
PHYSICAL REVIEW C 86, 064001 (2012)

Comparative study of neutron and nuclear matter with simplified Argonne
nucleon-nucleon potentials

M. Baldo,1 A. Polls,2 A. Rios,3 H.-J. Schulze,1 and I. Vidaña4

1INFN Sezione di Catania, Dipartimento di Fisica, Via Santa Sofia 64, I-95123 Catania, Italy
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We present calculations of the energy per particle of pure neutron and symmetric nuclear matter with simplified
Argonne nucleon-nucleon potentials for different many-body theories. We compare critically the Brueckner-
Hartree-Fock results to other formalisms, such as the Brueckner-Bethe-Goldstone expansion up to third order,
self-consistent Green’s functions, auxiliary field diffusion Monte Carlo, and Fermi hypernetted chain. We evaluate
the importance of spin-orbit and tensor correlations in the equation of state and find these to be important in a
wide range of densities.
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I. INTRODUCTION

The properties of homogeneous nuclear and neutron matter
at high density play a crucial role in the determination of
the structure of neutron-star interiors [1]. Terrestrial nuclei
provide little input to constrain the equation of state (EOS)
under the extreme conditions of density and isospin asymmetry
within neutron stars. A potentially safe way to obtain the
EOS thus relies on microscopic many-body calculations based
on realistic nucleon-nucleon (NN ) interactions. Over the
years, several many-body approaches have been developed
to describe neutron-star (and nuclear) interiors. The different
approaches might have very different physical foundations,
but their final result is generally the same: a prediction for
the density dependence of the energy per particle in neutron
or symmetric nuclear matter. Here we want to progress in
our understanding of the EOS by comparing quantitatively
the results provided by different many-body approaches.
Similar benchmark calculations have taken place within the
few-body community and have provided vital insight into the
approximation schemes at play [2].

The full operatorial structure of current high-quality NN

potentials is presently too sophisticated for some state-of-the-
art many-body schemes. Simplified versions of these potentials
are therefore useful for benchmarking purposes. In particular,
we use a family of simpler versions of the widely used Argonne
V18 potential [3]. The V ′

8, V ′
6, and V ′

4 potentials [4] are built
by removing operatorial components of the interaction, while
the remaining terms are readjusted (as indicated by the prime)
to preserve as many lowest-order phase shifts and deuteron
properties as possible. These potentials have been used in
calculations of both finite nuclei [4] and infinite matter (see,
e.g., Refs. [5] and [6]). A natural question then arises: How
well can these truncated potentials replace the original V18?

To clarify this and other issues, we first analyze in detail the
properties of the family of Argonne potentials by inspecting
their phase shifts in different partial waves. We also examine
the deuteron properties as predicted by these interactions. We
then study the EOS within the Brueckner-Hartree-Fock (BHF)

many-body approach [7], which can handle straightforwardly
all the variants of the Argonne potential. The BHF results are
particularly insightful, because the total energy can be directly
connected to the partial wave expansion and therefore to the
microscopic properties of the in-medium NN interaction. We
also compare, when possible, the BHF results with other
many-body approaches [8,9], namely the Brueckner-Bethe-
Goldstone (BBG) approach up to third order in the hole-line
expansion [10], the self-consistent Green’s function (SCGF)
method [11–13], the auxiliary field diffusion Monte Carlo
(AFDMC) [6], the Green’s function Monte Carlo (GFMC)
[5], and the Fermi hypernetted chain (FHNC) [14–16]. The
comparisons should be helpful in quantifying theoretical
uncertainties with respect to the EOS. As we shall see, the sym-
metric nuclear matter predictions are particularly susceptible
to the missing spin-orbit components in simplified potentials.

This work complements and extends previous investiga-
tions of some of the authors [17,18]. In fact, Ref. [18] contains
BHF results for V18, V ′

8, and V ′
6 potentials. We note, however,

that all BHF results for these potentials shown in the present
work have been recalculated and that the results corresponding
to V ′

4 and Ṽ6 have never been reported before. Regarding
the BBG results, Ref. [17] reports calculations for V18 and
V ′

8 for both symmetric and neutron matter which have been
carefully revised in the present paper. All the other BBG
results are new and presented for the first time. The SCGF
results presented here correspond to the zero-temperature
extrapolation of results presented in previous publications [11].
The extrapolation procedure has not yet been discussed. As
such, the results should be taken as new, because this is
the first time they are published. The comparisons with the
FHNC results are performed with the most recent FHNC
calculations for symmetric and neutron matter [16,19]. Finally,
the AFDMC results were provided by Gandolfi [20]. Notice,
however, that the AFDMC results for V ′

6 and V ′
8 are those

shown in Ref. [16]. Our basic conclusions are related to
the spin-orbit and tensor components of the NN interaction
and NN in-medium correlations. Let us stress, in addition,
that we do not attempt to obtain a “realistic” description of
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the neutron or symmetric nuclear-matter EOS. Our goal is
solely to compare constructively the results obtained with
different two-body potentials and many-body methods. A
detailed calculation of the nuclear EOS would need to consider
additional effects, particularly three-body forces [21] and
relativistic corrections, which are beyond the scope of the
present work.

The paper is organized as follows. In Secs. II and III we
show the phase shifts and the deuteron properties predicted by
the different Argonne potentials. Section IV is devoted to the
BHF results of nuclear matter, both symmetric matter (SM)
and neutron matter (NM), whereas in Sec. V we compare
the results obtained with the different many-body approaches.
Finally, our conclusions are presented in Sec. VI.

II. PHASE SHIFTS

The strong interaction part of the Argonne V18 potential can
be expressed as a sum of 18 operators,

Vij =
∑

p=1,18

vp(rij )Op

ij . (1)

The first 14 operators are associated to the spin, isospin, tensor,
spin-orbit, and quadratic spin-orbit components of the nuclear
force:

O
p=1,...,14
ij

= 1, τ i · τ j , σ i · σ j , (σ i · σ j )(τ i · τ j ),

Sij , Sij (τ i · τ j ),

L · S, L · S(τ i · τ j ),

L2, L2(τ i · τ j ), L2(σ i · σ j ), L2(σ i · σ j )(τ i · τ j ),

(L · S)2, (L · S)2(τ i · τ j ). (2)

The four additional operators,

O
p=15,...,18
ij = Tij , Tij (σ i · σ j ), TijSij , (τzi + τzj ), (3)

where Tij = 3τziτzj − τ i · τ j is the isotensor operator, break
charge independence. The radial functions that multiply each
operator are adjusted by fitting experimental data on two-body
scattering phase shifts as well as deuteron properties.

A family of simplified Argonne NN interactions has
been devised to quantify the evolution of nuclear spectra
with increasingly sophisticated NN interactions [4]. A given
simplified version, V ′

n, is constructed by (i) eliminating the
operatorial structure with p > n and (ii) refitting the remaining
radial functions to reproduce as many properties of the original
interaction as possible. Thus, V ′

8 includes all operators up to
the spin-orbit term, but misses the components proportional
to L2, (L · S)2, Tij , and τzi + τzj . Similarly, V ′

6 is a NN force
without spin-orbit (or further, p > 6) couplings. Finally, V ′

4
does not even have a tensor coupling, but has been refitted to
reproduce the binding energy of the deuteron.

Realistic (or microscopic) NN interactions should fulfill a
minimum set of requirements. In particular, realistic potentials
are built to reproduce the Nijmegen database [22] (which
contains a full set of NN elastic scattering phase shifts up to
energies of about 350 MeV) with an accuracy of χ2/Ndata ∼ 1.
Only potentials that fulfill this condition should be used as

input to the so-called ab initio many-body schemes, which
aim at providing a first-principles description of the EOS of
NM and SM. While Argonne V18 is, by all means, a realistic
interaction, the Argonne family of simpler versions will
necessarily violate this condition and thus they will become,
in some sense, increasingly “less realistic.” In particular, one
expects the reproduction of the phase shifts of high partial
waves to be deteriorated as the operatorial structure of the
interaction is simplified. One of our aims is to explore to
which extent this deterioration has an impact on the EOS.
This is particularly important in view of the fact that some
approaches, at present, are limited to simplified forms of the
Argonne family of potentials. In particular, the last generation
of FHNC results has been computed with interactions up to V ′

8
for both SM and NM. For ADFMC, the EOS of NM (SM) is
only available with V ′

8 (V ′
6). Diagrammatic approaches, such

as BHF, BBG, or SCGF, have fewer limitations with respect
to the structure of the original NN interactions. We therefore
provide results for Argonne V18 for these approaches. Within a
given many-body approximation, calculations with V18, V ′

8, V ′
6,

and V ′
4 should provide an indication of the importance of the

missing operatorial components for the in-medium properties.
Figure 1 shows the phase shifts of the lowest partial waves

given by the different Argonne potentials [4]. V18, V ′
8, and

V ′
6 agree, by construction, in the 1S0, 3S1, 1P1, and 3D1 partial

waves. The oversimplistic V ′
4 potential, however, does not have

a tensor coupling, thus yielding zero mixing angles ε1 and ε2.
The 3D1 phase shift is also badly reproduced for this potential,
with an opposite sign relative to the other potentials. This is
a direct consequence of the readjustment of the potential to
bind the deuteron with the S channel only [4]. In the 3D1

wave, the readjustment is such that it changes the nature of the
interaction from repulsive (negative phase-shift) to attractive
(positive phase-shift).

For L = 1, further discrepancies between phase shifts ap-
pear. All potentials reproduce the 1P1 phase-shift correctly, as
the spin-orbit or tensor components are not active. Substantial
differences, however, show up already in the 3P0,1,2 waves.
In these channels, the V ′

6 and V ′
4 potentials deviate from the

experimentally fitted V18 results. In particular, the important
3P2 wave is grossly misrepresented with the V ′

6 potential. In
fact, this potential provides no correction in the S = 1, T = 1
partial waves for the missing spin-orbit components and can
hardly be considered realistic for this reason.

Similarly large discrepancies are observed for the phase
shifts of the 1D2 and 3D2 partial waves. In the S = 0 channel,
V ′

6 and V ′
4 are identical and provide a too large phase shift

compared to V18 and V ′
8 (which lie on top of each other in

the plot). In the S = 1 channel, visible differences show up
also between V ′

8 and V18. For the L = 3 phase shifts, we have
chosen to show the 3F2 channel, where, again, substantial and
visible differences appear between V ′

4, V ′
6, V ′

8, and V18.
The lowest right panels of Fig. 1 show the mixing

parameters ε1 and ε2 of the 3S1-3D1 and 3P2-3F2 partial waves,
respectively. On the one hand, the V ′

8 interaction reproduces
very well the behavior of both parameters as given by the
full V18, in spite of the slightly different 3F2 phase shift. On
the other hand, V ′

6 is only able to account for the low-energy
behavior (Elab � 50 MeV) of ε1 and ε2. V ′

4 lacks a tensor
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FIG. 1. (Color online) NN phase shifts for different potentials as a function of the energy in the laboratory Elab. The solid lines represent
the reference Argonne V18 results, whereas dotted, dashed, and dashed-dotted lines correspond to V ′

8, V ′
6, and V ′

4, respectively.

component and therefore the mixing parameters associated to
it are zero.

Let us note, for further reference, that the BHF calculations
are performed with partial waves up to J = 8. The SCGF
results presented here have been obtained for up to J = 4 in the
T -matrix and up to J = 8 in the Hartree-Fock self-energy. For
the BBG three-hole calculations, all contributions have J � 5
and the convergence has been carefully tested. The differences
in the J > 1 partial waves that we have just highlighted will
therefore have an impact on the EOS. As a matter of fact, even
phase-shift-equivalent potentials might predict different EOS
owing to their different (and physically unconstrained) off-
shell structures. Naturally, one would expect these differences
to be small at low densities, where the physics is mainly
dominated by L = 0 components. As the density increases,
however, the differences in the higher partial waves start to
show up. In nonperturbative diagrammatic calculations, the
effects of high partial waves can be fed back to low momenta
through the self-consistency procedure. Likewise, relatively
small differences in the phase shifts can have a substantial
impact on the predictions of the EOS at densities even close
to saturation.

III. DEUTERON PROPERTIES

Even though the deuteron only explores the NN potential in
the 3S1-3D1 partial waves, the analysis of the contributions
of the different waves and operatorial components of the
interaction provides a useful insight into the structure of the
interaction [23]. We summarize the information related to
the deuteron in Table I. The first column gives the D-state
probability computed with different NN interactions. Although
PD is not an observable, it provides an indication of the
relative importance of the tensor coupling of the potential.
By construction, the D-state probability of V ′

8 is the same as
that of V18, PD = 5.78%. For V ′

6 the probability decreases by
less than 10%. As expected, PD = 0 for V ′

4, whose deuteron
is a pure S-wave state. We also include the results of an
additional potential, Ṽ6, obtained by removing, without any
readjustment, the spin-orbit components from V ′

8. For Ṽ6, PD

is reduced by almost 20%, indicating the importance of the
spin-orbit components [p = 7, 8 in Eq. (2)] for the 3D1 wave
and thus the ground state of the deuteron. Similar statements
hold for the quadrupole moment of the deuteron, which is an
observable. As such, Qd is reproduced, by construction, with
the original V18 force and the refitted V ′

8 and V ′
6 forces. The
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TABLE I. Deuteron D-state probability PD , quadrupole moment Qd (in fm2), total binding energy, kinetic and potential energy, and their
decomposition in partial waves, for different potentials. All energies are given in MeV.

Force PD (%) Qd E T V TS TD VS VD 2VSD

V18 5.78 0.27 −2.24 19.86 −22.10 11.30 8.56 −3.95 0.77 −18.91
V ′

8 5.78 0.27 −2.24 19.86 −22.10 11.30 8.56 −3.95 0.77 −18.91
V ′

6 5.33 0.27 −2.24 18.70 −20.94 11.38 7.32 −4.68 1.38 −17.64
V ′

4 0.00 0.00 −2.24 11.41 −13.65 11.41 0.0 −13.65 0.0 0.0
Ṽ6 4.64 0.30 −1.46 14.96 −16.42 9.10 5.86 −3.43 1.14 −14.14

lack of tensor components in V ′
4, however, implies a zero value

of Qd . The non-refitted interaction Ṽ6 yields a value which is
about 10% larger than the experimental one.

In columns 3–5, we report the binding energy of the
deuteron and its decomposition into kinetic and potential
terms. All the refitted potentials reproduce by construction
the total binding energy, E = −2.24 MeV. Note that this is
the binding energy obtained only with the strong interaction
components of the potential, that is, when the small electro-
magnetic terms are omitted. These repulsive electromagnetic
terms shift the binding energy to the true experimental value
of E = −2.22 MeV [4]. It is also relevant to note that the
charge-dependent terms of V18 (p = 15, . . . , 18), described
in terms of an isotensor operator, have no contribution in the
isosinglet deuteron state.

It is well known that the deuteron binding energy results
from a cancellation between a large positive kinetic and a
large negative potential energy. For V18 these amount to
T = 19.86 MeV and V = −22.10 MeV, respectively. By
construction, V ′

8 reproduces the same values as V18. For
V ′

6 there is a small variation in T and V because the 3S1

and 3D1 partial waves are not exactly identical to those of
the V18 and V ′

8 potentials. In particular, the kinetic energy
decreases by about 1 MeV. V ′

4 is also able to reproduce the
total binding of the deuteron, but with much smaller kinetic
(and therefore less negative potential) energies. In contrast,
the potential Ṽ6 loses binding energy and also produces very
noticeable differences for the kinetic and potential energies.
In other words, a straightforward elimination of the spin-orbit
components, without further readjustments, has large effects
for the binding energy.

It is also illustrative to separate the contributions of
the 3S1 and 3D1 states to the total kinetic and potential
energies. Assuming that the deuteron is a properly normalized
combination of the 3S1 and 3D1 partial waves, we define the
contributions of the S and D states to the kinetic energy,
TS = 〈3S1|T |3S1〉 and TD = 〈3D1|T |3D1〉, and to the potential
energy, VS = 〈3S1|V |3S1〉 and VD = 〈3D1|V |3D1〉. The latter
also receives a contribution from the 3S1-3D1 mixing, VSD =
〈3S1|V |3D1〉. These contributions are listed, for the different
potentials, in columns 6 to 10 of Table I.

For V18, V ′
8, and V ′

6, the largest contribution to the potential
energy actually comes from the mixing term, VSD . This
accounts for more than 85% of the final value of the potential
energy. As mentioned above, for V ′

4 the deuteron is a pure
S-wave state, and therefore TD , VD , and VSD vanish and the
binding energy is obtained by accumulating a lot of attraction

in VS . In spite of the fact that the spin-orbit components
of V18 and V ′

8 act explicitly only in the 3D1 partial wave,
when these are eliminated without readjustments in Ṽ6, all
the contributions to the binding energy (and not only VD)
are altered. This is attributable to the fact that, owing to the
tensor coupling, the deuteron is obtained nonperturbatively
from a combination of S, D, and mixing matrix elements.
One can therefore say that when the spin-orbit component
is not taken into account, a large change is induced in the
wave function of the deuteron. In a wider picture, these results
illustrate how the elimination of operatorial components can
have a relatively large impact in the binding energy of
nuclear systems. The changes and differences induced by such
elimination become more apparent when different channels
are analyzed separately. While the refitting procedure in the
V ′

n family of potentials seems to cure most deficiencies in the
case of the deuteron, no such analogous procedure has been
implemented in infinite matter. Consequently, one expects that
even refitted potentials have a significant influence on the EOS
of the infinite system.

Alternatively, one can obtain a quantitative estimation of
the different components of the potential by examining their
expectation values in the ground-state wave function of the
deuteron. We have grouped the 18 components into four
different sets: the first four operators (p = 1, . . . , 4), the tensor
components Sij (p = 5, 6), the spin-orbit components L · S
and (L · S)2 (p = 7, 8 and p = 13, 14), and the quadratic
orbital angular momentum components L2 (p = 9, . . . , 12).
The group of charge-dependent terms, p = 15, . . . , 18, does
not contribute to the deuteron, as explained above. For V18, the
results of this decomposition are presented in the first row of
Table II. As expected, the largest contribution corresponds
to the tensor component. All contributions are attractive,
except that proportional to L2, which is slightly repulsive.

TABLE II. Contribution of different components of the potential
to the binding energy of the deuteron. All energies are given in MeV.
See text for details.

Force Central Tensor Spin orbit L2

V18 −4.45 −16.62 −3.75 2.72
V ′

8 −4.45 −16.62 −1.02 0.00
V ′

6 −5.25 −15.69 0.00 0.00
V ′

4 −13.65 0.00 0.00 0.00
Ṽ6 −3.84 −12.58 0.00 0.00
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The spin-orbit contribution is non-negligible and amounts to
17% of the total potential energy.

The second row of Table II shows the results for V ′
8. The

total potential energy, that is, the sum of all the components,
is the same as for V18. However, because the contribution of
the first six operators yield the same result as V18 and the
quadratic orbital angular momentum contribution is zero, the
contribution of the spin-orbit terms is reduced to −1.02 MeV.
In other words, the absence of the repulsive L2 component
is compensated by a smaller attractive contribution of the
spin-orbit components, which decreases to 4.6% of the total
potential energy.

For V ′
6 only the first six operators contribute (row 3 in

Table II). These components are about 1 MeV different from
those in V18 and produce a slightly smaller total potential
energy compared to the full results. As we have discussed
previously, for Ṽ6 there is an important loss of binding energy.
It is interesting to notice the difference between the spin-orbit
contribution provided by V ′

8 (−1.02 MeV) and the expectation
value of the L · S component of V ′

8 in the ground-state wave
function provided by Ṽ6, which amounts to −0.58 MeV.
Obviously, this difference is attributable to the different wave
functions generated by the two potentials. The wave function
associated with Ṽ6 does not contain the spin-orbit correlations
that are generated by solving the Schrödinger equation with
V ′

8. Therefore, the evaluation of the expectation value of
the L · S component of V ′

8 in the wave function provided
by Ṽ6 gives a poor estimate of the spin-orbit contribution
of V ′

8. This suggests that it is necessary to incorporate the
spin-orbit correlations in the wave function to recover the
full contribution. However, the expectation value of the L · S
component of V ′

8 in the ground-state wave function provided
by V ′

6 amounts to −0.77 MeV, which lies in between the above
discussed results. One can interpret that the refitting process
that constrains V ′

6 to reproduce phase shifts and the deuteron
binding energy translates in a wave function closer to the
ground-state provided by V ′

8. Consequently, the expectation
value of the L · S component is closer to the exact value than
the results provided by Ṽ6. Notice, however, that it would
not make sense to add this L · S contribution to the binding
energy because the potential V ′

6 (with no spin-orbit component)
already reproduces by construction the binding energy of
the deuteron. The deuteron results illustrate effectively the
non-negligible significance of spin-orbit effects both on the
binding energy and the wave function.

IV. NUCLEAR EOS IN THE BHF APPROACH

We now proceed to compare the results for the EOS of
SM and NM obtained within the BHF approach for the
family of simplified Argonne potentials described above. The
BHF approach represents the lowest order within the BBG
expansion [7,10]. In this formalism, the ground-state energy
of infinite matter is computed from a diagrammatic expansion,
which is regrouped according to the number of independent
hole lines. Within the BHF approach, the energy is given by
the sum of only two-hole-line diagrams, including the effect
of two-body correlations through the in-medium two-body

scattering G-matrix. This takes into account the effect of the
Pauli principle on the scattered particles and the in-medium
potential felt by each nucleon.

As shown in Refs. [10], the contribution to the energy from
three-hole-line diagrams (which account for the effect of three-
body correlations) is minimized when the so-called continuous
prescription [24] for the single-particle potential is adopted.
This is a strong indication of the convergence of the hole-line
expansion and we have adopted this prescription in our BHF
calculations. It has to be stressed that three or higher hole-
line contributions can be negligibly small only because of the
inclusion of the so-called U-insertion diagrams [7,10], which
is a distinct feature of the BBG method, not present in other
schemes. We would also like to mention that the G-matrix has
been calculated both in r and k space with two independent
numerical codes and an excellent agreement has been found
at all densities. We also remind the reader that no three-body
forces are included in our calculations.

In general, owing to their different off-shell behavior, phase-
shift equivalent potentials might lead to different saturation
curves of nuclear matter. Within BHF, the saturation points of
phase-shift equivalent interactions lie on the so-called “Coester
band,” which provides an empirical correlation between the
saturation energy and density [25]. Quite obviously, potentials
with different phase shifts will also predict different saturation
properties for infinite matter. We see in the following that
a “Coester-like” correlation holds, however, for the different
members of the simplified Argonne family of interactions.

In Fig. 2, we compare the total energies of SM (top panel)
and NM (bottom panel) within the BHF approach for the
different Argonne NN forces [7]. Several striking features
arise from these comparisons. To begin with, one immediately
notices the relatively large differences between the V18 (circles)
and the V ′

8 (squares) results in both cases. This is rather
surprising, especially in view of the close agreements between
phase shift and deuteron results presented earlier. In both SM
and NM, V ′

8 predicts a much more attractive EOS compared
to V18. In contrast, the V ′

6 results (diamonds) are fairly close to
the V18 calculations, in spite of their relatively different phase
shifts and deuteron predictions. The V ′

4 results are relatively
reasonable for NM, where the 3SD1 channel is absent, while
they are clearly unrealistic for SM. As a matter of fact, SM
does not even saturate before ρ = 0.5 fm−3 for this potential.
For a more detailed insight, we refer the reader to Table III,
where the energies of SM and NM at different densities are
listed for the Argonne family of potentials.

Another relevant question associated to the spin-orbit
coupling arises when comparing the results predicted by the
V ′

6 and Ṽ6 potentials. V ′
6 has been constructed specifically

by modifying only the central potential in the T = 0, S = 1
states [4]. As a consequence, both potentials are identical in
the T = 1 partial waves and therefore they predict the same
EOS for pure NM (see bottom panel of Fig. 2). The effect
of correcting the central T = 0, S = 1 term is only seen in
SM and corresponds to a rather density-independent gain of
binding of a few MeV with respect to the Ṽ6 results (see top
panel of Fig. 2).

The BHF approach is almost unique within all the many-
body approaches, in the sense that the total energy of the
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FIG. 2. (Color online) Energy per particle for nuclear (top panel)
and neutron (bottom panel) matter as a function of density calculated
in the BHF approach with the different Argonne potentials.

system can be linked to the partial wave expansion of the
in-medium NN interaction. This provides an interesting insight
into the impact of different partial waves on the EOS and
has motivated us to use BHF as a reference calculation. An
analysis of the different partial wave contributions to the total
energy at ρ = 0.3 fm−3 is listed in Table IV for SM and
NM. In SM, the largest difference between the V18 and V ′

8
results arises from the 3SD1 wave (4.8 MeV), even though the
phase shifts in these coupled channels are practically identical.
We have verified that this effect is actually attributable to the
different single-particle potentials. The differences in higher-
order partial waves thus influence, via the single-particle states,
the lowest partial waves. Other substantial contributions to the
difference between V18 and V ′

8 stem from the 1S0 (1.3 MeV),
the 1D2 (0.8 MeV), and the 3D2 (0.9 MeV) states.

Somewhat surprisingly, the total energy of V ′
6 is actually

closer to that of V18, even though the individual partial
wave contributions are rather different. For instance, the 3PF2

energy difference is very large (−12.3 MeV), in agreement
with the unrealistic phase shifts of V ′

6 in this channel. This
large discrepancy, however, is canceled by opposite (and also
relatively large) differences in the 3P0 and 3P1 channel. We
specify the sum of all 3P states in the fifth row of Table IV.

This shows that, in the case of V ′
6, all 3P waves amount to

a difference of only −3.3 MeV in the total energy. Together
with the opposite-sign differences in the 3SD1 (3.5 MeV) and
3D2 channels (0.8 MeV), the total energy eventually becomes
close to the V18 value.

As we have just discussed, the binding energies (and
saturation curves) of SM obtained with the V ′

8 and the V ′
6

potentials are rather different. These large differences are
associated with the phase-shift nonequivalence of the two
interactions. Note, in particular, that the largest differences
between the two sets of results manifest themselves in the
channels where the two potentials are actually not equivalent
(i.e., where V ′

6 has been modified with respect to V ′
8). The

different mixing of the 3SD1 channels induces a difference
of 1.3 MeV. Once again, even though the 3P individual
contributions are rather different, the overall sum leads to
a relatively small difference of 4.1 MeV. This is the largest
contribution to the total binding energy difference of 6.9 MeV.
Because the energies associated with V ′

8 are more attractive,
a higher saturation density is found in comparison with V18

and V ′
6. We conclude that an intricate series of compensations

leads to closer agreement between V ′
6 and V18 than between V ′

8
and V18. This is clearly misleading in view of the insufficient
phase shift reproduction of V ′

6 compared to V ′
8.

A similar issue is observed in the partial wave decompo-
sition of the V ′

4 results. The T = 1 partial waves disagree
substantially on a one-by-one basis (in some cases by more
than 10 MeV), but the overall sum of the 3P waves differs
from the V18 results by a smaller number, −6.8 MeV. The
most extreme difference is obtained, as expected, in the 3SD1

channel, which is about 20 MeV more attractive for V ′
4 than

for the rest of the potentials. Ultimately, it is this extreme
additional binding, caused by the lack of partial-wave coupling
and the extreme readjustment of the 3D1 channel, that drives
the nonsaturating behavior of V ′

4.
The partial-wave differences in NM (see right columns in

Table IV) also carry interesting information. On a channel-
by-channel basis, the comparison between V18 and V ′

8 results
is more favorable than that between V18 and V ′

6. Yet, once
again, the discrepancies are reduced in the overall sum, so
that the V ′

6 final results are closer to V18. At ρ = 0.3 fm−3,
NM is about 10 MeV more bound with the V ′

8 than with
V ′

6. This difference is entirely attributable to the spin-orbit
component. In particular, the phase-shift nonequivalence in
the 3PF2 channel is evidenced by a difference of more than
20 MeV. Similarly, the V ′

4 results for NM are only slightly more
repulsive than the others. The partial-wave decomposition
suggests that this is caused by to a reshuffling of partial wave
contributions which would, separately, deviate substantially
from more realistic results.

Finally, we would like to comment on the specific effect
of the spin-orbit components in a neutron-rich medium. First,
notice that in NM the differences between V ′

6 = Ṽ6 and V ′
8

are only attributable to the suppression of the spin-orbit com-
ponents in V ′

8, as no other readjustments are applied. Clearly,
the elimination (rather than the readjustment) procedure for
spin-orbit components in the interaction does not have a small
effect in the EOS of NM, as evidenced by the large differences
between the V ′

6 and V ′
8 results in Fig. 2.
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TABLE III. Energies per particle (in MeV) for SM and NM at different densities and for different interactions calculated within the BHF
approximation.

ρ (fm−3) V18 V ′
8 V ′

6 V ′
4

SM NM SM NM SM NM SM NM

0.03 −6.2 5.0 −6.3 4.9 −6.1 5.3 −7.4 5.6
0.05 −9.0 6.7 −9.3 6.6 −8.8 7.3 −11.2 7.8
0.10 −12.6 9.7 −13.7 9.2 −12.2 11.2 −17.7 12.2
0.17 −15.7 14.0 −18.4 12.4 −15.4 16.7 −26.4 18.2
0.20 −16.4 16.1 −20.0 13.8 −16.2 19.2 −29.7 20.9
0.30 −16.0 25.3 −23.7 19.4 −17.0 28.9 −39.2 31.5
0.40 −11.9 37.8 −25.5 26.2 −15.2 40.5 −46.5 44.0
0.50 −4.6 53.6 −26.0 33.9 −11.5 53.9 −51.8 58.4

One might be tempted to attribute the small NM differences
between the V ′

6 and V18 interaction to (i) small spin-orbit
components in the NN interaction or (ii) small spin-orbit
correlations in the medium. As we have seen, however,
the partial wave expansion suggests that this is a rather
fortuitous coincidence. First, both potentials are not truly
phase-shift equivalent. Second, the in-medium corrections are
quite different, as evidenced by the different partial wave
components of the energy. All in all, our findings suggest
that spin-orbit components should not be arbitrarily eliminated
in ab initio calculations. Extending the argument to V ′

8, one
could say the same for the remaining missing operators in the
interaction. Their effects are relevant for the EOS, especially
at high densities, and need to be dealt with carefully.

A similar reasoning can be extended to SM. The results
provided by Ṽ6 (without readjusting the potential) and V ′

6
(with readjustment) are rather close in that case, indicating
that the readjustment in the central T = 0, S = 1 channel is
relatively small. One can therefore say that the differences
between the SM V ′

6 and V ′
8 results are mainly attributable to

the suppression of the spin-orbit component in the interaction
itself and they give rise to rather large corrections. In other
words, the suppression of the spin-orbit component does not
have a small effect on the EOS. The fact that the V18 and V ′

6 SM
results are relatively close at low densities is arising only from a

cancellation effect in different partial waves. This can hardly be
ascribed to a smallness of spin-orbit interactions or in-medium
correlations. Let us point out also that the situation for the
EOS is different to that of light nuclei, where V ′

6, V ′
8, and V18

predict, in the framework of GFMC, somewhat similar spectra
and total energies [4]. It is rather difficult to find a simple corre-
spondence between the EOS differences presented here and the
GFMC for finite nuclei. One can argue, however, that at the typ-
ically low densities corresponding to finite nuclei, the nuclear
matter results provided by the different phase-shift equivalent
potentials are quite close to each other. Hence, one would not
expect to find large differences in finite nuclei calculations,
even though they might be significant at larger densities.

V. COMPARISON WITH OTHER MANY-BODY METHODS

Several approaches have been devised over the decades
to treat the nuclear matter many-body problem. Critical
comparisons between the approaches can help us learn how
correlations, produced by different pieces of the original
NN potentials, are treated within each scheme [14,26]. The
ultimate goal of these comparisons should not be to find a
“good” or a “bad” EOS, but rather to understand and quantify
the differences among them. Eventually, a well-founded

TABLE IV. Partial-wave decomposition of the binding energy per particle (in MeV) of SM and NM at ρ = 0.3 fm−3 for different potentials.
The total sum comprises partial waves up to J = 8. The row in brackets contains the partial sum of the 3P0,3P1,3PF2 states.

State SM NM

V18 V ′
8 V ′

6 V ′
4 V18 V ′

8 V ′
6 V ′

4

T = 1
1S0 −21.9 −23.2 −22.4 −22.1 −20.4 −22.4 −20.8 −20.5
3P0 −5.0 −5.1 −9.1 0.6 −4.2 −4.4 −11.4 1.4
3P1 20.2 19.9 15.6 1.8 31.5 30.8 22.6 4.2
3PF2 −16.5 −16.6 −4.2 3.1 −25.4 −25.7 −3.6 7.1
( 3P∗ −1.3 −1.8 2.3 5.5 1.9 0.7 7.6 12.7 )
1D2 −5.9 −6.7 −6.7 −6.7 −10.0 −12.1 −12.1 −12.0

T = 0
3SD1 −20.4 −25.2 −23.9 −43.5
1P1 7.3 7.2 7.3 7.3
3D2 −8.0 −8.9 −8.8 −4.8
All −16.0 −23.7 −17.0 −39.2 25.3 19.4 28.9 31.5
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FIG. 3. (Color online) Energy per particle of SM as a function of
density calculated with several many-body approaches for different
Argonne potentials: V ′

4 (top left), V ′
6 (top right), V ′

8 (bottom left), and
V18 (bottom right).

comparison might also delineate the theoretical uncertainties
of present-generation EOSs.

The only way to carry out a meaningful comparison
between many-body approaches is by starting from the same
underlying NN interaction. While, in principle, one would like
these to be phase-shift equivalent and as realistic as possible,
some many-body approaches are currently limited by the
operatorial structure of the NN force. FHNC and AFDMC,
in particular, are coined to treat Argonne-type interactions,
involving the sum of products of local radial functions and
operators. Some parts of the full V18 interaction cannot yet be
fully included in these many-body schemes. To be able to com-
pare between many-body methods, we perform calculations
with different approaches with the same family of underlying
NN potentials. By progressively adding components to the NN
force, we also hope to elucidate the role of such operators in
the different many-body treatments of the EOS.

Results are summarized in Figs. 3 and 4, which represent
the energy per particle as a function of density for both SM and
NM, respectively. The four panels in each figure give results
for different NN interactions. Within each panel, BHF results
are shown as circles; SCGF as squares; FHNC as diamonds;
AFDMC as up triangles; and BBG as down triangles. In the
case of NM we also show available GFMC (right triangles)
results [5] for the V ′

6 and V ′
8 potentials. Let us first comment

the SM results and move later to NM results.

A. Symmetric nuclear matter

1. BBG

We start by discussing the SM results obtained with the
BBG approach at the three-hole line level. Three-hole line
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FIG. 4. (Color online) Same as Fig. 3, but for NM.

contributions are especially small when using the continuous
prescription for the single-particle spectrum [10]. Using the
gap prescription, the BBG value converges also to the same
results [10,26]. In this case, however, the three-hole line
contribution is sizable and therefore the lowest-order BHF
results cannot be taken as a good estimation of the energy.
We note here that the BBG results shown in this work have
been calculated with the so-called K-matrix [7] whereas, as
has been said before, the BHF ones have been obtained with
the G-matrix. We have checked, however, that at the BHF level
the differences between G-matrix and K-matrix calculations
are negligible for both SM and NM and all the potentials.
Only a difference of about 2 MeV is found in the case of
the V ′

8 potential for both SM and NM at the highest density
considered.

We confirm the good agreement between our continuous
choice BHF and the BBG calculations for all the NN
interactions considered. The results differ by a few MeV at
large density, indicating, as already mentioned, a rather good
convergence of the hole-line expansion. We should mention,
however, that the differences between the BHF and BBG
results are even smaller when the BHF is done with the
K-matrix instead of the G-matrix. Note that the three-hole line
contribution can be either attractive or repulsive, depending
on the interaction under consideration. In particular, it is
minimal for the most realistic potential, V18 (bottom right
panel). The BBG predictions for V ′

8 represent minor repulsive
corrections to the BHF results and both lie well below the other
approaches. Note, in particular, that nuclear matter saturates
beyond 0.5 fm−3 in the BHF case. As explained earlier, this is
attributable to the partial wave contributions associated with
spin-orbit and tensor forces, which are particularly strong for
this potential. This is confirmed by comparison with the Ṽ6

results in the same panel, in which these forces are removed
and a very strong reduction of binding is observed.
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In the BHF approach the single-particle potential is
calculated by means of a self-consistent procedure. If one
identifies the chemical potential as the single-particle energy
at the Fermi momentum, then the Hughenholtz-Van Hove
theorem is violated. The theorem implies, in particular, that
at saturation the chemical potential should equal the energy
per particle. This type of requirement is typically violated by
about 20 MeV [27,28]. However, it has to be kept in mind
that in the BBG expansion the single-particle potential is an
auxiliary potential, used to speed up the rate of convergence
in the energy expansion. The chemical potential should
be extracted from the density derivative of the energy (or free
energy in general). In this case the Hughenholtz-Van Hove
theorem is automatically fulfilled (see Ref. [29]).

2. SCGF

Another way to approach the many-body problem is
through the SCGF method [9]. In this case, a diagrammatic
expansion is employed to solve for the in-medium one-body
propagator, rather than for the energy of the system. For
infinite matter, the method is conventionally applied at the
ladder approximation level. With respect to the G-matrix, the
in-medium ladder interaction presents two major differences.
First, hole-hole intermediate states are considered in addition
to the typical BHF particle-particle propagators. Second, these
intermediate propagators are fully dressed, that is, expressed in
terms of spectral functions rather than through single-particle
energies only.

At a formal level, the comparison between the BHF and the
SCGF approaches is not straightforward. Even though both
approaches arise from a diagrammatic expansion, the infinite
subsets of diagrams considered in both approaches are not the
same. Moreover, the summation procedures are also somewhat
different, with the Dyson equation being used in SCGF to
dress all internal propagators. Whereas the BHF formalism in
the continuous choice can be derived from the ladder SCGF
formalism after a series of approximations [30], this is not the
case for the full BBG expansion.

In principle, if both BBG and SCGF were carried out to
all orders, they should yield identical results. BBG theory,
however, is an expansion in powers of density (or hole-lines),
and the three-hole line results seem to indicate that it converges
quickly [10]. The error in the SCGF expansion is more difficult
to quantify, as one cannot directly compute (or even estimate)
the values for the diagrams of other structural types. We show
a few representative diagrams for the perturbation expansion
of the energy in Fig. 5. Dashed (continuous) lines represent
interactions (fermions). Up to second order, that is, diagrams
(a) and (b), both approaches include the same diagrammatic
contributions. The only discrepancies at this level would arise
from the (potentially self-consistent) treatment of internal
lines. Within the SCGF approach, this would automatically
give rise to diagrams such as (c), which, in BBG theory,
are considered separately. At higher orders, ring-diagram
iterations, as in diagram (e) or (h), would be included in the
three-hole line BBG expansion, but not in the SCGF ladder
resummation. Similarly, diagram (i) represents a third-order

FIG. 5. Diagrams in the perturbation expansion of the total
energy. Only direct terms are shown for simplicity.

bubble diagram that is not explicitly incorporated in the SCGF
theory. Diagram (f) is a typical hole-hole scattering process
included in SCGF and absent in BHF.

It is well established that the differences between SCGF and
BHF result in an overall repulsive effect to the binding energy
of both SM [30–32] and NM [11], which is mainly attributable
to the inclusion of hole-hole propagation. Phase-space ar-
guments suggest that this repulsive effect should increase
with density. The dressing of intermediate propagators is
capital for the thermodynamical consistency of the method.
The Hugenholtz-Van Hove theorem is well fulfilled in these
calculations. At the technical level, we would like to point
out that the SCGF results presented here have been obtained
as zero-temperature extrapolations of finite-temperature cal-
culations. The details of the extrapolation procedure will be
presented elsewhere [33]. Pure zero-temperature calculations
have been obtained using different numerical techniques by
the Ghent [31] and Krakow [12] groups.

Compared to BHF, the repulsive effects within the SCGF
approach are quite sizable in SM, especially when the tensor
component is considered. For the case of V18 (bottom right
panel in Fig. 3), for instance, the saturation point shifts from
[0.25 fm−3,−16.8 MeV] for BHF to [0.17 fm−3,−11.9 MeV]
for SCGF. While the shift seems to go towards the right
saturation density, the value of the SCGF saturation energy
is quite high. A similar tendency (lower saturation density,
quite less binding at saturation) is also found for V ′

6 and V ′
8, in

agreement with the findings of Ref. [31]. The oversimplified
V ′

4 does not seem to saturate within the SCGF approach either.
Note that, for this potential, the results are very close to BHF,
which could suggest that, if tensor and spin-orbit correlations
are not present, the many-body problem is under better control
(see also the top left panel in Fig. 3).

In the SCGF approach, the total energy is usually obtained
through the Koltun sum rule [9]. Even though this gives direct
access to the total true kinetic and potential energies, the sum
rule cannot be explicitly analyzed in terms of partial waves, as
we have done for BHF. It is therefore difficult to pin down the
observed differences to specific terms in the NN interaction.
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Alternative ways of computing the energy, as those suggested
in Ref. [12], could provide such a partial wave decomposition.

3. FHNC

Several approaches based on the variational principle
have also been devised to treat the nuclear matter problem
[15]. These are rather different from the methods based on
nonperturbative sums of diagrams presented earlier, but the
basic principle is rather simple. The expectation value of the
Hamiltonian,

E = 〈�T |H |�T 〉
〈�T |�T 〉 , (4)

in a trial wave function,

�T =
⎛
⎝∏

i<j

Fij

⎞
⎠

sym

φFermi−Gas, (5)

provides an upper bound to the exact energy. The trial wave
function is built by means of a correlation operator,

Fij =
∑

p

f p(rij )Op

ij , (6)

that describes the correlations induced by the NN interaction.
In principle, this correlation operator should have the same
operatorial structure as the interaction [see Eq. (1)]. In practice,
though, this is generally not the case, because the calculation
of the expectation value for the full Hamiltonian is technically
very involved.

The total energy can be evaluated in a diagrammatic cluster
expansion with the aid of the Fermi hypernetted chain/single
operator chain (FHNC/SOC) integral equations [14], which
sum Meyer-type diagrams containing up to an infinite number
of nucleons. The sum is, however, incomplete, as some
topologies and operatorial structures are difficult to include
within infinite summations. For instance, the elementary
diagrams are generally not included in FNHC calculations.
Similarly, the spin-orbit correlations cannot be chained and
are usually evaluated at the three-body cluster level. On
top of this variational upper bound to the energy, one can
add second-order perturbative corrections (�ECBF) calculated
in the framework of the correlated basis function (CBF)
theory [15].

The FHNC results for SM with V ′
8 and V ′

6 are presented
in the corresponding panels of Fig. 3. For our comparisons,
we use the FHNC calculations reported in Refs. [16,19].
There is no clear tendency with respect to our BHF reference
calculations. Whereas the V ′

6 FHNC results are more attractive
than the BHF calculations, a significantly repulsive behavior is
observed for V ′

8. Consequently, the saturation points are quite
different to those of BHF. For V ′

6, the FHNC results saturate
around [0.39 fm−3, −20.1 MeV], while the V ′

8 calculation
saturates at [0.35 fm−3, −17.6 MeV].

If the variational procedure had been exactly performed,
the FHNC results should provide an upper bound to the
energy per particle. However, as pointed out in Ref. [16],
the uncertainties and difficulties in the treatment of the

spin-orbit correlations in the FHNC formalism have hindered
the inclusion of spin-orbit correlations in the wave function,
that is, the underlying NN interaction and correlation function
are not treated on an equal footing. A widely debated question
is if the variational character of FHNC results is preserved after
the approximations involved in the calculational procedure.
Notice also that the inclusion of 2 particle-2 hole corrections
calculated at second order in the framework of the CBF
formalism would give an additional attraction to the FHNC
results [18].

Contrary to what we have observed within BHF, the FHNC
results seem to be quite independent of the underlying interac-
tion. This has been attributed to the smallness of the spin-orbit
components of the NN interaction as well as the cancellation of
spin-orbit correlations in the in-medium wave function. These
arguments stem from comparisons with AFDMC results [16].
The impossibility to switch off spin-orbit correlations in BHF
hinders a direct comparison with the V ′

8 FHNC calculations,
where the spin-orbit correlations have been omitted. As in
the case of the deuteron, to have a quantitative idea of the
contribution of the spin-orbit components, we report BHF
results for the Ṽ6 interaction. The EOS of SM with Ṽ6 is
shown in the bottom left panel of Fig. 3. As explained earlier,
the difference between the V ′

8 and Ṽ6 results is caused only
by the spin-orbit components in the original interaction. The
differences turn out to be rather large and therefore this
comparsion, although not conclusive, does not support the
idea that switching off spin-orbit correlations produces small
changes in the energy. In any case, FHNC calculations with a
more elaborate treatment of the spin-orbit correlations would
be highly desirable.

4. QMC

Quantum Monte Carlo (QMC) methods are very successful
in describing the ground state of an infinite system of bosons,
such as atomic liquid 4He [34], or fermions, such as liquid 3He
[35]. Additional efforts have allowed the extension of the QMC
method to nuclear systems, which have more complicated
interactions and correlation structures. However, the accuracy
of QMC in its different versions, be it AFDMC [6] or GFMC
[5], is limited by the fermion sign problem [36]. Up to now, the
safest way to deal with this problem in nuclear systems is to
keep the sample walk within a fixed nodal surface. This is an
approximation and, consequently, a potential limitation of the
QMC approach. AFDMC and GFMC differ in the way they
treat the spin and isospin degrees of freedom. AFDMC samples
the spin-isospin states by introducing Hubbard-Stratonovich
auxiliary fields, whereas GFMC sums them completely. This
fact limits in a drastic way the number of nucleons that GFMC
can consider, generally up to about 16. The auxiliary field
strategy allows AFDMC to efficiently sample spin-isospin
correlations in systems with a sufficient number of nucleons
(N = 114) to ensure that the finite size corrections are small.
A recent comparison has demonstrated that both methods give
very close results for neutron drops with N � 16 [37].

In spite of its recent progress, the AFDMC method is
still not able to work with the full V18 potential. Technical
problems, again mainly associated with the spin-orbit structure
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of the interaction and the trial wave function, are the reason for
the lack of AFDMC results for SM with potentials containing
spin-orbit components (V18 or V ′

8). We use the most recent
version of the AFDMC results in our comparisons [20]. V ′

4
results are rather similar to our BHF reference calculation up to
0.2 fm−3, but the AFDMC predictions become more attractive
as density increases. The AFDMC results for SM with V ′

6,
as shown in the top right panel of Fig. 3, are quite close to
the FHNC predictions. Note, for instance, that AFDMC with
V ′

6 saturates around [0.37 fm−3, −18.8 MeV]. However, the
agreement between both approaches should not be taken as a
final consistency check.

Let us finally comment on the results obtained with V ′
4.

As an over-simplistic interaction without a tensor component,
V ′

4 yields an unrealistic EOS for SM which does not saturate
for any of the many-body approaches discussed here. This
potential, however, can be used for benchmarking purposes.
As a matter of fact, in spite of its limitations, the V ′

4
results are useful, as we find a large degree of agreement
among the different many-body approaches. This confirms
the long accepted notion that, in the nuclear matter case, the
correlations induced by spin-orbit and tensor components of
the interaction are probably the basis of the large differences
when comparing different many-body methods. As a matter
of fact, the antisymmetrization procedure in NM eliminates
part of these components (particularly, the tensor coupling)
and, as we see in the following, this results into a much closer
agreement among all the many-body calculations.

B. Neutron matter

The NM results for different NN interactions and many-
body approaches are presented in Fig. 4. Overall, it is fair to
say that the differences between the different potentials are
significantly smaller for NM than for SM. As just mentioned,
we attribute this similarity to the fact that, for a fully
isospin-polarized system, the number of active partial waves
is reduced. This is particularly true for the 3SD1 coupled wave,
which is inactive in this system. Consequently, the differences
between potentials are further reduced. Moreover, the increase
of forbidden partial waves reduces the presence of tensor
correlations and presumably facilitates the solution of the
many-body problem.

For V ′
4 (top left panel), all reported approaches give quite

similar results. This supports the idea that, when the potential
is just central, a good agreement between the different many-
body techniques is found. Results for low-density NM [38,39],
where the interaction is mainly dominated by the 1S0 partial
wave [40], seem to confirm this idea as it can be seen, for
example, in Fig. 1 of Ref. [41]. Let us in particular stress the
fact that, up to ρ = 0.3 fm−3, the results of all the different
approaches fall within a rather narrow window of less than
5 MeV.

When the tensor component of the force is taken into
account, as in V ′

6 (see top right panel), the differences up
to ρ = 0.3 fm−3 are still relatively small. At this density, we
find eBHF = 28.6 MeV, eBBG = 26.9 MeV, eSCGF = 31.2 MeV,
eAFDMC = 25.5 MeV, and eFHNC = 25.0 MeV. In other words,

the inclusion of the tensor component increases the uncertainty
(measured as the spread predicted by these calculations) in
the many-body calculations by 1–2 MeV. Note that, however,
a broader discrepancy is observed at high densities, with
FHNC lying below all the other approaches. In general, SCGF
provides the more repulsive results. As mentioned earlier,
V ′

6 and Ṽ6 produce the same results for NM because the
readjustment of the potential does not affect the NM partial
waves.

Because the results for V ′
6 and Ṽ6 are the same for NM,

the differences between V ′
8 and V ′

6 give a direct measure of
the spin-orbit contribution in the NM channels where it is
active. The incorporation of the spin-orbit components in V ′

8
produces an overall attraction with respect to the V ′

6 results,
apart from FHNC. The most attractive variation corresponds
to BHF, while the SCGF, FHNC, and AFDMC approaches
stay rather close to their V ′

6 counterparts at all densities. Note
that also GFMC results seem to have a stronger dependence
on the underlying interaction, and that they are in good
agreement with the BBG ones. At ρ = 0.3 fm−3, we find
eBHF = 18.3 MeV, eBBG = 20.4 MeV, eSCGF = 24.8 MeV,
eAFDMC = 24.7 MeV, and eFHNC = 26.4 MeV. The spread
in these results has increased substantially compared to
the simpler potentials. Again, the differences increase with
density. Notice, however, that in this case the FHNC results
stay above all the other methods for all densities, whereas for
V ′

6 this approach provided the most attractive results.
We would like to stress once again that the spin-orbit

contribution in the NN interaction produces a sizable con-
tribution for the NM BHF EOS with respect to V ′

6. This is
in contrast to the small effect observed in the AFDMC or
the FHNC methods. For these two methods one should notice
that spin-orbit correlations (and also the tensor ones in the
AFDMC case) are not included in the trial wave function,
although the AFDMC allows for their full generation in the
diffusion process.

The results for V18 are only available for the three
nonperturbative diagrammatic approaches, BHF, SCGF, and
BBG. The agreement between them is, in general, rather
good. At 0.3 fm−3, for instance, we find eBHF = 25.4 MeV,
eBBG = 25.2 MeV, and eSCGF = 29.4 MeV. This represents a
small spread in values compared with the differences we have
observed in SM. One should keep in mind that these differences
increase with density. Therefore, as a general remark we can
conclude that in NM the change of the EOS with respect to the
BHF results for both SCGF and BBG is less important than in
SM. This is particularly true for the V ′

4 and V ′
6 potentials. For

the V ′
8 potential, larger differences are observed between these

three approaches even in NM. In all cases, the SCGF method
produces the more repulsive EOS.

VI. CONCLUSIONS

By performing calculations of the energy per particle for
nuclear and NM within different many-body approaches, we
have investigated the properties of the EOS as obtained with a
family of frequently used Argonne potentials. The many-body
approaches we have used are the BHF, the BBG approach up
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to third order in the hole-line expansion, the SCGF method,
the AFDMC, and the FHNC. We have analyzed critically the
origin of underlying uncertainties in these calculations. The
subtraction and refitting procedure of different operatorial
structures, inherent in the family of Argonne NN interactions
used in the present paper, has provided us with substantial
insight.

At the phase shift and deuteron levels, we find that already
the V ′

6 potential produces fairly large deviations relative to the
original V18 model. While at the two-body level V ′

8 is almost
a clone of V18 for S and P partial waves, we have found
that, when included in many-body calculations, it produces
relatively large differences. These discrepancies are driven by
the phase-shift differences in higher partial waves as well as
by off-shell effects. The V ′

8 NN interaction should be regarded
critically in emulating V18 when used at high densities in high-
precision applications.

The overall infinite-matter binding energies obtained with
the V ′

6 interaction are actually closer to the V18 results, in spite
of the unsatisfactory reproduction of the P -wave phase shifts.
We believe that this agreement is, however, attributable to an
artificial reshuffling of different partial wave contributions.
To support this claim, we have presented the partial wave
decomposition of the total energy in BHF calculations,
which has indeed confirmed an overall cancellation of larger
differences in the total energy. In the T = 1 channel, this
potential is not readjusted for the missing spin-orbit compo-
nent, which otherwise produces fairly important contributions
to the binding energy. It might well be that microscopic
properties, other than the EOS, are also affected by these large
discrepancies.

Finally, while the V ′
4 model is clearly unrealistic and should

only be used for benchmarking purposes, we have found that

it is at this level that the different many-body approaches agree
more. This confirms the long-accepted hypothesis that the
tensor (and spin-orbit) components of the interaction and their
in-medium treatment are at the heart of most of the observed
discrepancies. Overall, one needs to consider these with more
attention before drawing more definite conclusions. Studies
such as the one presented here help us in quantifying the uncer-
tainties in state-of-the-art predictions of the EOS, originating
either from the microscopic interaction or the many-body
theory. Only a thorough understanding of these uncertainties
will allow us to provide a well-founded connection between
the physics of neutron stars, the fundamental strong interaction
acting on its constituents, and the many-body correlations at
play.
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