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The Coulomb excitation experiment to study electromagnetic properties of the heaviest stable Mo isotope,
100Mo, was performed using a 76 MeV 32S beam from the Warsaw cyclotron U-200P. Magnitudes and relative
signs of 26 E1, E2, E3, and M1 matrix elements coupling nine low-lying states in 100Mo were determined using
the least-squares code GOSIA. Diagonal matrix elements (related to the spectroscopic quadrupole moments) of
the 2+

1 , 2+
2 , and 2+

3 states as well as the 4+
1 state were extracted. The resulting set of reduced E2 matrix elements

was complete and precise enough to obtain, using the quadrupole sum rules approach, quadrupole deformation
parameters of 100Mo in its two lowest 0+ states: ground and excited. The overall deformation of the 0+

1 and 0+
2

states in 100Mo is of similar magnitude, in both cases larger compared to what was found for the neighboring
isotopes 96Mo and 98Mo. At the same time, the asymetry parameters obtained for both states strongly differ,
indicating a triaxial shape of the 100Mo nucleus in the ground state and a prolate shape in the excited 0+ state.
Low-energy quadrupole excitations of the 100Mo nucleus were studied in the frame of the general quadrupole
collective Bohr Hamiltonian model (GBH). The potential energy and inertial functions were calculated using the
adiabatic time-dependent Hartree-Fock-Bogoliubov (ATDHFB) method starting from two possible variants of
the Skyrme effective interaction: SIII and Sly4. The overall quadrupole deformation parameters resulting from
the GBH calculations with the SLy4 variant of the Skyrme interaction are slightly closer to the experimentally
obtained values than those obtained using SIII.
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I. INTRODUCTION

In the transitional region of the nuclear chart (A ∼ 100)
shape instabilities, which may lead to coexisting nuclear
shapes, are relatively common. For Sr (Z = 38) and Zr
(Z = 40) isotopic chains a dramatic drop of the energy of the
2+

1 state was observed around neutron number N = 60 (Figs. 1
and 2), indicating a sudden shape transition. Moreover, E0
transition strengths measured for these isotopes suggest that
the ground-state structure changes rapidly when the neutron
number increases from N = 58 to N = 60 [1]. In the Mo
isotopes (Z = 42) the change of the energy of the 2+

1 state
is less pronounced, but large magnitudes of experimentally
determined E0 transition strengths may indicate the pres-
ence and mixing of different nuclear shapes. According to
Rodriguez-Guzman et al. [2], the smooth evolution of nuclear
properties, observed for the deformation, charge radii, and
nuclear binding energies of Mo isotopes, may have its origin
in an emergent region of triaxiality.

The structure of Mo isotopes with neutron number greater
than 50 provides a challenge to theoretical models. Level
schemes of even-even 50 � N � 64 molybdenum isotopes
(limited to low-lying excited states) are presented in Fig. 1.

*Deceased

The lightest stable isotope 92Mo50 is spherical [3], has a
closed N = 50 neutron shell, and its low-energy excited states
arise from neutrons and protons interacting in g7/2 and g9/2

orbits. The 2+
1 level energy systematics as well as evolution of

the reduced transition probabilities B(E2; 2+
1 → 0+

1 ) for the
even-even Mo isotopes (Fig. 3) suggest that with increasing
neutron number the influence of the collective motion on
the electromagnetic structure becomes stronger. This effect
is visible between N = 56 and N = 60. In consequence,
the first unstable Mo isotope, 102Mo60, has a vibrational-like
structure. The structure of heavy stable molybdenum isotopes,
96Mo54, 98Mo56, and 100Mo58, arises from competition between
single-particle and collective motion, resulting in unusual
features of these nuclei.

Among stable even–even nuclei one can find only few
where the first excited state has a spin and parity 0+. In only
four cases the energy of the 0+ state does not exceed 2 MeV.
One of these unusual nuclei is the 98Mo isotope and two others,
90,96Zr, also lie close to the region of rapid shape changes. In
the 100Mo isotope the 0+

2 state is observed at an energy of
695 keV, very close to the first 2+ state (536 keV). Description
of such a rare structure in the framework of existing nuclear
structure models is still difficult. On the other hand, the
observation of low-lying 0+ excited states can be the first
indication of the shape coexistence phenomenon. This effect
was recently confirmed in the neighboring 98Mo isotope where
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FIG. 1. Low-energy parts of level schemes for even-even molybdenum isotopes (50 � N � 64). Level energies are given in keV. The first
excited 2+ and 0+ states are marked with dashed lines. The 0+

2 state in 100Mo lies very close in energy to the 2+
1 state, while it becomes even

the first excited one in the neighboring 98Mo isotope.

shape coexistence manifests in a very different triaxiality of
the two first 0+ states [4].

Multiple Coulomb excitation is one of the most important
experimental methods to study nuclear collectivity and shapes.
While lifetime measurements allow determination of reduced
transition probabilities, the Coulomb excitation technique can
provide information on relative signs of the matrix elements.
Moreover, it is sensitive to diagonal matrix elements via
second-order effects, making it possible to extract quadrupole
moments including their signs, which are related to the shape of
the nucleus in a given state. Low-energy Coulomb excitation is
the only experimental technique that can distinguish between
prolate and oblate shapes of the nucleus in its intrinsic frame
without any assumptions based on nuclear structure models.

This paper presents results of the Coulomb excitation
study of the 100Mo isotope, in particular those concerning

FIG. 2. Excitation energy of the 2+
1 state as a function of neutron

number in Zr, Sr, Mo, and Ru isotopes. A dramatic drop of the energy
of the 2+

1 state in Zr and Sr isotopes is visible between N = 56 and
N = 60.

quadrupole deformation parameters of the two lowest 0+ states
in this nucleus. It is organized as follows: results of earlier
experiments to study electromagnetic properties of 100Mo are
presented in Sec. II, experimental details in Sec. III, selected
aspects of the Coulomb excitation data analysis are reported
in Sec. IV, and results are presented in Sec. V. In Sec. VI the
quadrupole sum rules method is described, and experimentally
derived quadrupole shape parameters of the low-lying 0+ states
in 100Mo are presented.

II. PREVIOUS RESEARCH ON 100MO

The level scheme of 100Mo is well known from numerous
studies of the γ radiation following the β decay of 100Nb
and reactions produced by light particles (n, p, d, α). The
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FIG. 3. Reduced transition probability B(E2; 2+
1 → 0+

1 ) as a
function of neutron number in even-even molybdenum isotopes. A
sudden increase of the B(E2; 2+

1 → 0+
1 ) value is observed between

N = 56 and N = 60.
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information on high spin states in 100Mo was obtained in
heavy-ion reactions induced by 136Xe [5], 86Kr [6], and
30Si [7].

From this type of measurement branching ratios and
E2/M1 mixing ratios were determined, including those of
transitions between the low-lying states of 100Mo, which were
populated in the experiment described in Sec. III of the present
paper.

Some reduced transition probabilities in the 100Mo nucleus
were known from previous Coulomb excitation measurements
[8,9]. In the experiment of Barrette et al. [8] a thick 100Mo
target was bombarded with light beams of 16O ions and alpha
particles. The γ rays, depopulating Coulomb excited states
of 100Mo, were detected without coincidences with scattered
particles. From the measured γ -ray yields Coulomb excitation
cross sections and transition probabilities were calculated.
For this purpose very precise information on the absolute
detection efficiency, beam current, electronics dead time,
stopping powers, and other factors influencing measured γ -ray
intensities were needed. The influence of quadrupole moments
of the excited states in 100Mo on their population was not taken
into account. Moreover, the energy of the incident 16O beam,
equal to 44.8 MeV, exceeded the safe beam energy (40 MeV
for the backscattering of 16O on 100Mo) and in consequence
the excitation of the 100Mo nuclei could not be considered as a
purely electromagnetic process. This conclusion is supported
by the results of Bohn et al. [11], who observed that for the
16O + 100Mo system the elastic cross section becomes smaller
than the Rutherford cross section above 40 MeV, indicating the
onset of nuclear absorption. This may explain the discrepancy
between the value of the 〈2+

1 ‖E2‖0+
1 〉 matrix element equal

to 0.725(18) eb, reported by Ref. [8], and results of other
experiments, such as lifetime measurement [11] [0.68(1) eb]
or the present work [0.689(17) eb].

A set of 18 E2 reduced matrix elements coupling low-lying
states of 100Mo was determined by Mundy et al. [9] in a
combination of two complementary experiments: Coulomb
excitation and lifetime measurement. For the first one, a 100Mo
target was Coulomb excited using beams of 16O and 32S at
42 and 89 MeV, respectively. Emitted γ rays were observed
in coincidence with Coulomb scatterred beam particles. The
second measurement applied the recoil-distance method to
study lifetimes of excited states populated by the Coulomb
excitation of 100Mo by a 58Ni beam of 185 MeV energy.
The final set of matrix elements, obtained in Ref. [9], was
deduced both from the particle-γ coincidence yields as well
as from the measured lifetimes. The data were analyzed using
the semiclassical Coulomb excitation code of Winther and
de Boer [12], which calculates excitation amplitudes and
Coulomb cross sections for a given set of electromagnetic
multipole matrix elements. The inversion of the problem, i.e.,
the extraction of the matrix elements from the observed γ -ray
yields, is not straightforward due to complicated nonlinear
dependencies. In contrast to analysis of the Coulomb excitation
data presented in the present paper, no minimization process
was applied. The signs of all transitional E2 matrix elements
were taken as predicted by the IBM-2 model [10]. As it is not
clear how these signs were determined, in particular why the
signs of in-band transitional matrix elements change within

the band, only absolute values of transitional matrix elements
were used for comparison with the results of the present work,
discussed in Sec. V.

The spectroscopic quadrupole moment of the first 2+
state of 100Mo was obtained using the reorientation effect in
Coulomb excitation [13,14]. The data were analyzed using
the code of Winther and de Boer [12], assuming values of
transitional E2 matrix elements from Ref. [8].

All lifetimes of low-lying excited states in 100Mo are in the
picosecond range, except for the 0+

2 state that has a lifetime of
several nanoseconds. The picosecond lifetmes of the 2+

1 , 2+
2 ,

2+
3 , 4+

1 , 4+
2 , 6+

1 , and 3− states in100Mo were measured using
the recoil-distance method [9,11], while the lifetime of the
isomeric 0+

2 state was determined via the β-γ -γ fast-timing
technique [15–17].

Up to now there was no experimental information con-
cerning the quadrupole deformation parameters of 100Mo, in
particular the triaxiality of this nucleus in its ground and
the first excited 0+ state. Such information is necessary
to conclude on the occurrence of the shape coexistence
phenomenon in 100Mo, which was predicted in this mass
region by Wood et al. [1] and observed experimentally in
the neighboring 98Mo [4].

III. EXPERIMENTAL DETAILS

The Coulomb excitation experiment to study 100Mo was
performed at the Heavy Ion Laboratory, University of Warsaw,
using a dedicated Coulomb excitation setup [18].

A 32S beam of 76 MeV energy, delivered by the U-200P
cyclotron, was impinging on a 100Mo target 44 mg/cm2 thick.
The beam energy was chosen below the “safe” value [19], i.e.,
it fulfilled the condition of the closest approach to be greater
than

Esafe = 1.25
(
A1/3

p + A
1/3
t

) + 5 fm. (1)

This requirement ensures a purely electromagnetic interaction.
The recoiling target nuclei were stopped in the target

material and Doppler shift correction of γ -ray energies was
not necessary.

The γ rays depopulating Coulomb-excited states were
detected by the OSIRIS-II array. The OSIRIS-II spectrometer
was a multidetector system consisting of 12 high-purity
germanium (HPGe) detectors equipped with anti-Compton
BGO shields. Germanium detectors were placed at a distance
of 16 cm from the target, at the following laboratory angles
with respect to the beam direction: 25◦ (1 Ge detector), 38◦
(2), 63◦ (2), 90◦ (2), 117◦ (2), 142◦ (2), and 155◦ (1).

In order to exploit the strong dependence of Coulomb
excitation cross section on the particle scattering angle,
data were collected for several angular ranges. In this way
independent data sets sensitive to all relevant matrix elements
were obtained. The scattered projectiles were detected by 45
small silicon detectors, PiN diodes, placed inside a compact
spherical chamber of 5 cm radius [20] used previously with
the NORDBALL setup [21]. A relatively small active area
of a single PiN-diode detector (0.5 × 0.5 cm2) provides
information on particle scattering angle that is sufficiently
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FIG. 4. Particle-γ coincidence time spectrum presented for dif-
ferent gamma energy gates: 150–200 keV and 500–1100 keV. Prompt
and random coincidence peaks are marked.

precise to properly describe the excitation process. Scattering
laboratory angle coverage extended from 110◦ to 152◦ with
respect to the beam direction.

The data were collected with a coincidence requirement
between γ rays detected in OSIRIS II and backscattered 32S
ions. Events were collected under the condition that at least
one γ ray was detected in the OSIRIS II spectrometer in
coincidence with exactly one scattered 32S ion detected by
a PiN diode.

Time-coincident particle-γ data were collected within a
400 ns coincidence window. Particle-gamma coincidence
spectra are presented in Fig. 4 separately for high-energy (500–
1100 keV) and low-energy (150-200 keV) γ rays. Decrease
of time resolution with energy due to charge collection
time is clearly visible. The distance of 70 ns between the
maxima present in the time spectra is related to the pulsed
structure of the beam delivered by the Warsaw cyclotron.
Prompt coincidences were selected in the offline analysis using
a 50 ns gate in the time spectrum. Random coincidences
were subtracted, with special attention paid to low-energy
transitions, as the proper estimation of the random events
related to the 0+

2 → 2+
1 γ ray transiton of 159 keV energy

was crucial to determine the 〈2+
1 ‖E2‖0+

2 〉 matrix element,
important in the further analysis aiming at the extraction of the
quadrupole deformation parameters in 100Mo.

IV. COULOMB EXCITATION ANALYSIS

Choosing the right strategy to subdivide the Coulomb
excitation data is an important issue during the data analysis
[22]. In a multiple Coulomb excitation process several levels
are observed and number of unknown matrix elements affects
Coulomb excitation cross sections in a complicated nonlinear
way. Subdivision of the experimental data based on the
projectile scattering angle makes it possible to disentangle
contributions from various excitation paths.

To demonstrate the dependence of the relative population
of a state on the scattering angle, the example of the 0+

2 state
in 100Mo is shown in Fig. 5. The 0+

2 state at the energy
of 695 keV can be populated only via two-step Coulomb
excitation: (0+

1 → 2+
1 ) ⊗ (2+

1 → 0+
2 ). The probability of the

two-step process with respect to the one-step excitation of
the 2+

1 state in 100Mo increases with the projectile scattering
angle. In addition, it is clearly visible that the population of
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FIG. 5. Relative population of the 0+
2 state (normalized to the

population of the 2+
1 state) as a function of the projectile scattering

angle, calculated for three values of the 2+
1 diagonal matrix element:

−0.9 eb (dashed curve), 0.9 eb (dotted curve), and 0.0 eb (solid
curve); the 0.9 eb value corresponds to the axially symmetric rigid
rotor limit. Relative population of the 0+

2 state increases with the
projectile scattering angle and is largest for the negative value of the
diagonal matrix element of the 2+

1 state.

the 0+
2 state is also sensitive to the quadrupole moment of the

intermediate 2+
1 state.

When analyzing the data from the Coulomb excitation
experiment of 100Mo with the 32S beam, it was decided to
sum the spectra from individual Ge detectors. In this way
the number of counts in observed γ lines was increased to a

FIG. 6. A spectrum of γ rays following the Coulomb excitation
of 100Mo with the 32S beam, collected in coincidence with beam
particles scattered in the range between 112 and 124 degrees. The
low-energy part of the spectrum is shown on the upper figure, and
the high-energy part of the spectrum is shown on the lower figure.
Random coincidences were subtracted.
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FIG. 7. Low-energy part of the level scheme for the 100Mo isotope
showing γ -ray transitions observed in the present Coulomb excitation
experiment. All energies of γ -ray transitions and levels are given
in keV.

level sufficient to subdivide the data according to the projectile
scattering angle. Three ranges of the 32S scattering angle were
used: 112◦–124◦, 127◦–131◦, and 135◦–152◦.

Figure 6 shows an example of a γ -ray spectrum of 100Mo
collected in coincidence with 32S ions scattered at 112◦–124◦
laboratory angles. Figure 7 presents the low-energy part of
the 100Mo level scheme that was populated in the experiment,
together with the observed electromagnetic transitions.

A. Extraction of reduced matrix elements

To determine E1, E2, E3, and M1 reduced matrix elements
in 100Mo, the Coulomb-excitation least-squares fitting code
GOSIA [23] was used. The code fits a set of reduced matrix
elements to the measured γ -ray yields taking into account
known spectroscopic data related to electromagnetic matrix
elements: branching ratios, lifetimes, E2/M1 mixing ratios,
as well as previously measured matrix elements. Those data are
used as additional data points, entering the χ2 function on an
equal basis as the gamma-ray yields observed in the Coulomb
excitation experiment. Tables I, II, and III list the spectroscopic
data that were included in the Coulomb excitation analysis.
Branching ratio and mixing ratio δ (E2/M1) values were
taken from Refs. [7,8,24–27]. For lifetimes, only results of
direct lifetime measurements were used [9,11,15] and not the
B(E2)’s resulting from Coulomb excitation experiments.

The GOSIA code constructs a standard χ2 function built of γ -
ray yields measured in the Coulomb excitation experiment and

TABLE I. Half lives of the excited states populated in the
Coulomb excitation experiment, taken into account in the current
analysis.

State T1/2 (ps) Reference

2+
1 13.6 ± 0.7 [11]

0+
2 1580 ± 40 [15]

2+
2 6.45 ± 0.58 [9]

4+
1 3.83 ± 0.34 [9]

2+
3 2.93 ± 0.68 [9]

4+
2 2.45 ± 0.41 [9]

6+
1 1.20 ± 0.17 [9]

3−
1 12.0 ± 3.0 [9]

TABLE II. Mixing ratios δ (E2/M1)
[24–27] which were taken into account in
the current analysis.

Transition δ (E2/M1)

2+
2 → 2+

1 4.4 ± 1.5
2+

3 → 2+
1 −0.27 ± 0.02

those calculated from a given set of matrix elements, as well
as experimental and calculated values of known spectroscopic
data.

For a given scattering kinematics, defined by the detection
array geometry, and a given set of matrix elements, Coulomb
excitation amplitudes for the investigated nucleus as well as γ -
ray decay of states populated in the process are calculated. The
calculation includes the effects influencing γ -ray intensities,
such as internal conversion, and the finite size and relative
efficiency of Ge detectors. An exact reproduction of the exper-
imentally observed γ -ray intensities requires integration over a
finite scattering angle range and over the range of bombarding
energies resulting from the projectile energy loss in a target.

As a result of minimization of the χ2 function, a set of 26
reduced matrix elements with relative signs has been found to
optimally reproduce the experimental data. The relative signs
of matrix elements have a significant influence on Coulomb
excitation probabilities. A given excited state can be populated
in a one-step process that is described by a single matrix
element, or indirectly via other excited states, when two or
more matrix elements are involved. For each excitation path the
contribution to the total excitation amplitude is proportional
to the product of the relevant matrix elements. The excitation
probability is the square of the sum of excitation amplitudes,
and therefore it contains not only quadratic terms, but also
interference terms between possible excitation paths. Signs of
the interference terms depend on the relative signs of matrix
elements. In the present work the signs of wave functions of
excited nuclear states have been chosen in such a way that all
E2 matrix elements for transitions in the ground-state band, as
well as for the 4+

2 → 2+
2 and 2+

3 → 0+
2 transitions, are assumed

to be positive. The positive sign has been chosen also for the
interband matrix elements for the 0+

2 → 2+
1 , 2+

2 → 2+
1 , and

3− → 2+
1 transitions. The signs of remaining matrix elements

were determined relative to those.

TABLE III. Branching ratios [7,8,24–26] which were taken into
account in the current analysis.

Transition Energy (keV) Branching ratio

2+
2 → 0+

1 /2+
2 → 2+

1 1064/528 0.38 ± 0.01
2+

2 → 0+
2 /2+

2 → 2+
1 369/528 0.017 ± 0.002

2+
3 → 4+

1 /2+
3 → 0+

2 327/768 0.035 ± 0.015
2+

3 → 2+
2 /2+

3 → 0+
2 399/768 0.058 ± 0.011

2+
3 → 2+

1 /2+
3 → 0+

2 927/768 0.73 ± 0.01
4+

2 → 2+
2 /4+

2 → 4+
1 707/635 0.55 ± 0.03

3−
1 → 0+

1 /3−
1 → 2+

2 1908/844 0.045 ± 0.01
3−

1 → 2+
1 /3−

1 → 2+
2 1372/844 0.46 ± 0.04
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The relative signs of matrix elements have a significant
influence on Coulomb excitation probabilities. The signs
and magnitudes of matrix elements reported in the present
work were precisely verified by performing the minimization
process with various initial values and comparing the quality of
the obtained solutions. This will be illustrated by the example
of the 〈2+

2 ‖E2‖2+
2 〉 diagonal matrix element:

(i) Imposing a negative sign on the 〈2+
2 ‖E2‖2+

2 〉 matrix
element results in an immediate fivefold rise of the
χ2 value caused mostly by a disagreement of calcu-
lated/experimental γ -ray yields for transitions deexcit-
ing the 2+

2 state. Subsequent minimization restores the
positive sign of the diagonal matrix element.

(ii) An attempt to reduce the value of the 〈2+
2 ‖E2‖2+

2 〉
matrix element reduces the population of the 2+

2
state, thus reducing the calculated γ -ray yields for
the 2+

2 → 2+
1 and 2+

2 → 0+
1 transitions deexciting

this state. The effect may be compensated by in-
creasing corresponding transitional matrix elements
〈2+

2 ‖E2‖2+
1 〉 and 〈2+

2 ‖E2‖0+
1 〉, but this immediately

causes disagreement with the experimental value of the
2+

2 state lifetime [9].

Statistical errors of the matrix elements were estimated
after the convergence of the χ2 function had been achieved.
The applied method, suitable for error calculation in large,
strongly coupled, nonlinear systems, involves two steps. First,
the multidimensional χ2 surface is sampled for various values
of the given matrix element in the vicinity of the minimum in
order to estimate its “diagonal” statistical uncertainty. Then
the total statistical error including the dependence on the
other matrix elements (cross correlation effects) is calculated.
The total error is obtained by requiring the total integrated
probability distribution in the space of fitted parameters to be
equal to the confidence limit, 68.3% [23].

V. RESULTS

Magnitudes of reduced matrix elements with their relative
signs deduced from the current analysis are presented in
Tables IV, V (transitional and diagonal E2 matrix elements),
and VI (transitional M1 matrix elements).

It should be noted that all matrix elements between the
0+

2 state and 2+
1,2,3 states, which were extracted in the present

work, indicate stronger couplings than were pointed out in
Ref. [9]. The present value of the 〈2+

1 ‖E2‖0+
2 〉 matrix element

is larger than reported in previous works [8,9] where it was
assumed that the deexcitation of the 0+

2 state proceeds uniquely
by the gamma decay to the 2+

1 state. In reality, a significant E0
branch was observed in electron spectroscopy measurements,
with branching ratio (E0; 0+

1 → 0+
2 )/(E2; 0+

2 → 2+
1 ) equal to

0.110(8) [17], 0.127(8) [29], and 0.086 [30]. The weighted
average of these three values was included in the present
analysis.

One may also notice that different values, compared to the
previous results, were presently obtained for matrix elements
that couple the 2+

3 state with the 2+
1 and 4+

1 states. Mundy
et al. [9] claim that the coupling between the 4+

1 and 2+
3 states

TABLE IV. Reduced nondiagonal E2 matrix elements in 100Mo
obtained in the present work, compared to the E2 matrix ele-
ments determined previously [calculated from B(E2) values from
Refs. [8,9,11], assuming a positive sign].

Ii → If 〈If ‖E2‖Ii〉 (eb)

Present work Previous measurements

[8] [11] [9]

0+
1 → 2+

1 0.68+0.01
−0.01 0.725(18) 0.689(17) −0.725a

0+
1 → 2+

2 0.103+0.002
−0.001 0.106(4) 0.089(6) 0.097(4)

0+
1 → 2+

3 −0.016+0.003
−0.003 <0.03

2+
1 → 0+

2 0.513+0.009
−0.004 0.436(7) −0.425(34)

2+
1 → 2+

2 0.94+0.02
−0.02 0.94(1) 0.83(6) −0.86(4)

2+
1 → 4+

1 1.33+0.03
−0.02 1.325(1) 1.31(9) 1.38(5)

2+
1 → 2+

3 −0.070+0.007
−0.006 0.26(3)

2+
1 → 4+

2 0.063+0.025
−0.012

0+
2 → 2+

2 −0.32+0.03
−0.02 <0.1

0+
2 → 2+

3 0.506+0.008
−0.006 0.47(5)

2+
2 → 4+

1 0.77+0.13
−0.10 0.1(1)

2+
2 → 2+

3 0.40+0.15
−0.13 0.3(3)

2+
2 → 4+

2 1.02+0.04
−0.03 0.89(7)

4+
1 → 2+

3 0.83+0.07
−0.04 −0.5(2)

4+
1 → 4+

2 0.99+0.05
−0.05 −0.87(7)

4+
1 → 6+

1 1.83+0.06
−0.06 −1.86(13)

aTaken from Ref. [8]. All signs in Ref. [9] are predicted by the IBM-2
model [10].

is more than 50% smaller than the one obtained in the present
work, and the 〈2+

1 ‖E2‖2+
3 〉 matrix element is four times larger.

The present analysis shows that the 2+
3 state at an energy

of 1463 keV is populated in the present experiment with a
higher probability via three-step Coulomb excitation within
the (0+

1 → 2+
1 ) ⊗ (2+

1 → 4+
1 ) ⊗ (4+

1 → 2+
3 ) pattern than via

(0+
1 → 2+

1 ) ⊗ (2+
1 → 2+

3 ).
A significant discrepancy is observed for the 〈2+

2 ‖E2‖4+
1 〉

matrix element. It should be noted that its previous, much
lower value [9] is in better agreement with a quasivibrational
character of 100Mo, suggested by the energy difference
between the 2+

2 and 4+
1 states being as small as 72 keV.

The value determined in the present work is suprisingly
large compared to the predictions of the vibrational model

TABLE V. Reduced diagonal E2 matrix elements in 100Mo
obtained in the present work, compared to the E2 matrix elements
determined previously (Refs. [9,13,14]).

Ii → Ii 〈Ii‖E2‖Ii〉 (eb)

Present work Previous measurements

[13] [14] [9]

2+
1 → 2+

1 −0.33+0.10
−0.10 −0.55(12) −0.51(10) −0.4(3)

2+
2 → 2+

2 1.20+0.10
−0.08 −0.9(6)

2+
3 → 2+

3 −0.24+0.12
−0.07

4+
1 → 4+

1 −0.35+0.18
−0.18 −0.7(4)
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TABLE VI. M1 matrix elements in 100Mo obtained in the present
work, compared to the ones determined on the basis of previous
experiments [9,24–27]. The values listed in the second column were
calculated from evaluated B(M1) values [28] assuming a positive
sign.

Ii → If 〈Ii‖M1‖If 〉 (μn)

Present work Previous measurements

2+
1 → 2+

2 0.08+0.03
−0.03 0.085(22)

2+
1 → 2+

3 0.202+0.003
−0.003 0.177(22)

(where transitions within the phonon multiplets are forbidden)
suggesting that low-lying collective states of 100Mo cannot be
easily interpreted.

Collected experimental data were sufficient and precise
enough to determine four diagonal E2 matrix elements: those
of all observed 2+ states as well as of the 4+

1 state. The diagonal
matrix element 〈2+

3 ‖E2‖2+
3 〉 was extracted in this work. The

results for 2+
1 , 2+

2 , and 4+
1 states were compared with the

ones obtained in Refs. [9,13,14]. All previous measurements
indicate large values of the diagonal E2 matrix elements;
however, some of them were extracted with relative errors
as high as 75% [9]. The diagonal matrix element of the 2+

1
state was previously measured in Coulomb excitation [13,14].
In both experiments a 100Mo target was bombarded with 4He
and 16O beams in order to measure the excitation probability
of the 2+

1 state that depends on the quadrupole moment of
this state via the reorientation effect. Ratios of elastically
and inelastically scattered beam particles were compared in
Ref. [13], while in the experiment of Naqib et al. [14] the
2+

1 → 0+
1 γ -ray transition was observed in coincidence with

scattered 4He and 16O ions. The 2+
1 → 0+

1 transition yields
were measured for each beam and normalized to the number
of the elastically scattered projectiles, and from the ratio of the
two normalized yields the quadrupole moment was extracted.
In the calculations all other matrix elements in 100Mo were
adopted after Ref. [8].

The data analysis presented in Ref. [14] aiming at the
extraction of the diagonal matrix element of the 2+

1 state is
questionable and does not lead to unequivocal conclusions.
We performed a simulation using the GOSIA code in order to
calculate the normalized γ -ray intensity ratio of the 2+

1 → 0+
1

transition measured in coincidence with 4He and 16O ions,
as defined in Ref. [14] but assuming the set of E2 matrix

TABLE VII. Absolute values of reduced E3 matrix elements in
100Mo obtained in the present work, compared to the E3 matrix
elements determined previously [9] and the value calculated from the
B(E3) [8] assuming a positive sign.

Ii → If |〈Ii‖E3‖If 〉| (eb3/2)

Present work Previous measurements

[8] [9]

0+
1 → 3− 0.44+0.01

−0.01 0.36(2) 0.48(8)

2+
1 → 3− 0.33+0.03

−0.04

TABLE VIII. Absolute values of reduced E1 matrix elements in
100Mo obtained in the present work, compared to the ones determined
previously in Ref. [9].

Ii → If |〈Ii‖E1‖If 〉| (×10−2 eb1/2)

Present work Previous measurements [9]

2+
1 → 3− 0.052+0.006

−0.005 0.051(6)

2+
2 → 3− 0.16+0.02

−0.01 0.17(2)

elements derived in the present work (Table I). The resulting
intensity ratio deviated by 0.2σ only from the experimental
value published by Naqib et al. [14].

The excitation probability of the 2+
1 state depends on the

sign of the interference term,

P3 = 〈2+
2 ‖E2‖0+

1 〉〈2+
2 ‖E2‖2+

1 〉〈2+
1 ‖E2‖0+

1 〉 (2)

As relative phases of the relevant matrix elements taken from
Ref. [8] were not known, two alternative solutions for the
〈2+

1 ‖E2‖2+
1 〉 matrix element were reported in Ref. [14]. One of

them corresponds to the constructive interefence (positive sign
of the P3value) and the other to the destructive one (negative
sign of the P3 value). The sign of the P 3 term obtained in the
present work is positive and, accordingly, in Table V previously
measured diagonal matrix elements of the 2+

1 state [9,13,14]
are those which result from constructive interference.

In the current experiment we observed the population of
the 3− state by measuring its decay to the 2+

2 state via
γ -ray transition of 844 keV energy. In low-energy Coulomb
excitation E1 couplings have negligible influence on the
excitation process and, in consequence, an opposite-parity
state is populated almost entirely via E3 coupling. However,
E3 transitions cannot compete with E1’s during de-excitation
of such a state. This leads to a possible experimental sensitivity
to both E1 and E3 matrix elements.

Taking into account known spectroscopic data—branching
ratios (3− → 0+

1 )/(3− → 2+
2 ) and (3− → 2+

1 )/(3− → 2+
2 )

[7,8,24–26], as well as the lifetime of this state [9]—it was
possible to extract absolute values of E3 and E1 matrix
elements presented in Tables VII and VIII.

Similar values of both E3 matrix elements linking 3−
to positive-parity states indicate that the two-step Coulomb
excitation of the 3− state, (0+

1 → 2+
1 ) ⊗ (2+

1 → 3−) has to be
considered as a viable excitation path. This was not taken into
account in previous Coulomb excitation studies of 100Mo.

VI. MODEL-INDEPENDENT DETERMINATION OF
QUADRUPOLE DEFORMATION PARAMETERS

The set of E2 reduced matrix elements can be analyzed
using a nuclear model-independent description of the nuclear
shape in terms of quadrupole deformation parameters.

The quadrupole sum rules method [31,32] is based on the
fact that the electric multipole transition operator E(λ,μ)
is a spherical tensor and thus its zero-coupled products
can be formed, which are rotationally invariant. Such ro-
tational invariants can be linked to deformation parameters
in the intrinsic frame of the nucleus. The lowest-order
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rotational-invariant products of the E2 operator provide infor-
mation on the quadrupole deformation parameters: the overall
deformation (Q) and triaxiality (δ). The Q and δ parameters
are analogous to Bohr’s β and γ parameters, but describe the
charge rather than the mass distribution.

The basic quadrupole invariant operator is formed from the
electric quadrupole tensor E2 in the following way:

〈Q2〉√
5

= 〈i |[E2 × E2]0| i〉 . (3)

On the other hand, one can express the expectation value of
the lowest-order product of the E2 operator in the laboratory
frame thanks to the expansion over all possible intermediate
states using Wigner’s 6j symbols:

〈i |[E2 × E2]0| i〉

= (−1)2Ii

√
(2Ii + 1)

∑
t

〈i‖E2‖t〉〈t‖E2‖i〉
{

2 2 0
Ii Ii It

}
. (4)

To get information on triaxiality, a higher-order invariant
needs to be formed:√

2

35
〈Q3 cos(3δ)〉 = 〈i |[E2 × E2]2 × E2]0| i〉 (5)

A similar evaluation using the intermediate state expansion
formula yields

〈i |[E2 × E2]2 × E2]0| i〉
= (−1)2Ii

(2Ii + 1)

∑
t,u

〈i‖E2‖u〉〈u‖E2‖t〉〈t‖E2‖i〉
{

2 2 2
Ii It Iu

}
.

(6)

In the present paper the quadrupole asymmetry, i.e., the
measure of deviation from axial symmetry, is defined as in
Ref. [33] under the assumption

〈Q3cos(3δ)〉 ∼= (〈Q2〉)3/2〈cos(3δ)〉 (7)

Sums over intermediate states in Eqs. (4) and (6), which
formally extend over all states of the system that may be
reached by a single E2 transition from the state i or u, are
in practice limited to the significant E2 matrix elements. The
number of relevant matrix elements depends on the degree to
which nuclear properties are correlated by collective degrees
of freedom.

While the determination of the shape parameters from the
measured matrix elements based on the rotational invariants is
straightforward, the errors estimation of the latter magnitudes
is difficult due to the cross-correlation of the matrix elements.
In order to include the cross-correlation effects while calcu-
lating errors of the invariants, the same procedure that was
used to estimate uncertainties of individual matrix elements
(see Sec. IV A) was applied in the present paper.

The quadrupole sum rules method is particularly useful
for attributing shape parameters to low-lying 0+ states,
whose deformation cannot be directly inferred from, e.g., a
quadrupole moment measurement.

A. Quadrupole shape parameters of 100Mo

The set of reduced E2 matrix elements extracted in the
present work was rich and precise enough to determine shape
parameters of the two lowest 0+ states in 100Mo.

The main contributions of the products of various exper-
imental matrix elements to the values of the 〈Q2〉 invariants
obtained for the ground and excited 0+ states in the 100Mo
isotope are presented in Table IX.

One can notice that the average overall deformation 〈Q2〉
of the 100Mo nucleus in its 0+ ground state is almost
completely defined by the magnitude of the 〈0+

1 ‖E2‖2+
1 〉

matrix element; i.e., similarly to what is observed for well
deformed nuclei, most of the E2 strength is exhausted by
the first 2+ state. In contrast, when determining the overall
deformation for the excited 0+

2 state, one needs to take into
account the contributions resulting from coupling of this
state to all three 2+ states excited in the experiment. The
non-negligible contribution from higher-lying 2+ states to the
overall deformation parameter of the 0+

2 state might be caused
by the shape coexistence and configuration mixing of both 0+
states.

To obtain the triaxiality parameter, 〈cos(3δ)〉, more ex-
perimental information is needed than in the case of the
〈Q2〉 value. According to Eq. (6) the triaxiality parameter for
low-lying 0+ states can be determined from a triple product
[[E2 × E2]2 × E2]0. As shown in Table X, larger sets of
matrix elements are necessary to calculate the 〈Q3cos(3δ)〉
invariant, including not only the transitional ones that couple
all experimentally observed 0+ and 2+ states via a single
E2 transition, but also diagonal E2 matrix elements of all
excited 2+ states. Moreover, relative signs of all relevant matrix
elements are essential.

It should be noted (Table X) that, to deduce the quadrupole
asymmetry of 100Mo in its ground state, the experimental
information on the diagonal E2 matrix element of the 2+

1
state is not sufficient. The E2 × E2 × E2 loops involving E2
matrix elements related to the 2+

2 state are almost equally
important, and, as their signs are opposite to the one including
the 〈2+

1 ‖E2‖2+
1 〉 matrix element, these components almost

cancel out, resulting in the value of 〈0+
1 |Q3cos(3δ)|0+

1 〉 being
close to zero.

TABLE IX. Contribution of individual matrix elements to the
values of the 〈0+

1 |Q2|0+
1 〉 and 〈0+

2 |Q2|0+
2 〉 invariants in 100Mo.

The
√

5 × { 2 2 0
0 0 2 } factor, multiplying the contributions according to

Eqs. (3) and (4), is in this case equal to 1.

State Component Contribution to
E2 × E2 〈Q2〉 (e2b2)

〈0+
1 ‖E2‖2+

1 〉〈2+
1 ‖E2‖0+

1 〉 0.46
0+

1 〈0+
1 ‖E2‖2+

2 〉〈2+
2 ‖E2‖0+

1 〉 0.01
〈0+

1 ‖E2‖2+
3 〉〈2+

3 ‖E2‖0+
1 〉 0.0002

〈0+
1 |Q2|0+

1 〉 0.47(3)

〈0+
2 ‖E2‖2+

1 〉〈2+
1 ‖E2‖0+

2 〉 0.26
0+

2 〈0+
2 ‖E2‖2+

2 〉〈2+
2 ‖E2‖0+

2 〉 0.10
〈0+

2 ‖E2‖2+
3 〉〈2+

3 ‖E2‖0+
2 〉 0.25

〈0+
2 |Q2|0+

2 〉 0.62(3)
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TABLE X. Contribution of individual matrix elements to the
values of the 〈0+

1 |Q3 cos(3δ)|0+
1 〉 and 〈0+

2 |Q3 cos(3δ)|0+
2 〉 invariants

in 100Mo. Presented invariants, accordingly to Eqs. (5) and (6), result
from the multiplication of the sum of all contributions by the factor

(−1) ×
√

35
2 × { 2 2 2

0 2 2 }, equal to −0.837.

State Component Contribution to
E2 × E2 × E2 〈Q3cos3δ〉 (e3b3)

〈0+
1 ‖E2‖2+

1 〉〈2+
1 ‖E2‖2+

1 〉〈2+
1 ‖E2‖0+

1 〉 −0.155
〈0+

1 ‖E2‖2+
1 〉〈2+

1 ‖E2‖2+
2 〉〈2+

2 ‖E2‖0+
1 〉 0.132

〈0+
1 ‖E2‖2+

1 〉〈2+
1 ‖E2‖2+

3 〉〈2+
3 ‖E2‖0+

1 〉 0.002
0+

1 〈0+
1 ‖E2‖2+

2 〉〈2+
2 ‖E2‖2+

2 〉〈2+
2 ‖E2‖0+

1 〉 0.013
〈0+

1 ‖E2‖2+
2 〉〈2+

2 ‖E2‖2+
3 〉〈2+

3 ‖E2‖0+
1 〉 −0.001

〈0+
1 ‖E2‖2+

3 〉〈2+
3 ‖E2‖2+

3 〉〈2+
3 ‖E2‖0+

1 〉 −0.0001

Sum of all contributions −0.009
〈0+

1 |Q3 cos(3δ)|0+
1 〉 0.01(6)

〈0+
2 ‖E2‖2+

1 〉〈2+
1 ‖E2‖2+

1 〉〈0+
2 ‖E2‖2+

1 〉 −0.09
〈0+

2 ‖E2‖2+
1 〉〈2+

1 ‖E2‖2+
2 〉〈2+

2 ‖E2‖0+
2 〉 −0.31

〈0+
2 ‖E2‖2+

1 〉〈2+
1 ‖E2‖2+

3 〉〈2+
3 ‖E2‖0+

2 〉 −0.04
0+

2 〈0+
2 ‖E2‖2+

2 〉〈2+
2 ‖E2‖2+

2 〉〈2+
2 ‖E2‖0+

2 〉 0.12
〈0+

2 ‖E2‖2+
2 〉〈2+

2 ‖E2‖2+
3 〉〈2+

3 ‖E2‖0+
2 〉 −0.13

〈0+
2 ‖E2‖2+

3 〉〈2+
3 ‖E2‖2+

3 〉〈2+
3 ‖E2‖0+

2 〉 −0.06

Sum of all contributions −0.51
〈0+

2 |Q3 cos(3δ)|0+
2 〉 0.42(6)

To determine the triaxiality for the excited 0+
2 state in

100Mo, a different set of the E2 matrix elements than in
case of the ground state needs to be known, and more matrix
elements have a significant influence on the final result. The
E2 couplings between the 0+

2 state and all observed excited
2+ states are important in this case, as are the diagonal matrix
elements of the 2+

1 and 2+
2 states.

The resulting quadrupole deformation parameters of 100Mo
in its first and second 0+ states are presented in Fig. 8. Results
are compared to the values obtained for the neighboring iso-
topes 96Mo [34] and 98Mo [4]. The average overall deformation
of both 0+ states in 100Mo is noticeably larger than in the
96,98Mo isotopes.

The obtained expectation values of Q2 indicate that
the 100Mo nucleus is less deformed in the ground state than in
the excited 0+

2 state. This trend is inverse to what is observed
for the 96Mo isotope: the ground state in 96Mo is deformed,
while the excited 0+

2 state is almost spherical. The overall
deformation in 98Mo is equal within uncertainty limits for
both 0+ states [4].

The expectation values of cos(3δ) indicate almost purely
prolate shapes for the excited 0+ states of 100Mo and 98Mo [4].
As the shape of the 0+

2 state in 96Mo is close to spherical,
the triaxiality parameter for this state was obtained with
a large error [34] and this data point is not plotted in
Fig. 13. The expectation values of cos(3δ) were found to
be consistent with zero within the error bars for the ground
states of all molybdenum isotopes under study, indicating
their triaxial deformation. It should be mentioned that the
expectation value of cos(3δ) = 0 (δ = 30◦) has a meaning of
maximum triaxiality in the case of rigid, well defined shapes.
Shapes discussed in the present work are rather diffused and
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FIG. 8. Experimental expectation values of Q2 (quadrupole
overall deformation parameter) and cos(3δ) (quadrupole asymmetry
parameter) for the two first 0+ states in 96,98,100Mo nuclei; 〈cos(3δ)〉 =
1 corresponds to the prolate shape, 〈cos(3δ)〉 = −1 to oblate shape,
and 〈cos(3δ)〉 = 0 to triaxiality. The overall deformation of 100Mo in
both 0+ states is larger compared to the results obtained for 96Mo and
98Mo. The asymetry parameter indicates the triaxial shape of the 0+

1

state and a prolate shape of the excited 0+
2 state in 98,100Mo.

the obtained deformation parameters should be considered
as average ones. In particular, cos(3δ) = 0 may correspond
to a situation where the probability density distribution is
symmetrical around δ equal to 30◦ but does not necessarily
have a minimum at this point.

VII. COMPARISON WITH THEORY AND DISCUSSION

The present results represent the first direct measurements
of the nuclear shape for the ground and excited 0+ states in the
100Mo isotope. In the following the experimental results are
compared to calculations of the quadrupole collective model
based on the general Bohr Hamiltonian (GBH). Experimental
and theoretical values for excitation energies, matrix elements,
and quadrupole deformation parameters are discussed and
summarized in Tables XI and XII and presented in Figs. 12
and 13.

A. General Bohr Hamiltonian

In this section we present a theoretical model which has
been applied to describe electromagnetic properties of the
100 Mo nucleus that were a subject of the discussion of the
previous sections. The main theoretical tool is the general
Bohr Hamiltonian, which has an advantage of acting in
the full space of quadrupole degrees of freedom. Such a
model that treats simultaneously and on equal footing both
vibrational and rotational excitations is especially important
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for transitional nuclei such as 100Mo. The general Bohr
Hamiltonian is determined by seven functions (potential
energy and six inertial functions which enter the kinetic part)
which are obtained from the microscopic theory employing
effective nucleon-nucleon interactions of the Skyrme type. The
connection between a level of nucleon degrees of freedom
and collective phenomena is built by using the adiabatic
time-dependent Hartree-Fock-Bogoliubov (ATDHFB) theory;
see the recent review [35] and references therein for more
details. Here we recall only some main points.

First we specify collective variables which we use to
describe quadrupole excitations. The quadrupole variables
have to form a second rank tensor with respect to the SO(3)
rotation group and have to be of positive parity. There are
several ways of choosing such variables. The oldest and
probably best known one starts with expanding a shape
of a nucleus in a series of spherical harmonics R(θ, φ) =
R0(1 + ∑

μ α2μY ∗
2m) [36,37]. Another possibility is to define

the quadrupole variables through parameters of ellipsoids
of equipotential surfaces of a phenomenological one-particle
potential (e.g., of the Nilsson or Woods-Saxon type) [38–40].
Here we choose the collective variables as proportional to
components of the quadrupole mass tensor (with no a priori
assumption about the shape of a nucleus):

α2μ ∼ 〈�|Q(mass)
2μ |�〉, (8)

where

Q
(mass)
2μ =

A∑
i=1

r2
i Y2μ(θi, φi) (9)

and � is a microscopic nuclear wave function. Such a defini-
tion is natural and is widely adopted within self-consistent
mean field theories. The mean field is obtained by using
effective interactions of the Skyrme [41] or the Gogny type
[42,43] or in the relativistic framework (RMF) [44].

The intrinsic (also called principal axes or body-fixed)
frame of reference is determined by the conditions α

(int)
2±1 =

0, α
(int)
22 = α

(int)
2−2. Thus the quadrupole tensor α2μ can be

equivalently described by two variables α
(int)
20 , α

(int)
22 which

describe nuclear deformation and three Euler angles � which
give orientation of the intrinsic frame with respect to the fixed
(laboratory) frame. In the intrinsic frame, instead of Q

(mass)
2μ ,

one often uses the Q0,Q2 operators:

Q
(mass)
0 =

A∑
i=1

(
3z2

i − r2
i

) =
√

16π/5 Q
(mass)
20 , (10a)

Q
(mass)
2 =

A∑
i=1

√
3
(
x2

i − y2
i

)
. (10b)

Finally, the β, γ deformation variables are defined by the
relations

β cos γ = α
(int)
20 = c〈�|Q(mass)

0 |�〉, (11a)

β sin γ =
√

2α
(int)
22 = c〈�|Q(mass)

2 |�〉, (11b)

where the coefficient c is conventionally chosen as

c =
√

π/5/Ar2 (12)

with the liquid drop model estimation of the mean square
radius r2 = 3(r0A

1/3)2/5, r0 = 1.2 fm. In the following we
use almost exclusively the intrinsic frame and β, γ variables.

Under some natural assumptions (see, e.g., Ref. [35]) the
general quantum Hamiltonian in the quadrupole collective
space (in other words the general Bohr Hamiltonian) can be
written in the form

H = Tvib + Trot + V, (13)

Tvib = − h̄2

2
√

wr

{
1

β4

[
∂β

(
β4

√
r

w
Bγγ (β, γ )∂β

)

− ∂β

(
β3

√
r

w
Bβγ (β, γ )∂γ

)]

+ 1

β sin3γ

[
− ∂γ

(√
r

w
sin3γBβγ (β, γ )∂β

)

+ 1

β
∂γ

(√
r

w
sin3γBββ(β, γ )∂γ

)]}
, (14)

Trot = 1

2

3∑
k=1

I 2
k

/
Jk, Jk = 4β2Bk(β, γ ) sin2(γ − 2kπ/3),

(15)

V = V (β, γ ), (16)

and where

w = BββBγγ − B2
βγ , r = B1B2B3. (17)

In the formula (15) the operators Ik , k = 1, 2, 3 are com-
ponents of the angular momentum in the intrinsic frame. The
functions Bββ, Bβγ , Bγγ , Bk depend on deformation variables
and are called mass parameters or, more precisely, inertial
functions, while Jk are the moments of inertia. A volume
element in the collective space is

dτcoll = 23√wrβ4| sin 3γ |dβ dγ d�, (18)

where d� is the volume element in the Euler angle space. The
physical meaning of the vibrational part the Hamiltonian (14)
can probably be seen more easily by looking at its classical
counterpart [37,45].

There are two main approaches to determine the seven
functions (mass parameters plus potential energy) which enter
the general Bohr Hamiltonian. One approach consists of
assuming a reasonable form of these functions with some free
parameters which are fixed by comparing with experimental
collective properties. Examples of such scheme are provided
by the general collective model [46] and more recent papers on
the so-called dynamical symmetries inspired by the interacting
boson model [47]. We use the other method which aims
at calculating these functions starting from a microscopic
theory, i.e., dealing with nucleon degrees of freedom. In this
approach we do not introduce any additional free parameters
and the prediction of collective properties is based solely on
the knowledge of effective nucleon-nucleon interactions. The
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inertial functions and potential energy are obtained in the
framework of the ATDHFB theory, which is closely related
to the cranking concept and can be traced back to the seminal
papers [48,49] (see also Ref. [50]).

In the ATDHFB calculations we need a set of the BCS-type
functions � which are parametrized by the collective variables
β, γ . This set is obtained by self-consistent calculations with
the constraints on the expectation values of the Q

(mass)
0 , Q(mass)

2
operators:

δ〈�|H (micr) − λ0Q
(mass)
0 − λ2Q

(mass)
2 |�〉 = 0 (19)

with

〈�|Q(mass)
0 |�〉 = q

(m)
0 , 〈�|Q(mass)

2 |�〉 = q
(m)
2 . (20)

Here H (micr) is a nuclear microscopic many-body Hamiltonian.
We assume that the states � are invariant against the D2h

group (generated by rotations by the π angle around three
perpendicular axes and inversion) in order to fulfill conditions
determining the intrinsic frame.

The cranking approximation of the ATDHFB method,
which we use in our caculations, neglects the effects of a
time-odd component of the mean field induced by a collective
motion (sometimes called the Thouless-Valatin term). Due to
serious technical difficulties such effects are taken into account
only approximately by multiplying the inertial functions (or
only moments of inertia) by a constant factor typically in the
range 1.2–1.4; see Refs. [41–44].

The collective operator for E2 transitions is defined as

q
(charge)
2μ = 〈�|e

Z∑
i=1

r2
i Y2μ(θi, φi)|�〉. (21)

With good accuracy we have q
(ch)
2μ = eZ/AQ

(mass)
2μ so the

intrinsic frame for the charge quadrupole tensor is the same
as for the mass tensor. In the intrinsic frame the invariants
discussed in Sec. IV can be expressed as

Q2 = q
(ch)2
20 + 2q

(ch)2
22 =

(
3ZR2

0

4π

)2

β2 (22)

and

Q3 cos 3δ = q
(ch)
20

(
q

(ch)2
20 − 6q

(ch)2
22

) =
(

3ZR2
0

4π

)3

β3 cos 3γ

(23)
where R0 = r0A

1/3. One should keep in mind that experi-
mentally the nuclear charge distribution in a given state is
measured. Connections between the quadrupole invariants and
the β, γ variables depend on the definition of the collective
variables. For example, formulas in the Appendix of Ref. [33],
which differ from Eqs. (22) and (23), were obtained under the
assumption that the deformation variables refer to lengths of
semi-axes of a uniformly charged ellipsoid.

B. Results of calculations

We have performed self-consistent calculations along the
lines sketched in the previous subsection with two widely used
sets of parameters of the Skyrme interactions, namely SIII [51]
and SLy4 [52]. In the pairing channel we used the seniority

TABLE XI. Reduced E2 matrix elements in 100Mo obtained in
the present work, compared to theoretical values calculated using the
general Bohr Hamiltonian (GBH) model.

Ii → If Transitional matrix elements 〈If ‖E2‖Ii〉 (eb)

Present work GBH model

SIII SLy4

0+
1 → 2+

1 0.68+0.01
−0.01 0.77 0.64

0+
1 → 2+

2 0.103+0.002
−0.001 0.103 −0.03

0+
1 → 2+

3 −0.016+0.003
−0.003 0.05 0.01

2+
1 → 0+

2 0.513+0.009
−0.004 0.37 0.34

2+
1 → 2+

2 0.94+0.02
−0.02 0.84 0.86

2+
1 → 4+

1 1.33+0.03
−0.02 1.37 1.16

2+
1 → 2+

3 −0.070+0.007
−0.006 0.006 0.04

2+
1 → 4+

2 0.063+0.025
−0.012 0.108 0.034

2+
1 → 4+

3 −0.045 −0.004

0+
2 → 2+

2 −0.32+0.03
−0.02 −0.41 −0.20

0+
2 → 2+

3 0.506+0.008
−0.006 0.76 0.64

2+
2 → 4+

1 0.77+0.13
−0.10 −0.23 −0.19

2+
2 → 2+

3 0.40+0.15
−0.13 0.44 0.37

2+
2 → 4+

2 1.02+0.04
−0.03 1.06 0.99

2+
2 → 4+

3 0.15 0.03

4+
1 → 2+

3 0.83+0.07
−0.04 0.54 0.49

2+
3 → 4+

2 −0.31 −0.35
2+

3 → 4+
3 −1.04 −0.20

4+
1 → 4+

2 0.99+0.05
−0.05 0.85 0.93

4+
1 → 6+

1 1.83+0.06
−0.06 1.92 1.65

6+
1 → 8+

1 2.42 2.14

Ii → Ii Diagonal matrix elements 〈Ii‖E2‖Ii〉 (eb)

Present work GBH model

SIII SLy4

2+
1 → 2+

1 −0.33+0.10
−0.10 −0.61 −0.04

2+
2 → 2+

2 1.20+0.10
−0.08 0.40 −0.08

2+
3 → 2+

3 −0.24+0.12
−0.07 −0.42 −0.26

4+
1 → 4+

1 −0.35+0.18
−0.18 −0.96 −0.25

4+
2 → 4+

2 −0.16 −0.24
4+

3 → 4+
3 −0.44 −0.04

(constant G) interaction. Its strength was fixed in Ref. [41] for
slightly heavier nuclei (including the 104Mo isotope) by a com-
parison of minimal quasiparticle energy (for protons and neu-
trons) with experimental gaps obtained from even-odd mass
differences. It should be stressed that no parameter of the pre-
sented model was fitted to experimental collective properties.

TABLE XII. Experimental and theoretical values of invariants.

State Invariant Expt. Theor., SIII Theor., SLy4

0+
1 〈Q2〉 0.47(3) 0.60 0.40

〈Q3 cos 3δ〉 0.01(6) 0.18 0.037
0+

2 〈Q2〉 0.62(3) 0.88 0.57
〈Q3 cos 3δ〉 0.42(6) 0.63 0.26
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FIG. 9. Potential energy (relative to the spherical shape) of the
100Mo nucleus calculated for the SIII interaction. The contour interval
is 1 MeV.

The values of inertial functions and potential energy were
calculated at 155 points forming a regular grid in the sextant
(0 � β � 0.7) × (0 � γ � 60◦) in the deformation plane. The
distance between points is 0.05 and 6◦ in the β and γ

directions, respectively. For the axial shape the deformation
β = 0.7 corresponds to Qmass

0 = 16.44 b. It is sufficient to
calculate the Bohr Hamiltonian only within one sextant of the
deformation plane because of several symmetry conditions
which are fulfilled by the functions entering the Hamiltonian;
see Refs. [35,45].

In Figs. 9 and 10 we show contour plots of the potential
energy (relative to the energy of the spherical shape) for both
versions of the Skyrme interactions. The Sly4 version gives a
spherical minimum γ variable while the SIII version predicts
a shallow minimum (−0.91 MeV) for an almost oblate shape
with β = 0.25 and γ = 6◦. In both cases the potential energy
weakly depends on the γ variable. Of course the potential
energy alone does not determine the collective spectrum—one
needs also the inertial functions. We show them in Fig. 11 for
the SIII parameters. One can notice that the inertial functions
exhibit a rather complicated dependence on the deformation.
This is in sharp contrast with most phenomenological models
where the kinetic energy is characterized by one constant
parameter B = Bββ = Bγγ = Bk , Bβγ = 0.

In the next step the Bohr Hamiltonian is diagonalized
numerically using methods presented in Refs. [40,44]. We
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FIG. 10. Potential energy (relative to the spherical shape) of the
100Mo nucleus calculated for the Sly4 interaction. The contour interval
is 1 MeV.
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FIG. 11. Plots of inertial functions entering the Bohr Hamiltonian
[Eqs. (14) and (15)] calculated with the Skyrme SIII interaction
(in h̄2/MeV). The contour interval is 20 h̄2/MeV.

show the obtained collective spectra in Fig. 12. Both versions
of the Skyrme interactions give very similar level schemes. The
SIII spectrum is slightly less stretched and in consequence
is closer to the experimental one. The ground state and 2+

2
bands are well reproduced but the 0+

2 band is predicted to
be much higher than it is observed experimentally. Similar
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FIG. 12. Low-lying part of the 100Mo spectrum observed in the
present experiment and corresponding theoretical levels; cf. also
Fig. 5. The 0+

2 band is predicted to be much higher than it is observed
experimentally.
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discrepancies between the results of GBH calculations and the
experimental level schemes were found also in the 94–98Mo
nuclei [53].

The diagonalization of the Bohr Hamiltonian gives us also
collective wave functions, which can be used to calculate,
e.g., matrix elements of the E2 transition operator. The E2
matrix elements are given in Table XI and compared with
experimental results.

Overall agreement between theory and experiment is
satisfactory; however, one can find some discrepancies, mainly
related to the transitional E2 matrix elements between the 4+

1
state and the 2+

2 and 2+
3 states and between the 0+

2 and 2+
1 states.

Experimentally obtained 〈2+
3 ‖E2‖4+

1 〉 and 〈0+
2 ‖E2‖2+

1 〉 ma-
trix elements indicate nearly two times stronger coupling of
these states than theoretical predictions. Notable disagreement
is also noticed for the 〈4+

1 ‖E2‖2+
2 〉 matrix element. The

theoretical calculations show around four times smaller value
and opposite sign of this matrix element.

In spite of the similarity of the energy spectra there are some
pronounced differences between E2 results given by the two
versions of the Skyrme interaction, in particular for diagonal
elements of the 2+

1 and 2+
2 states. The Sly4 version gives almost

zero values for them, which agrees with very weak dependence
of the potential energy on the γ variable.

Synthetic information on the E2 properties is contained in
the invariants Q2 and Q3 cos 3δ. Comparing the same charge
deformation parameters extracted from the experimental data
with appropriate values from the model calculations shows
clearly which collective parameters are determined by the
data and the goodness of collective model descriptions. The
experimental and theoretical expectation values of the Q2 and
Q3 cos 3δ operators calculated in the ground and excited 0+
states of 100Mo are shown in Table XII and in Fig. 13.

When calculating the invariants presented in Table XIII,
the same loops over matrix elements were used as in the
case of experimentally obtained matrix elements, e.g., limited
to three 2+ intermediate states. The obtained values are in
very good agreement (within less than 3%) with the directly
calculated expectation values of Q2 and Q3 cos 3δ (Table XII).
This leads to the conclusion that there is no significant
contribution from higher-lying levels to the experimentally
determined rotational invariants and there is no loss in
precision (within the obtained error bars) due to an incomplete
summation.

TABLE XIII. Contribution of the individual theoretical E2 matrix elements to the values of the 〈Q2〉 and 〈Q3 cos(3δ)〉 invariants in 0+
1 and

0+
2 states of 100Mo. The presented 〈Q3 cos(3δ)〉 invariants, accordingly to the Eqs. (5) and (6), result from the multiplication of the sum of

all contributions by the factor (−1) ×
√

35
2 × { 2 2 2

0 2 2 } that is equal to −0.837. In the case of 〈Q2〉 value the factor
√

5 × { 2 2 0
0 0 2 } is equal to 1

[Eqs. (3) and (4)].

State Component Contribution to 〈Q2〉 (e2b2)

E2 × E2 SIII SLy4

〈0+
1 ‖E2‖2+

1 〉〈2+
1 ‖E2‖0+

1 〉 0.59 0.40
0+

1 〈0+
1 ‖E2‖2+

2 〉〈2+
2 ‖E2‖0+

1 〉 0.01 0.0008
〈0+

1 ‖E2‖2+
3 〉〈2+

3 ‖E2‖0+
1 〉 0.002 0.0001

〈Q2〉 = 0.60 0.40

〈0+
2 ‖E2‖2+

1 〉〈2+
1 ‖E2‖0+

2 〉 0.14 0.12
0+

2 〈0+
2 ‖E2‖2+

2 〉〈2+
2 ‖E2‖0+

2 〉 0.17 0.04
〈0+

2 ‖E2‖2+
3 〉〈2+

3 ‖E2‖0+
2 〉 0.57 0.41

〈Q2〉 = 0.88 0.57

State Component Contribution to 〈Q3cos(3δ)〉 [e3b3]

E2 × E2 × E2 SIII SLy4

〈0+
1 ‖E2‖2+

1 〉〈2+
1 ‖E2‖2+

1 〉〈2+
1 ‖E2‖0+

1 〉 −0.36 −0.015
〈0+

1 ‖E2‖2+
1 〉〈2+

1 ‖E2‖2+
2 〉〈2+

2 ‖E2‖0+
1 〉 0.13 −0.031

〈0+
1 ‖E2‖2+

1 〉〈2+
1 ‖E2‖2+

3 〉〈2+
3 ‖E2‖0+

1 〉 0.0004 0.0006
0+

1 〈0+
1 ‖E2‖2+

2 〉〈2+
2 ‖E2‖2+

2 〉〈2+
2 ‖E2‖0+

1 〉 0.004 0.0001
〈0+

1 ‖E2‖2+
2 〉〈2+

2 ‖E2‖2+
3 〉〈2+

3 ‖E2‖0+
1 〉 0.005 −0.0002

〈0+
1 ‖E2‖2+

3 〉〈2+
3 ‖E2‖2+

3 〉〈2+
3 ‖E2‖0+

1 〉 −0.001 −0.00003

Sum of all contributions −0.22 −0.045
〈Q3cos(3δ)〉 = 0.184 0.038

〈0+
2 ‖E2‖2+

1 〉〈2+
1 ‖E2‖2+

1 〉〈2+
1 ‖E2‖0+

2 〉 −0.084 −0.004
〈0+

2 ‖E2‖2+
1 〉〈2+

1 ‖E2‖2+
2 〉〈2+

2 ‖E2‖0+
2 〉 −0.25 −0.12

〈0+
2 ‖E2‖2+

1 〉〈2+
1 ‖E2‖2+

3 〉〈2+
3 ‖E2‖0+

2 〉 0.0004 0.016
0+

2 〈0+
2 ‖E2‖2+

2 〉〈2+
2 ‖E2‖2+

2 〉〈2+
2 ‖E2‖0+

2 〉 0.066 −0.003
〈0+

2 ‖E2‖2+
2 〉〈2+

2 ‖E2‖2+
3 〉〈2+

3 ‖E2‖0+
2 〉 −0.27 −0.096

〈0+
2 ‖E2‖2+

3 〉〈2+
3 ‖E2‖2+

3 〉〈2+
3 ‖E2‖0+

2 〉 −0.24 −0.11

Sum of all contributions −0.78 −0.32
〈Q3cos(3δ)〉 = 0.65 0.27
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FIG. 13. Experimental and theoretical expectation values of Q2

(quadrupole overall deformation parameter) and cos(3δ) (quadrupole
asymmetry parameter) for the two first 0+ states in 100Mo nuclei;
〈cos(3δ)〉 = 1 corresponds to the prolate shape, 〈cos(3δ)〉 = −1 to
oblate shape, and 〈cos(3δ)〉 = 0 to triaxiality.

The experimentally obtained average deformation param-
eters Q2 and cos(3δ) for the low-lying 0+ states of the
100Mo isotope are qualitatively reproduced by the theoretical
calculations. The overall deformation of the 0+

1 state is lower
compared to the one extracted for the 0+

2 state. Both the
theoretical and experimental results indicate triaxial shape in
the ground state and a prolate one in the low-lying excited
0+ state of 100Mo. It is worth noticing that overall quadrupole
deformation parameters resulting from the GBH calculations
with the SLy4 variant of the Skyrme interaction are slightly
closer to experimentally obtained values than the SIII. It
should be pointed out that, as the parameters of the presented
model were fixed without any knowledge of the collective
properties, the ability of the model to predict energy spectra
and electromagnetic properties is quite remarkable.
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FIG. 14. Probability density [Eq. (26)] for the 0+
1 and 0+

2

states for the Skyrme SIII interaction. The contour interval is 0.3
(dimensionless).
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FIG. 15. Probability density [Eq. (26)] for the 0+
1 and 0+

2 states
for the Skyrme SLy4 interaction. The contour interval is 0.3.

Another noteworthy point is the following. The β, γ are
dynamical variables so the nucleus does not have a fixed shape.
Instead, we have only probability distributions determined by
eigenfunctions of the Bohr Hamiltonian. An eigenfunction
with the angular momentum numbers I , M and additional
label ξ has the form

�
(coll)
IMξ (β, γ,�) =

I or I−1∑
K=0(2),even

FIKξ (β, γ )φI
MK (�), (24)

where

φI
MK =

√
2I + 1

16π2(1 + δI0)

[
DI

KM + (−)IDI
M−K

]
(25)

are normalized combinations of the Wigner D functions.
The probability density function obtained by integration of
|�(coll)|2 over the Euler angles reads

pIξ (β, γ ) =
∑
K

|FIKξ (β, γ )|2√wrβ4| sin 3γ |. (26)

Here we included the weight functions, which enter the
volume element [Eq. (18)] in the collective space. We show
probability densities, p01 and p02, for the 0+

1 and 0+
2 states

in Figs. 14 and 15. For the sake of comparison we added in
Fig. 16 a plot of the analogous distributions for the harmonic
oscillator Hamiltonian. The parameters of the oscillator were
chosen in such a way that the energy of the 2+

1 state and the
average value 〈β2〉 are the same as for the Bohr Hamiltonian
(the SIII version).
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FIG. 16. Probability density for the 0+
1 state, harmonic oscillator

potential.
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TABLE XIV. Experimental and theoretical mean values of the
shape deformation parameters β and γ . Experimental values were
calculated from the mean values of the quadrupole invariants 〈Q2〉
and 〈Q3cos(3δ)〉. Theoretical results were obtained using the GBH
model with the SIII and SLy4 variants of the interaction.

State Shape GBH model Experiment

parameter SIII SLy4 (present work)

0+
1 β 0.25 0.20 0.22±0.01

γ (deg) 22◦ 27◦ 29◦ ± 3◦

0+
2 β 0.30 0.24 0.25 ± 0.01

γ (deg) 13◦ 18◦ 10◦ ± 3◦

When discussing experimentally determined values of the
Q2 and Q3cos(3δ) invariants and comparing them to model
calculations using β and γ collective shape variables, it may
be useful to transform them to β2 and β3cos(3γ ). For β

and γ defined in the frame of the Hartree-Fock-Bogoliubov
microscopic Bohr Collective Hamiltonian the transformation
is straightforward and is given by Eqs. (22) and (23). Using
the approximation for β3 cos(3γ ) analogous to Eq. (7), mean
values of the shape deformation parameters might be written
as β =

√
〈β2〉 and γ = 1/3 arc〈cos(3γ )〉. In Table XIV

we present the comparison of the calculated mean values of
β and γ deduced from the probability density distributions
determined by functions of the Bohr Hamiltonian (Figs. 14
and 15) and the experimental ones converted from the mean
values of invariants Q2 and Q3cos(3δ).

It should be mentioned that the direct information on the
nuclear shape, understood as a charge distribution in a nuclear
state, is given by rotational quadrupole invariants as they are
experimental observables and no additional assumptions are
required for their extraction.

VIII. SUMMARY

Electromagnetic properties of low-lying states of the heav-
iest stable molybdenum isotope 100Mo were studied. Using
the Coulomb excitation technique, a rich set of 26 reduced
E1, E2, E3, and M1 matrix elements coupling the low-lying
excited states was determined, making it possible to extract the
quadrupole deformation parameters in a model-independent
way. The experimentally determined deformation parameters
of two lowest 0+ states in 100Mo were compared to the
ones known for the neighboring stable 96,98Mo isotopes
[4,34]. The overall deformation of 96,98,100Mo in the 0+
states increases with the neutron number. The ground state of
96Mo is deformed, while the excited one is almost spherical.
The overall deformation of 100Mo in the 0+ states shows
an opposite trend to that in 96Mo: the 0+

1 state of 100Mo
is less deformed than the 0+

2 one. In 98,100Mo, the shape
coexistence manifests itself in the very different triaxiality of
these states: the nucleus undergoes a transition from triaxial,
cos(3δ) = 0, in the 0+

1 state to the prolate shape in the 0+
2

state. The experimental results for 100Mo were compared with
the predictions of the general Bohr Hamiltonian (GBH) model.
The theoretical calculations were performed for two variants of
the Skyrme interaction: SIII and SLy4. The overall quadrupole
deformation parameters resulting from the GBH calculations
with the SLy4 variant of Skyrme interaction are slightly closer
to experimentally obtained values than the SIII.
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