2−

3768.6(7) 21/2− 423.6(3) 19/2− 6(2) 6(2) 1.01(34) 0.17(7) 0.31(15)
809.3(4) 17/2− 21(5) 14(8) 0.56(6) 0.63(19) 0.69(51)

1202.6(7) 17/2− 7(1) 0.21(5)
3782(1) 21/2(+) 1816(1) 17/2+

3828.4(6) 23/2+ 775.8(4) 21/2+ 22(2) 13(1) 1.17(15) 0.21(2) 0.20(3)
1196.0(6) 19/2+ 81(6) 55(7) 0.51(7) 0.79(8) 0.80(14)

3945.6(8) 21/2− 429.8(5) 19/2− 3.6(9) 0.38(12)
902.8(5) 17/2− 6(2) 0.48(10) 0.62(21)

4032(1) (21/2+) 1212.4(9) 17/2+ 10(2)
4133.0(6) 23/2− 363.5(3) 21/2− 7.3(9) 3(2) 1.02(20) 0.08(1) 0.06(3)

506.0(3) 21/2− 9(1) 1.22(24) 0.11(1)
787.8(5) 19/2− 17(2) 3(2) 0.47(10) 0.19(2) 0.06(3)

1019.7(5) 19/2− 54(5) 49(5) 0.52(7) 0.62(7) 0.89(12)
4281.9(6) 25/2+ 453.7(3) 23/2+ 11.4(9) 4(1) 0.90(12) 0.09(1) 0.05(1)

1228.7(6) 21/2+ 110(8) 80(10) 0.53(3) 0.91(9) 0.95(17)
4293.5(6) 23/2− 523.9(5) 21/2− 3.9(6) 0.05(1)

667.5(4) 21/2− 5.6(5) 0.91(23) 0.08(1)
948.5(6) 19/2− 10(2) 0.47(25) 0.14(3)

1180.3(7) 19/2− 51(5) 45(6) 0.55(7) 0.72(9)
4432.0(7) 23/2− 486.3(4) 21/2− 3(1) 0.99(16) 0.16(6)

916(1) 19/2− 16(3) 0.51(8) 0.84(23)
4685(2) 25/2+ 1094.9(8) 21/2+ 17(6) 0.41(7)
4726(2) 25/2(+) 946(1) 21/2(+) 5.2(9) 0.69(12) 0.26(5)

1673(1) 21/2+ 15(2) 0.37(8) 0.74(11)
4729(2) 1138.6(9) 12(4)
4741.3(6) 25/2− 608.3(4) 23/2− 14(1) 5(3) 1.07(18) 0.21(2) 0.27(19)

971.7(5) 21/2− 23(2) 12(3) 0.55(6) 0.35(4) 0.73(26)
1114.6(6) 21/2− 28(3) 0.54(5) 0.44(5)

(4780(2)) 1133(1)
4821.2(8) 25/2− 527.4(4) 23/2− 6.5(7) 0.14(2)

1051.7(5) 21/2− 12(1) 0.59(8) 0.26(4)
1195.1(6) 21/2− 29(3) 29(6) 0.50(11) 0.60(8)

4961.6(7) 25/2− 529.9(3) 23/2− 3.4(8) 1.54(41) 0.33(10)
1015.6(5) 21/2− 7(1) 0.72(9) 0.67(18)
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TABLE I. (Continued.)

Ei (keV)a Iπ
i

b Eγ (keV)c Iπ
f

d Irel
e Irel

f RDCO
g Rh Ri

5031.7(6) 27/2+ 750.1(5) 25/2+ 31(3) 16(1) 0.96(15) 0.34(4) 0.35(5)
1203.0(6) 23/2+ 61(7) 29(5) 0.48(5) 0.66(9) 0.65(14)

5163.0(6) 27/2− 421.9(5) 25/2− 6.1(9) 0.97(19) 0.09(1)
1029.9(5) 23/2− 64(5) 52(6) 0.47(5) 0.91(10)

5467.3(6) 27/2− 646.1(5) 25/2− 10(1) 0.19(3)
1173.8(6) 23/2− 45(5) 31(8) 0.51(6) 0.81(12)

5539.9(7) 27/2− 578.1(4) 25/2− 1.6(4) 0.10(3)
1108.2(6) 23/2− 14(3) 0.56(6) 0.90(27)

5563.7(8) 29/2+ 32.5(4) 27/2+ 17(1) 9(5) 0.78(14) 0.19(2) 0.18(10)
1281.3(7) 25/2+ 71(5) 42(6) 0.55(5) 0.81(8) 0.82(18)

5799(2) 29/2+ 1113.8(6) 25/2+ 12(4) 0.39(6)
5924.0(6) 29/2− 760.9(6) 27/2− 9(1) 0.19(3)

1182.8(6) 25/2− 36(4) 18(5) 0.56(9) 0.81(11)
5942(1) 29/2(+) 1216.2(7) 25/2(+) 12(2) 0.53(6) 0.42(11)

1660(1) 25/2+ 17(6) 12(2) 0.50(6) 0.58(26)
6046.7(8) 29/2− 579.7(7) 27/2− 6(1) 0.17(4)

1225.2(7) 25/2− 31(3) 17(3) 0.66(8) 0.83(12)
6139.8(7) 29/2− 600.0(7) 27/2− 1.0(6) 0.15(9)

1178.2(7) 25/2− 6(1) 0.65(14) 0.85(24)
6317(1) 31/2+ 754.4(5) 29/2+ 8(2) 10(1) 0.88(26) 0.21(5) 0.48(7)

1284.7(6) 27/2+ 32(6) 11(2) 0.56(10) 0.79(20) 0.52(11)
6359.4(6) 31/2− 435.7(7) 29/2− 3.2(5) 0.05(1)

1196.2(6) 27/2− 58(5) 29(6) 0.58(10) 0.95(12)
6688.6(7) 31/2− 641.5(6) 29/2− 5(1) 0.13(3)

1221.5(6) 27/2− 33(5) 23(5) 0.63(17) 0.87(17)
6831(1) 31/2− 1290.8(7) 27/2− 9(3) 0.53(8)
6897.7(8) 33/2+ 580.7(3) 31/2+ 12(2) 0.86(23) 0.19(3)

1333.7(7) 29/2+ 50(4) 29(5) 0.50(5) 0.81(9)
7037(2) 33/2+ 1238(1) 29/2+ 10(4) 0.42(7)
7245.7(9) 33/2− 1321.7(6) 29/2− 31(3) 17(8) 0.48(11)
7366.8(8) 33/2− 678(1) 31/2− 2.9(6) 0.12(3)

1320.0(7) 29/2− 21(3) 0.55(8) 0.88(14)
7439(2) (33/2+) 1495.1(8) 29/2(+) 23(6) 0.73(24)

1877(1) 29/2+ 9(1) 0.27(7)
7500(1) (33/2−) 1360(1) 29/2− 5(1)
7597(4) 1655(3) 29/2(+) 18(7)
7727.9(9) 35/2− 1368.5(7) 31/2− 45(6) 23(5) 0.54(4)
7849.3(9) 35/2+ 951.7(9) 33/2+ 5(2) 0.15(5)

1531.9(7) 31/2+ 30(4) 9(5) 0.46(4) 0.85(17)
8040(1) 35/2− 1350.9(8) 31/2− 34(5) 12(3) 0.56(4)
8304(1) 35/2− 1473(1) 31/2− 7(2) 0.46(19)
8396.4(7) 37/2+ 547.2(3) 35/2+ 7(2) 0.80(17) 0.14(5)

1498.6(7) 33/2+ 42(5) 21(3) 0.58(7) 0.86(14)
8405(2) 37/2+ 1367(1) 33/2+ 8(3) 0.42(11)
8699(1) 37/2− 1453.7(8) 33/2− 20(2) 15(3) 0.57(6)
8842(1) 37/2− 1474.7(9) 33/2− 14(2) 0.65(9)
9072(2) (37/2−) 1572(1) (33/2−) 3.5(8)
9139(2) (37/2+) 1700(1) (33/2+) 22(5) 5(2)
9278(1) 39/2− 1549.7(7) 35/2− 32(5) 11(3) 0.55(18)
9529(1) 39/2− 1489.6(8) 35/2− 19(3) 8(3) 0.53(7)
9650(1) 39/2+ 1801(1) 35/2+ 16(3) 7(2) 0.48(17)
9906(2) (41/2+) 1501.3(9) 37/2+ 6(3)
9966(1) 41/2+ 1569.1(8) 37/2+ 22(3) 9(2) 0.51(5)
9974(2) (39/2−) 1670.0(9) 35/2− 3(1)
10189(1) 41/2(+) 1792.3(9) 37/2+ 19(5) 3(2) 0.47(13)
10283(1) 41/2− 1583.7(9) 37/2− 15(2) 0.63(8)
10503(2) (41/2−) 1662(1) 37/2− 8(2) 6(2)
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TABLE I. (Continued.)

Ei (keV)a Iπ
i

b Eγ (keV)c Iπ
f

d Irel
e Irel

f RDCO
g Rh Ri

10858(2) (41/2−) 1786(1) (37/2−) 2.2(7)
11029(2) 43/2− 1751.2(9) 39/2− 22(4) 0.51(10)
11150(2) 43/2− 1621.0(8) 39/2− 11(2) 0.50(13)
11429(2) 1779(2) 39/2+ 3.2(7)
11548(3) (45/2+) 1642(1) (41/2+) 6(3)
11686(2) (43/2+) 2036(1) 39/2+ 5(1)
11780(1) 45/2+ 1814.2(9) 41/2+ 19(3) 0.51(10)
11835(2) (43/2−) 1861(1) (39/2−) 1.1(5)
12024(2) 45/2− 1740.6(9) 41/2− 9(2) 0.52(9)
12081(2) 45/2(+) 1892(1) 41/2(+) 8(2) 0.40(14)
12134(2) (45/2+) 1945.6(9) 41/2(+) 6(2)
12381(2) (45/2−) 1878(1) (41/2−) 6(2)
12864(3) (45/2−) 2006(2) (41/2−) 0.9(4)
12992(3) 47/2− 1843(3) 43/2− 2.0(9) 0.2(1)

1963(1) 43/2− 8(1) 0.6(2) 0.8(2)
13019(2) 47/2− 1870(1) 43/2− 3(2) 0.3(2)

1990(1) 43/2− 8(2) 0.4(3) 0.7(2)
13368(3) (49/2+) 1820(1) (45/2+) 4(2)
13990(2) 49/2+ 2211(1) 45/2+ 11(2) 0.41(15)
14015(2) 49/2− 1992(1) 45/2− 5(1) 0.68(13)
14167(2) (49/2+) 2087(1) 45/2(+) 5(2)
14324(2) (49/2+) 2190(2) (45/2+) 3.1(9)
14407(3) (49/2−) 2026(2) (45/2−) 2.4(8)
15020(4) (49/2−) 2156(3) (45/2−) 0.5(3)
15218(2) (51/2−) 2199(1) 47/2− 5.0(9) 0.8(2)

2224(4) 47/2− 1.0(7) 0.2(1)
15362(3) (53/2+) 1994(1) (49/2+) 2(1)
16355(2) (53/2−) 2340(1) 49/2− 2.1(6)
16661(3) (53/2+) 2671(2) 49/2+ 2.8(6)
17605(4) (57/2+) 2243(1) (53/2+) 1.1(7)
17644(3) (55/2−) 2426(3) (51/2−) 3(1)
19138(3) (57/2−) 2783(2) (53/2−) 0.8(2)

aEnergy of the level assigned to 75Kr. The number in parentheses is the uncertainty in units of the last digit.
bSpin and parity of the excited state deduced from DCO ratios and deexcitation patterns.
cEnergy of a γ transition depopulating the level at Ei .
dSpin and parity of the final state populated by the transition with Eγ .
eRelative intensity of the γ transition. The intensity of the 187 keV transition was set to 200.
fRelative intensity of the γ transition taken from Ref. [16]. The relative intensities were renormalized with respect to the 393 keV, 584 keV,
298 keV, and 690 keV transitions for links to positive-parity states and to the 254 keV, 433 keV, 294 keV, 547 keV, and 654 keV transitions for
links to negative-parity states.
gvDCO ratio deduced using an E2 transition as the gating transition. The expected values deduced from averages of numerous known stretched
�I = 1 and �I = 2 transitions are 0.55(2) and 1.00(3), respectively.
hBranching ratio.
iBranching ratio taken from Ref. [16].
jDeduced from the backed-target experiment.
kIncompatible DCO ratio.
lEnergy difference of levels.

The well established band 2 is linked to band 1 through
the 171, 179, 314, and 359 keV transitions (see Fig. 6). The
spin and parity of the 179 keV band head were derived in
previous work to be Iπ = 3/2− [16]. Band 2 shows two
regular signature branches with linking M1/E2 transitions
in the low-energy part up to the Iπ = 31/2− state. Above
this, the sequence of the newly established transitions is
fixed by the relative intensities. Spins and parities have

been proposed up to the 14 015 keV level in accordance
to the DCO ratios and previous analyses. The assignments
for the 16 355 and 19 138 keV levels were made on the
basis of the regularity of band 2. The upper spectrum in
Fig. 7 shows predominantly the in-band transitions of the
unfavored states in band 2 whereas in the bottom spectrum
mainly the transitions between the favored states can be
seen.

064310-8



STABILIZATION OF PROLATE DEFORMATION AT HIGH . . . PHYSICAL REVIEW C 86, 064310 (2012)

0
10
20
30
40

1600 1800 2000 2200 2400 2600

0

500

1000

1500

2000

200 400 600 800 1000 1200 1400
Energy (keV)

(b)

0
10
20
30
40

1600 1800 2000

0

200

400

600

C
ou

nt
s

(a)
2211

1814

2671

187

298
690 897 1086 1229

1281/1285
1334 1499

1569

393

187

421
527/532

581/584

750/754

1196/1203

298

393

527/532
581

690

897
1086

1196/1203
1281/1285

371

547
666

776
1036825

1334 1499

1532

1569
1779/1801/1814

2036

gates: (191, 298; 1570, 2211)

gates: (191; 1203)

FIG. 3. (Color online) Spectra showing mainly transitions in
band 1, created applying the gates to the non-particle-gated three-
dimensional cube.

Band 3 shown in Fig. 6 has been well established in
the low-excitation energy part in previous analyses through
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bands 7 and 8, whereas the bottom spectrum shows the 1212 keV
transition in band 9 and the connecting transition to the 771 keV
level.

the intense E2 and M1 in-band transitions and the links to
band 2.

In this part of the level scheme, the 2658 keV level
depopulating to the 1761 keV level could be added. The
regular band pattern including the 303 keV and in particular
the 688 keV transitions leads to spin and parity of Iπ = 15/2−
for the 2658 keV state. This is supported by the DCO ratio of
the 688 keV transition indicating �I = 2 character.

Furthermore, additional linking transitions from band 3 to
bands 2 and 10 and vice versa have been identified beneath an
excitation energy of 7.4 MeV. These inter-band and the in-band
transitions ascertain the order of the excited states up to the
7367 keV level. Above, the relative intensities fix the sequence
of the in-band transitions. Only in the cases of the 1878 and
1662 keV transitions would the inverse order also be possible.
Close to 13 MeV excitation energy in the negative-signature
states a band crossing with band 2 is taking place, leading to
the observed interband transitions.

The spins and the parities in the low-energy part were taken
from Ref. [16] in agreement with the determined DCO ratios.
For higher excitation energies, the regular band pattern and
the DCO ratios suggest the attributed spins and parities up
to the 14407 and 17644 keV levels. For the two and three
levels of highest excitation energy with negative and positive
signature, respectively, the spins and parities are proposed
tentatively because of the lack of DCO ratios. Figure 8 contains
two spectra predominantly showing the in-band transitions
between negative- (top) and positive-signature states (bottom)
and the subsequent links to band 2 and band 10.

In contrast to the level scheme proposed in Ref. [16] the
assignment of states of positive signature to the bands 2 and
3 above the Iπ = 21/2− has been exchanged on the basis
of systematics of the neutron-deficient odd-mass Kr isotopes
75,77Kr that have very similar level schemes. As shown in Fig. 9
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FIG. 6. The negative-parity states of bands 2 and 3. Links to other levels are shown on the left.

for band 3 in 75Kr and the corresponding structure in 77Kr, the
signature splitting is consistent for the proposed level order,
whereas the agreement of the solution published in Ref. [16]
with 77Kr is worse. A comparable systematic agreement has
been achieved for band 2 in this way.

Band 4 has been observed in the present work for the first
time. It depopulates to positive- as well as to negative-parity
states as is shown in Fig. 11 and has been established up
to excitation energies of 11 835 keV and 15 020 keV for
negative and positive signatures, respectively. The most intense
interband transition is the one at 927 keV known from previous
work. It links band 4 with the 2115 keV state and its DCO
ratio indicates �I = 2 character. In combination with the
general considerations in Sec. III this feature suggests an
assignment of Iπ = 17/2− for the 3042 keV level. However,
the assignment is not compatible with the DCO ratio of the
weak 855 keV transition depopulating the 2821 keV level.
The excitation energies of the the levels in band 4 are well
established through the multiple interband transitions. The
�I = 1 in-band transitions fix the sequence of the �I = 2
transitions up to the 6140 keV level. Above that, the level
order was determined on the basis of the relative intensities

of the transitions. For the deexcitation of the levels above the
8304 and 6140 keV levels of negative and positive signature,
respectively, a DCO analysis could not be performed. The
top and middle spectra in Fig. 10 contain mainly the in-band
transitions of band 4 between states of negative and positive
signature. These spectra demonstrate the weak population of
this band in comparison with the excited levels in the proximity
of the yrast states.

In the already known band 10, an excited level at 673 keV
state populating band 2 has been established (see Fig. 11). The
DCO ratio of the 314 keV transition favors spin and parity
Iπ = 5/2− or Iπ = 9/2− for the 673 keV state. This does
not fit well with the higher-lying �I = 2 sequence and has
therefore not been marked in the level scheme. Additionally,
two deexcitations of higher-lying levels in this band have
been identified. The sequence could not unambiguously be
determined from the spectra because the transition energy
of 1034 keV is close to the intense 1030 keV γ ray. This
may be seen in the bottom spectrum of Fig. 10. The peak at
approximately 1030 keV, which is remarkably large compared
with the peaks at 688, 788, and 897 keV, is considered as the
superposition of the 1030 and 1034 keV γ rays.
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Summarizing the experimental results discussed above, the
level scheme of 75Kr has been considerably extended in the
present analysis. This extension includes newly established
bands as well as the extension of known sequences and
the rejection of levels proposed earlier. All the extracted
experimental data are listed in Table I. For comparison,
the branching ratios and the relative intensities deduced in
Ref. [16] are also given. The tendency toward lower intensities
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at high spins in the data of Ref. [16] compared with the
present ones thereby reflects the higher-lying entry region in
the present experiment.

VI. CNS CALCULATIONS FOR 75Kr

The structure of 75Kr containing various high-spin bands
has been interpreted in the framework of the configuration-
dependent cranked Nilsson-Strutinsky approach [37]. This
model was chosen because it has proven a good capability of
describing collective high-spin excitations all over the nuclide
chart. It is based on the cranking model, and the single-particle
energies are adjusted to nuclei of the A ≈ 80 mass region.
It predicts an excitation energy minimized with respect to
the deformation parameters ε2, ε4, and γ for a certain spin
and a given configuration. In this way, the model allows the
assignment of deformations to the high-spin states through the
identification of the configuration providing the best agreement
between calculated and experimental excitation energies for
the different excited states of a band. As in the cranking
model, signature and parity are good quantum numbers in
this approximation.

Pairing correlations, which empirically are considered to
play a minor role at high spin, are neglected as well as
the mixing of different configurations. According to these
assumptions, the predictions of the calculations are compared
with the experimental results for levels with spins I > 10h̄
only. The configurations are given by fixing the number of
particles in the orbits of the highest spin and in all the others
for each oscillator shell, separately for protons and neutrons
and the different signatures α = ±1/2. Because the Fermi
level of protons and neutrons for the nucleus 75Kr is close to
the N = 4g9/2 orbit, excitations to the h11/2 intruder orbit can
be neglected.

The configurations are in the following labeled by their
number of protons and neutrons in the N = 4g9/2 shell,
(pN=4,g9/2 , nN=4,g9/2 ). The parity and signature of each band
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is given explicitly in each chapter and in the figure captions.
Configurations with the same number of protons and neutrons
in the g9/2 shell, but different occupation of the fp shell, are la-
beled as (pN=4,g9/2 , nN=4,g9/2 )−1, (pN=4,g9/2 , nN=4,g9/2 )−2, . . ..

Band 1 in 75Kr is built on the Iπ = 5/2+ ground state. The
E2/M1 deexcitation pattern in combination with the small
signature splitting suggests that the nucleus is in the strong
coupling limit. Referring to the single-particle energies in a
deformed potential (see Fig. 1), the only possible explanation
is that the unpaired neutron occupies the [422]5/2 orbit at
a prolate deformation of about ε2 = 0.4 or an oblate one
of approximately ε2 = 0.35. Consequently, there are five
neutrons and at least two protons expected to occupy the
g9/2 orbits. In agreement to these considerations the best
reproduction of the experimental data is achieved through a
(2,5) configuration for both, positive- and negative-signature
states (see Fig. 12). Although the absolute excitation energy
is overestimated in the calculations, the development of the
energies with rising spin is very well described. The nuclear
shape resides for the whole band above spin I = 10 close
to collective prolate. Merely a slight trend to less collective
triaxiality associated with a drop of the deformation parameter
value from ε2 ≈ 0.33 to ε2 ≈ 0.23 can be noticed with rising
spin (see Fig. 13).

In band 5, only positive-signature states have been ob-
served, although the levels lie close to or form the yrast states of
positive parity. Hence, the negative-signature states seem to be
highly unfavored. Under the assumption of axial symmetry this
hints to strong Coriolis effects. Referring to the single-particle
energies in the deformed potential (see Fig. 1) and restricting
to one-quasiparticle (1qp) excitations, the [440]1/2 orbit
would be the only candidate explaining the Iπ = 9/2+ band
head and the strong signature splitting. This should result
for both particle and hole excitations at a moderate prolate
deformation. On the other hand, the energy of the 13/2+
to 9/2+ transition indicates a large deformation. Assuming
the nucleus to be in the decoupling limit and applying the
Grodzins rule [38], this decay energy is equivalent to a
quadrupole deformation of ε2 > 0.3. Furthermore, the TRS
calculations in Ref. [16] predict an oblate minimum at |β2| >

0.3 which also contradicts the configuration in which the
unpaired neutron occupies the [404]9/2 orbit. In conclusion,
the most probable solution, which would agree with the TRS
calculations, is the oblate deformed configuration with two
protons and five neutrons in the g9/2 orbit and the unpaired
neutron occupying the [422]5/2 orbit. The band head with
Iπ = 5/2+ as well as the negative-signature states may not
yet have been observed due to the depopulation via the strong
interband transitions close to the band head. Furthermore, such
an oblate deformed configuration is not expected to persist up
to high spin, but should be crossed by a prolate or triaxial
band.

This thesis is compliant with the CNS calculations, which
favor an assignment of a configuration with three protons
and four neutrons in the g9/2 orbit at high spin [labeled
“(3,4)-1” in Fig. 12]. This is equivalent to an at least
three-quasiparticle (3qp) excitation consisting of the unpaired
neutron and a broken fp-shell proton pair. The development of
the experimental excitation energies as a function of the spin is
well described. The shift up in energy with respect to the (2,5)
configurations has two different reasons. On the one hand, it is
a consequence of the overestimated single-particle energies for
the g9/2 orbit, yielding systematically lower excitation energies
for configurations with just two protons in the g9/2 orbit. On the
other hand, a mixing due to the close-lying (3,4)-1 and (3,4)-2
configurations could in this case be responsible for another
reduction of the experimental excitation energies in band 5.
The deformation in band 5 starts at ε2 = 0.34 and γ = −18◦
for the I = 21/2 state and above I = 55/2 it is smoothly
changing to a noncollective oblate deformation. At a spin of
I = 65/2, this configuration is predicted to terminate at a spin
of I = 65/2, which is below the maximum configuration spin
of I = 69/2 at γ = 60◦.

For the bands 6, 7, 8, and 9 the lack of experimental informa-
tion prevents an unambiguous assignment of configurations.

Summarizing the results for the positive-parity states,
any evidence for an oblate deformation at high spin could
not be found. In the ground-state band the presumably
prolate deformation at low spins stays up to the maximum
configuration spin slightly tending to noncollective triaxiality.
In contrast, band 5 is predicted to terminate at I = 65/2.

The yrast states of negative-parity form band 2 in the
low-spin region. Spin and parity of the band head as well
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as the ones of the low-lying excited states are well established.
The deexcitation pattern, indicating the nucleus to be in the
strong coupling limit, suggests K > 1/2. In combination with
the Iπ = 3/2− band head and the low excitation energy the
only solution is a configuration with the unpaired neutron in
the [301]3/2 orbit (see Fig. 1). Starting from the energy gaps at
prolate and oblate deformation, respectively, this would most
probably be equivalent to a configuration with two protons and
four neutrons in the g9/2 orbit. In the oblate case a configuration
including two protons and two neutrons in the g9/2 orbit
would also be possible. Assuming prolate deformation, this
should lead to a reduced deformation in the low spin-region
in comparison to band 1. The irregular decay pattern in the
positive-signature branch of band 3 indicates a crossing at
approximately h̄ω = 0.4 MeV. This may be explained with
a transition from a 3qp configuration at higher spin to a 1qp
configuration beneath the crossing. As in band 5, such a 3qp
configuration should consist of the unpaired neutron and a
broken fp-shell proton pair which is preferred due to Coriolis
effects. The proton breakup leading most likely to three protons
in the g9/2 orbit would also explain the absence of another
strong up- or back-bending in band 3 above h̄ω ≈ 0.4 MeV.
In agreement with these considerations, the CNS calculations

predict a (2,4) configuration to be the lowest in energy for both
positive- and negative-signature states (see Fig. 14). These
configurations reproduce the slope of the excitation-energy
curves with rising spin qualitatively and are therefore assigned
to band 2.

Band 3 shows an inverse signature splitting favoring the
negative-signature states. Assuming a closed 56Ni core, this
signature splitting and also the development of the excitation
energies with spin are very well reproduced by the (3,5)-1
configuration.

Even the excitation energies relative to the (2,4) configu-
ration are comparable to the ones experimentally observed,
taking the systematic underestimate of the excitation en-
ergies of the two-proton configurations into account. For
comparison only, the drawn energies of the configuration
(2,4) were shifted up by 0.6 MeV [labels (2,4)s in Fig. 14].
Allowing a breaking 56Ni core, the situation seems to be
more complicated. In this case, there are two additional
signature partners occurring, which are favored in the low-
and mid-spin region in comparison to the (3,5)-1 configura-
tion (cf. Fig. 14). In contrast to the (3,5)-1 configurations,
they do not reproduce the experimental signature splitting
at all.
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The experimental bands are labeled b. The calculated energies of the
energetically favored configurations reproduce the experimental level
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high single-particle energies of the g9/2 orbits. The large open circles
in this figure mark the calculated energies, for which the minimum in
the potential energy surfaces is located at γ = 60◦ or γ = −120◦.

Hence, the association of the (2,4) and the (3,5)-1 configu-
rations at a closed 56Ni-core with bands 2 and 3, respectively, is
considered unambiguous. The unusual band crossing observed
in band 3 at h̄ω ≈ 0.4 MeV may therefore represent the
transition from the nearly prolate 3qp to the tentative mainly
oblate 1qp state.

The deformations in the negative- and positive-signature
branches are close to the ones at the calculated initial spins of
I = 21/2 and I = 23/2, respectively, located in the proximity
of γ = 0 (see Fig. 15). In contrast to band 2, where a trend
to less collectivity and a reduction of the deformation to
ε2 ≈ 0.2 with rising spin is found, the deformation in band
3 stays at collective values of ε2 > 0.25 up to the maximum
configuration spin.

For band 4, the situation is comparably unambiguous as
may be seen in Fig. 14 (top). In this case the two possible
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FIG. 13. Deformation paths formed by the positions of minimum
energy in the potential energy surfaces in the ε2-γ plane for the
different spin values. The paths are shown for the configurations
assigned to the positive-parity bands 1 and 5. The large open circles
in this type of figure always mark the minimum in the ε2-γ plane
belonging to the lowest calculated spin (see Fig. 12). Here and
in the following, the deformation parameters are used in the Lund
convention.

candidates (3,5)-2 and (3,5)-3 were found to reproduce the
signature splitting and the development of the excitation
energies with rising spin qualitatively. They are presented
in the figure by triangles: open for negative and filled
for positive signature. For further predicted energetically
favored configurations either the development of the excitation
energies or the small signature splitting is not described.

Taking the single-particle energy dependence into account
by applying a globally adjusted parameter set, not only the
assignments to bands 2 and 3 are supported, but also the
association of band 4 with the (3,5)-3 configuration is favored.
This is a consequence of the shift up in energy for the
configurations containing a broken 56Ni core as, e.g., (3,5)-2
and (3,5)-3 in the global parameter set.

As in band 3 the deformation of the nucleus stays close to
collective prolate up to the maximum spin of this configuration.
Merely for the states of highest spins it is slightly tending
to collective triaxiality with γ ≈ 10◦ (see Fig. 15). Due to
the polarizing effect of the hole in the f5/2 shell, the initial
quadrupole deformation ε2 ≈ 0.37 at spin I ≈ 10 is larger
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energies of the assigned configurations are marked with filled and
open symbols, respectively. Other configurations, predicted to lie low
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for systematic energetical underestimates by adding 0.6 MeV (see text
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compared to the configurations (2,4) and (3,5)-1. Within the
band, it is predicted to decrease to ε2 ≈ 0.3 close to the
maximum configuration spin. As in the positive-parity states,
also in the negative-parity bands any evidence for an oblate-
prolate shape coexistence at high spins has not been found, as
it has been identified in 76Rb, lately [39]. In 76Rb coexisting
oblate and prolate shapes were found up to spin I = 31.

VII. CONCLUSION

In conclusion, the level scheme of 75Kr has been consider-
ably extended in the present work. This includes the revision
of the level scheme proposed by in earlier work as well as more
than 100 newly identified or placed transitions and about 70
levels established for the first time. Furthermore, the performed
DCO analysis supported the former spin assignments in
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FIG. 15. Deformation paths consisting of the positions of the
energy minima in the potential energy surfaces for the different spins,
shown for the configurations assigned to the negative-parity bands 2
and 3. The large open circles mark the minima in the ε2-γ plane
belonging to the lowest calculated spins (cf. Fig. 14).

most cases and yielded about 60 new spin assignments. The
newly identified or extended high-spin bands in 75Kr are
described well within the CNS approximation. The results
thereby not only match the expectations for the low-spin
region derived from a simplified model as the single-particle
energies in a deformed potential, but also fit systematically
well in the predictions of this approximation for the other
neutron-deficient Kr isotopes.

It turns out that in spite of the shape coexistence at low spin
no further indication for influences of an oblate deformation
could be identified at high spin. Moreover, the nucleus is
predicted to be mainly collective prolate deformed, slightly
tending to noncollective triaxiality in the bands 1, 2, and 4
close to the maximum configuration spin.
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