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Phase diagram of dilute nuclear matter: Unconventional pairing and the BCS-BEC crossover
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We report on a comprehensive study of the phase structure of cold, dilute nuclear matter featuring a 3S1-3D1

condensate at nonzero isospin asymmetry, within wide ranges of temperatures and densities. We find a rich phase
diagram comprising three superfluid phases, namely, a Larkin-Ovchinnikov-Fulde-Ferrell phase, the ordinary
BCS phase, and a heterogeneous, phase-separated BCS phase, with associated crossovers from the latter two
phases to a homogeneous or phase-separated Bose-Einstein condensate of deuterons. The phase diagram contains
two tricritical points (one a Lifshitz point), which may degenerate into a single tetracritical point for some degree
of isospin asymmetry.
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Introduction. Fermionic BCS superfluids, which form
loosely bound Cooper pairs at weak coupling, undergo a tran-
sition to the Bose-Einstein condensate (BEC) state of tightly
bound bosonic dimers, once the pairing strength increases
[1,2]. This behavior has been confirmed in experiments on
cold atomic gases, where the interactions can be manipulated
via the Feshbach mechanism [3,4]. In isospin-symmetric
nuclear matter, the transition from the BCS to the BEC state
of the 3S1-3D1 condensate may occur upon dilution of the
system, in which case the asymptotic state is a Bose-Einstein
condensate of deuterons [5–12]. Isospin asymmetry, induced
by weak interactions in stellar environments and expected
in exotic nuclei, disrupts isoscalar neutron-proton (np) pair-
ing, since the mismatch in the Fermi surfaces of protons
and neutrons suppresses the pairing correlations [13]. The
standard Nozières-Schmitt-Rink theory [2] of the BCS-BEC
crossover must also be modified, such that the low-density
asymptotic state becomes a gaseous mixture of neutrons and
deuterons [14]. The 3S1-3D1 condensates can be important
in a number of physical settings: (i) Low-energy heavy-ion
collisions produce large amounts of deuterons in final states
as putative fingerprints of SD condensation [6]. (ii) Large
nuclei may feature spin-aligned np pairs, as evidenced by
recent experimental findings [15] on excited states in 92Pd;
moreover, exotic nuclei with extended halos provide a locus
for n-p Cooper pairing. (iii) Directly relevant to the parameter
ranges covered in the present study are the observations that
supernova and hot proto-neutron-star matter at subsaturation
densities have low temperature and low isospin asymmetry
and that the deuteron fluid is a substantial constituent [16,17].

Two relevant energy scales for the problem domain under
study are provided by the shift δμ = (μn − μp)/2 in the
chemical potentials μn and μp of neurons and protons from
their common value μ0 and the pairing gap �0 in the 3S1-
3D1 channel at δμ = 0. With increasing isospin symmetry,
i.e., as δμ increases from zero to values of order �0, a
sequence of unconventional phases may emerge. One of
these is a neutron-proton condensate whose Cooper pairs
have nonzero center-of-mass (CM) momentum [10,18,19];
this phase is the analog of the Larkin-Ovchinnikov-Fulde-

Ferrell (LOFF) phase in electronic superconductors [20,21].
Another possibility is phase separation into superconducting
and normal components, proposed in the context of cold atomic
gases [22]. At large isospin asymmetry, where 3S1-3D1 pairing
is strongly suppressed, a BCS-BEC crossover may also occur
in the isotriplet 1S0 pairing channel, notably in neutron-rich
systems and halo nuclei [23–30].

Our main objective is to combine the ideas of uncon-
ventional 3S1-3D1 pairing and the BCS-BEC crossover in a
model of isospin-asymmetric nuclear matter and construct a
phase diagram for superfluid nuclear matter over wide ranges
of density, temperature, and isospin asymmetry, while also
including non-BCS pairings. By doing so, we advance the
computational treatment of dilute hadronic matter along sev-
eral lines: (i) The BCS-BEC crossover in isospin-asymmetric
systems, studied previously in Ref. [14], is extended to
include a phase with broken spatial symmetry and a spatially
symmetric but heterogeneous phase. (ii) We extend the earlier
studies [10,18,19] of the nuclear LOFF phase to the low-
density regime and show that this phase is succeeded by a
less dense heterogeneous phase before a transition to the BEC
regime occurs. (iii) We provide a treatment of a heterogeneous
(phase-separated) neutron-proton condensate in the context
of 3S1-3D1-paired nuclear matter. Finally, we observe that
the model explored here belongs to the class of imbalanced
fermionic systems that has received wide attention in the
contexts of imbalanced ultracold fermionic gases and color
superconductivity in dense, cold QCD [31].

Theory. The Green’s function of the superfluid, written in
the Nambu-Gorkov basis, is given by

iG12 = i

(
G+

12 F−
12

F+
12 G−

12

)
=

( 〈ψ1ψ
+
2 〉 〈ψ1ψ2〉

〈ψ+
1 ψ+

2 〉 〈ψ+
1 ψ2〉

)
, (1)

where G+
12 ≡ G+

αβ(x1, x2), etc., x = (t, r) denotes the continu-
ous temporal-spatial variables, and Greek indices label discrete
spin and isospin variables. Each operator in Eq. (1) can be
viewed as a bispinor, i.e., ψα = (ψn↑, ψn↓, ψp↑, ψp↓)T , where
the internal variables ↑,↓ label a particle’s spin, and n, p

its isospin. The matrix propagator obeys the familiar Dyson
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equation, which has the formal solution(
G −1

0,13 − �13
)
G32 = δ12, (2)

in terms of the matrix self-energy �, where summation and
integration over repeated indices is implicit. Equation (2) is
advantageously transformed into momentum space, where it
becomes an algebraic equation. For our purposes, translational
invariance cannot be assumed, so we proceed by defining
relative and CM coordinates r̃ = (x1 − x2) and R = (x1 +
x2)/2 and Fourier transforming with respect to the relative
four-coordinate and CM three-coordinate R. The associated
relative momentum is denoted below by k ≡ (ikν, k) and
the three-momentum of the CM is denoted by Q. The zero
component of the vector k takes discrete values kν = (2ν +
1)πT , where ν ∈ Z and T is the temperature. Thus the Fourier
image of Eq. (2) is written as[

G0(k, Q)−1 − �(k, Q)
]
G (k, Q) = 18×8. (3)

The normal propagators for the particles and holes are
diagonal in both spaces, i.e., (G+,G−) ∝ δαα′ ; hence the
off-diagonal elements of G −1

0 are zero. Writing out the non-
vanishing components in the Nambu-Gorkov space explicitly,
we obtain [G0(ikν, k, Q)−1]11 = −[G0(−ikν, k,−Q)−1]22 =
G−1

0 (ikν, k, Q), where

G0(k)−1 = diag(ikν − ε+
n↑, ikν − ε+

n↓, ikν − ε+
p↑, ikν − ε+

p↓)

(4)

with ε±
n↑ = ε±

n↓ = ES − δμ ± EA and ε±
p↑ = ε±

p↓ = ES +
δμ ± EA. Here ES = (Q2/4 + k2)/2m∗ − μ̄ and EA =
k · Q/2m∗, with μ̄ ≡ (μn + μp)/2. The effective mass m∗
is defined in the usual fashion in terms of the normal self-
energy, bare mass m, and Fermi momentum pF , i.e., m/m∗ =
[1 − (m/p)∂p�11|p=pF

], with the small mismatch between
neutron and proton effective masses being neglected. Keeping
this mismatch implies changes ES/A → ES/A(1 ± δm) and
δμ → δμ + μδm, where δm = (m∗

n − m∗
p)/(m∗

n + m∗
p) � 1.

In the analysis below, δm lies in the range 0 � |δm| � 0.06,
the upper bound being attained for largest asymmetries and
densities relevant to this study.

The quasiparticle spectra in Eq. (4) are written in a
general reference frame moving with the CM momentum Q
with respect to a laboratory frame at rest. The spectrum of
quasiparticles is seen to be two-fold degenerate; i.e., the SU(4)
Wigner symmetry of the unpaired state is broken down to spin
SU(2). Note that this symmetry is always approximate, since
the phase shifts in the isoscalar and isotriplet S waves differ,
such that isosinglet pairing is stronger than isotriplet pairing
in bulk nuclear matter.

The nucleon-nucleon scattering data show that the domi-
nant attractive interaction in low-density nuclear matter is the
3S1-3D1-partial wave, which leads to isoscalar (neutron-proton)
spin-triplet pairing. Accordingly, the anomalous propagators
have the property (F+

12, F
−
12) ∝ (−iσy) ⊗ τx , where σi and τi

are Pauli matrices in spin and isospin spaces. This implies
that, in the quasiparticle approximation, the self-energy �

has only off-diagonal elements in the Nambu-Gorkov space.
Specifically, �12 = �+

21 = i�αβ , with �14 = �23 = −�32 =
−�41 ≡ i�, where � is the (scalar) pairing gap in the 3S1-3D1

channel. Substituting Eq. (4) into Eq. (2), we obtain a set of
algebraic equations whose solutions provide the “normal” and
anomalous Green’s functions

G±
n/p = ikν ± ε∓

p/n

(ikν − E+
∓/±)(ikν + E−

±/∓)
, (5)

F±
np = −i�

(ikν − E+
± )(ikν + E−

∓ )
, (6)

F±
pn = i�

(ikν − E+
∓ )(ikν + E−

± )
, (7)

the four branches of the quasiparticle spectra being given by

Ea
r =

√
E2

S + �2 + rδμ + aEA, (8)

in which a, r ∈ {+,−}. Analytic continuation of these Green’s
functions via ikν → k0 + i0+ yields their retarded counter-
parts. The densities of neutrons and protons in any of the
superfluid states are obtained through

ρn/p( Q) = −2
∫

d4k

(2π )4
Im[G+

n/p(k, Q) − G−
n/p(k, Q)]f (ω),

(9)

where k = (k0, k) and f (x) = 1/[exp (x/T ) + 1]. In mean-
field approximation, the anomalous self-energy (pairing gap)
is determined by

�(k, Q) = 2i

∫
d4k′

(2π )4
V (k, k′)

× Im[F+
np(k, Q) − F−

pn(k, Q)]f (ω), (10)

where V (k, k′) is the neutron-proton interaction potential.
Performing a partial-wave expansion in Eq. (10) as well as
the integration over k0, we find

�(Q) = 1

2

∑
a,r

∫
d3k′

(2π )3
Vl,l′ (k, k′)

× �l′(k′,Q)

2
√

ES(k′)2 + �l′(k′,Q)

[
1 − 2f

(
Er

a

)]
, (11)

where Vl,l′ (k, k′) is the interaction in the 3S1-3D1 partial wave.
The magnitude Q of the CM momentum in Eqs. (9) and (11) is
a parameter to be determined by minimizing the free energy of
the system. For the homogeneous (but possibly translationally
noninvariant) cases it suffices to find the minimum of the free
energy of the superfluid (S) or unpaired (N) phase,

FS = ES − T SS, FN = EN − T SN, (12)

where E is the internal energy (statistical average of the
system Hamiltonian) and S denotes the entropy. Stability of
the superfluid phase requires FS < FN . Three possibilities
exist for the homogeneous phases: (i) Q = 0, � �= 0 (BCS
phase), (ii) Q �= 0, � �= 0 (LOFF phase), and � = 0, Q = 0
(unpaired phase). The free energy of the heterogeneous phase
(phase-separation case) is constructed as a linear combination
of the superfluid and unpaired energies,

F (x, α) = (1 − x)FS(α = 0) + xFN (α �= 0), (13)
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where x is the filling fraction of the unpaired component and
α = (ρn − ρp)/(ρn + ρp) is the density asymmetry. In the
superfluid phase (S) one has ρ(S)

n = ρ(S)
p = ρ(S), whereas in

the unpaired phase (N) they are rescaled to new values ρ
(N)
n/p.

Thus, the net densities of neutrons/protons per unit volume are
given by ρn/p = (1 − x)ρ(S) + xρ

(N)
n/p.

Results. Equations (9) and (11) were solved self-
consistently for a pairing interaction given by the bare nucleon-
nucleon interaction in the 3S1-3D1 partial wave, based on the
(phase-shift equivalent) Paris potential [32]. The assumed
3S1-3D1 partial wave implies Cooper pairing in the S = 1,
T = 0 spin-isospin channel; 1S0 Cooper pairing in the S = 0,
T = 1 channel may mix and eventually dominate the 3S1-3D1

pairing at asymptotically small temperatures (T � 0.5 MeV)
and large asymmetries. Use of the bare force in Eq. (11)
benchmarks the phase diagram; i.e., it is reproducible with any
phase-shift-equivalent interaction. However, some regions of
the phase diagram may strongly be affected by polarization
of the medium. Studies of polarization in neutron matter
exemplify the complexity of this problem: while propagator-
based methods predict suppression of the gap, quantum Monte
Carlo methods predict gaps closer to the BCS result obtained
with the bare force (for a recent assessment, see [33]). Here
the nuclear mean field was modeled by a Skyrme density
functional. The SkIII [34] and SLy4 [35] parametrizations
were tested with nearly identical results.

Our results for the BCS phase and BCS-BEC crossover are
consistent with earlier studies: we observe a smooth crossover
to an asymptotic state corresponding to a mixture of a deuteron
Bose condensate and a gas of excess neutrons. The transition
from BCS to BEC is established according the following
criteria: (i) The average chemical potential μ̄ changes its sign
from positive to negative values, and (ii) the coherence length
of a Cooper pair becomes comparable to the interparticle
distance, i.e., ξ ∼ d ∼ ρ−1/3 as conditions change from ξ � d

to ξ � d.
The nuclear LOFF phase arises as a result of the ener-

getic advantage of translational symmetry breaking by the
condensate, in which pairs acquire a nonzero CM momentum
Q. As illustrated in Fig. 1 at log10(ρ/ρ0) = −0.5, where
ρ0 = 0.16 fm−3 is the nuclear saturation density, the gap in the
LOFF phase at nonzero asymmetries and constant temperature
has its maximum at finite Q, which results in a maximum of
the condensation energy of the pairs. For large asymmetries
the maximum gap occurs for large values of Q. At constant
asymmetry, a temperature increase shifts the gap maximum
and the free-energy minimum of the LOFF phase toward small
Q, and at sufficiently high temperature and small asymmetry
the BCS state is favored over the LOFF phase. This behavior
is well understood in terms of the phase-space overlap of
the Fermi surfaces of neutrons and protons, which (at finite
asymmetry) increases with temperature and the momentum Q

of the Cooper pairs. Thus, as the temperature increases, we
expect a restoration of the BCS phase and of the translational
symmetry in the superfluid. Obviously, the same restoration
occurs when the isospin asymmetry is small enough.

The superfluid phase with phase separation (PS) has the
symmetrical BCS phase as one of its components. The
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FIG. 1. (Color online) Properties of the nuclear LOFF phase for
log10(ρ/ρ0) = −0.5. Left panel: Dependence of the pairing gap (a)
and free energy (b) of the LOFF phase on the total momentum Q
of a Cooper pair at T = 1 MeV for asymmetries α = 0.2 (solid,
black online), 0.3 (dashed, blue online), and 0.4 (dashed-dotted, cyan
online). Right panel: Same dependence as in the left panel, but for
fixed asymmetry α = 0.2 and temperatures of 1 MeV (solid, black
line), 2 MeV (dashed, blue online), and 3 MeV (dashed-dotted, cyan
online).

temperature dependence of this phase is well established
within BCS theory. The second component, which accommo-
dates the neutron excess, is a normal Fermi liquid whose low-
temperature thermodynamics is controlled by the excitations
in the narrow strip of width T/εF,n/p around the Fermi surfaces
of neutrons and protons.

The transition to the BEC regime of strongly coupled
neutron-proton pairs, which are asymptotically identical with
deuterons, occurs at low densities. As already well established,
in the case of neutron-proton pairing the criteria for the
BCS-BEC transition are fulfilled; i.e., μ̄ changes sign and
the mean distance between the pairs becomes larger than the
coherence length of the superfluid.

We now turn to the question of how the BCS-BEC crossover
is affected by the existence of nuclear LOFF and PS phases at
nonzero isospin asymmetries and conversely how these phases
evolve in the strongly coupled regime if the density of the
system is decreased. The phase diagram of pair-correlated
nuclear matter in the density and temperature plane is shown
in Fig. 2 for several isospin asymmetries. Four different
phases of matter are present in the diagram. (i) The unpaired
phase is always the ground state of matter at sufficiently high
temperatures T > Tc0, where Tc0(ρ) is the critical temperature
of the superfluid phase transition at α = 0. (ii) The LOFF
phase is the ground state in a narrow temperature-density strip
at low temperatures and high densities (marked by LOFF in
Fig. 2). (iii) The PS phase appears at low temperatures and
low densities. (iv) The isospin-asymmetric BCS phase is the
ground state for all densities at intermediate temperatures.
In the extreme low-density and strong-coupling regime the
BCS superfluid phases have two counterparts: The BCS
phase evolves into the BEC phase of deuterons, whereas
the PS-BCS phase evolves into the PS-BEC phase, in which

062801-3



RAPID COMMUNICATIONS

STEIN, HUANG, SEDRAKIAN, AND CLARK PHYSICAL REVIEW C 86, 062801(R) (2012)

-2.5 -2 -1.5 -1 -0.5 0
log

10
(ρ/ρ0)

0

1

2

3

4

5

T
 [

M
eV

]

α = 0.0
       0.1
       0.2
       0.3
       0.4
       0.5

Unpaired

PS-BCS

BCS

BEC

PS-BEC L
O

F
F

L
O

F
F

L
O

F
F

L
O

F
F

L
O

F
F

FIG. 2. (Color online) Phase diagram of dilute nuclear matter
in the temperature-density plane for isospin asymmetries α = 0
(solid, black online), 0.1 (dashed, violet online), 0.2 (short-dashed,
orange online), 0.3 (dash-dotted, blue online), 0.4 (double-dash-
dotted, magenta online), and 0.5 (dash-double-dotted, cyan online).
Included are four phases: unpaired, BCS (BEC), LOFF, and PS-BCS
(PS-BEC). For each asymmetry there are two tricritical points,
one of which is always a Lifshitz point. For special values of
asymmetry these two points degenerate into a single tetracritical
point at log10(ρ/ρ0) = −0.22 and T = 2.85 MeV (shown by a
square dot) for α4 = 0.255. The LOFF phase disappears at the point
log10(ρ/ρ0) = −0.65 and T = 0 (shown by a triangle) for α = 0.62.

The density-temperature strips where the LOFF phase is the ground
state are marked, for each asymmetry, by “LOFF.”

the superfluid fraction of matter is a BEC of deuterons. The
superfluid-unpaired phase transitions and the phase transitions
between the superfluid phases are of second order (thin lines in
Fig. 2), with the exception of the PS-BCS to LOFF transition,
which is of first order (thick lines in Fig. 2). The BCS-BEC
transition and the PS-BCS to PS-BEC transition are smooth
crossovers. At nonzero isospin asymmetry the phase diagram
features two tricritical points where the simpler pairwise phase
coexistence terminates and three different phases coexist. (We
do not include the points associated with crossovers from
strong to weak coupling in the class of critical points, since

these transitions involve essentially the same phase, i.e., no
symmetry is broken).

The topology of the phase diagram and the locations of the
tricritical points depend on the value of asymmetry parameter.
For α < α4 the low-density critical point corresponds to
coexistence of BCS, PS, and LOFF phases, whereas the
high-density critical point corresponds to coexistence of LOFF,
BCS, and unpaired phases and is thus a Lifshitz point [36]. For
α > α4 the topology of the phase diagram changes: The low-
density tricritical point contains BCS, PS, and unpaired phases,
whereas the high-density tricritical Lifshitz point contains the
LOFF-PS–unpaired triple of phases. Clearly, the point with
log10(ρ/ρ0) = −0.22, T = 2.85 MeV, and α4 = 0.255 is the
special case of a tetracritical point, where all four phases (i.e.,
BCS, PS, LOFF, and unpaired) coexist.

The extreme low-density region of the phase diagram
features two crossovers. At intermediate temperatures we
recover the well-known BCS-BEC crossover, where the
neutron-proton BCS condensate transforms smoothly into a
BEC gas of deuterons with some excess of neutrons. The new
ingredient of our phase diagram is the second crossover at
low temperatures, where the heterogeneous superfluid phase
is replaced by a heterogeneous mixture of a phase containing
a deuteron condensate and a phase containing neutron-rich
unpaired nuclear matter.

In closing, we note that dilute nuclear matter will definitely
feature some clusters of higher mass number, notably 3He,
3H, and 4He, coexisting in statistical equilibrium with the
constituents and phases revealed above [16,17]. The α particles
(4He) will form a Bose-Einstein condensate at sufficiently low
temperatures (see Ref. [37] for a review). These diverse aspects
of superfluid, asymmetrical nuclear matter promise significant
ramifications for the astrophysics of supernovae and (hot) com-
pact stars and therefore warrant examination in further detail.
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[16] S. Typel, G. Röpke, T. Klähn, D. Blaschke, and H. H. Wolter,

Phys. Rev. C 81, 015803 (2010).
[17] S. Heckel, P. P. Schneider, and A. Sedrakian, Phys. Rev. C 80,

015805 (2009).
[18] A. Sedrakian, Phys. Rev. C 63, 025801 (2001).
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