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Strength of reduced two-body spin-orbit interaction from a chiral three-nucleon force
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The contribution of the chiral three-nucleon force to the strength of effective spin-orbit coupling is estimated.
We construct a reduced two-body interaction by folding single-nucleon degrees of freedom of the three-nucleon
force in nuclear matter. The spin-orbit strength is evaluated by the Scheerbaum factor obtained by a G-matrix
calculation in nuclear matter with the two-nucleon interaction plus the reduced two-nucleon interaction. The
inability of modern realistic two-nucleon interactions to account for the empirical spin-orbit strength is overcome.
We found that spin-orbit coupling is weaker in a neutron-rich environment. Because the spin-orbit component
of the three-nucleon force is determined by low-energy constants fixed in the two-nucleon sector, the present
estimation has a small uncertainty.
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The spin-orbit field in atomic nuclei is essential for re-
producing the well-established single-particle shell structure.
However, the empirical strength of the spin-orbit potential
has not been fully explained in terms of a realistic nucleon-
nucleon force. Fujita and Miyazawa [1] considered the possible
effect of intermediate isobar � excitation on the nuclear
spin-orbit field, which followed the construction of the two-
pion-exchange three-nucleon force (3NF). This problem was
reinvestigated in the early 1980s [2,3] to search for the
additional spin-orbit strength. The Illinois group [4,5] later
showed that the 3NF makes a substantial contribution to
spin-orbit splitting in 15N.

Kaiser and collaborators [6–8] investigated nuclear spin-
orbit coupling in the framework of chiral perturbation theory.
The large contributions of iterated one-pion exchange and
the 3NF almost cancel each other [6,7] and the short-range
spin-orbit strength in the form of effective four-nucleon contact
coupling deduced from realistic nucleon-nucleon interactions
accounts well [8] for the empirical spin-orbit strength. How-
ever, because the contact interaction in the chiral perturbation
needs to be regulated when applying it in low-energy nuclear
structure calculations and their arguments for various contribu-
tions do not seem to be fully unified, it is worthwhile to analyze
the effective spin-orbit coupling strength by applying the es-
tablished microscopic theory, namely lowest-order Brueckner
theory (LOBT), to two- and three-nucleon interactions in chiral
effective field theory (Ch-EFT).

The Thomas form of the average single-particle spin-
orbit potential has been used to describe nucleon spin-orbit
coupling:

U 0
�s

1

r

dρ(r)

dr
� · σ , (1)

where the radial function ρ(r) is the total nucleon density
distribution. Scheerbaum [9] derived the relation between the
strength U 0

�s and the two-body effective spin-orbit interaction.
We define the constant BS(q̄) for the spin-triplet odd-parity
component of the effective two-body spin-orbit interaction
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v3O
�s (r) as

BS(q̄) = −2π

q̄

∫ ∞

0
drr3j1(q̄r)v3O

�s (r), (2)

where j1 is the spherical Bessel function. The single-particle
spin-orbit potential for spin-saturated nuclei can then be
written as

U�s,τ (r) = 1

2
BS(q̄)

1

r

d{ρ(r) + ρτ (r)}
dr

� · σ , (3)

where τ specifies a proton or neutron. We refer to BS(q̄)
as the Scheerbaum factor; it differs from the constant used
in Ref. [9] by a factor of − 2π

3 . Scheerbaum prescribed q̄ ≈
0.7 fm−1 based on the wavelength of the density distribution.
We employ this prescription. Assuming the naive relation
ρp(r) = ρn(r) = 1

2ρ(r), we recover the Thomas form, Eq. (1),
with U 0

�s = 3
4BS(q̄). It has been customary to use the following

δ-type two-body spin-orbit interaction,

iW (σ 1 + σ 2) · [∇r × δ(r)∇r ], (4)

in nuclear Hartree-Fock calculations using δ-type Skyrme
interactions [10,11] and even with finite-range effective forces
(e.g., the Gogny force [12]). This two-body force provides the
following single-particle spin-orbit potential:

1

2
W

1

r

d{ρ(r) + ρτ (r)}
dr

� · σ . (5)

Therefore, the strength W may be equated with the Scheer-
baum factor BS(q̄). The empirical value of W is about
120 MeV fm5 in various nuclear Hartree-Fock calculations.
As we show below, modern nucleon-nucleon interactions
underestimate the spin-orbit strength by about 25%.

By applying Scheerbaum’s formulation to the momentum-
space G-matrix calculation in nuclear matter with the Fermi
momentum kF , we obtain the corresponding spin-orbit
strength as follows [13]:

BS(q̄) = 1

k3
F

∑
JT

(2J + 1)(2T + 1)
∫ qmax

0
dq

×W (q̄, q)
{
(J + 2)GJT

1J+1,1J+1(q) + GJT
1J,1J (q)

− (J − 1)GJT
1J−1,1J−1(q)

}
. (6)
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TABLE I. BS(q̄) in units of MeV fm5 given by Eq. (6) with q̄ =
0.7 fm−1 for modern nucleon-nucleon interaction: AV18 [20], NSC97
[21], CD-Bonn [23], and Jülich N3LO [22]. The last entry is the result
obtained when the reduced two-body interaction from the Ch-EFT
3NF is included.

kF = 1.35 fm−1 AV18 NSC97 CD-B N3LO N3LO + 3NF

BS(T = 0) 2.0 1.9 3.1 2.5 7.0
BS(T = 1) 86.4 86.7 90.2 84.6 116.2
BS(q̄) 88.4 88.6 93.3 87.1 123.2

kF = 1.07 fm−1 AV18 NSC97 CD-B N3LO N3LO + 3NF
BS(T = 0) 1.4 1.3 2.3 1.6 4.1
BS(T = 1) 88.1 88.7 92.2 86.5 106.7
BS(q̄) 89.5 90.0 94.5 88.1 110.8

Here, qmax = 1
2 (kF + q̄) and the weight factor W (q̄, q) is given

by

W (q̄, q) =
{

θ (kF − q̄) for 0 � q � |kF −q̄|
2

k2
F −(q̄−2q)2

8q̄q
for |kF −q̄|

2 � q � kF +q̄

2 ,
(7)

where θ (kF − q̄) is a step function. In Eq. (6), GJT
1�′,1� indicates

the momentum-space diagonal G-matrix element in the spin-
triplet channel with a total isospin T , total spin J , and orbital
momenta �′ and �.

Calculating BS(q̄) in the lowest-order Brueckner theory
with the continuous prescription for intermediate spectra, as
presented explicitly in Table I, modern two-body nucleon-
nucleon potentials are found to give smaller values (around
90 MeV fm5) than the empirical one. It is well known
that LOBT calculations in symmetric nuclear matter with a
realistic two-nucleon force do not correctly reproduce the
saturation properties. However, in most cases, calculated
energies at the empirical saturation point kF = 1.35 fm−1

are close to the empirical energy of about −16 MeV. This
suggests that G matrices provide basic information on the
effective nucleon-nucleon interaction in the nuclear medium
by incorporating important short-range correlations as well as
Pauli and dispersion effects.

We now consider the contribution of the 3NF. In this study,
we estimate it in a two-step procedure. First, the 3NF v123

defined in momentum space is reduced to an effective two-
nucleon interaction v12(3) by folding the single-nucleon degrees
of freedom:

〈k′
1σ

′
1τ

′
1, k′

2σ
′
2τ

′
2|v12(3)|k1σ1τ1, k2σ2τ2〉A

= 1

3

∑
k3σ3τ3

〈k′
1σ

′
1τ

′
1, k′

2σ
′
2τ

′
2, k3σ3τ3|

× v123|k1σ1τ1, k2σ2τ2, k3σ3τ3〉A. (8)

Here, we assume that the two remaining nucleons are in the
center-of-mass frame, namely k′

1 + k′
2 = k1 + k2 = 0. The

density-dependent effective two-nucleon interaction has been
commonly introduced as an effect of the 3NF [14–16]. The
suffix A denotes an antisymmetrized matrix element, namely
|ab〉A ≡ |ab − ba〉 and |abc〉A ≡ |abc − acb + bca − bac +
cab − cba〉, and the factor 1

3 in Eq. (8) is an additional
statistical factor required to evaluate the total energy, as was

noted by Hebeler and Schwenk [17]. Previous studies have
often omitted this statistical factor. If an adjustable strength is
introduced, the statistical factor may be hidden in the fitting
procedure. In the present case, we use the Ch-EFT 3NF and
the low-energy constants except for cD and cE are fixed.
Although there may be room to adjust cD and cE , these terms
make rather small contributions to the energy if they lie in a
reasonable range. In addition, cD and cE do not contribute to
the reduced two-nucleon spin-orbit interaction. By comparing
the nuclear matter energy calculated directly from v123 with
that obtained by the reduced v12(3), the error due to this
approximation was found to be less than 10%, if we calculate
Born energy without including a form factor. Although it is not
obvious that the statistical factor 1

3 can be applied to higher
order terms summed in the G-matrix evaluation, we assume
that this prescription estimates the leading effect of the 3NF.
More rigorous calculations of the 3NF contribution require a
systematic method such as the coupled-cluster method, as the
present author and Okamoto demonstrated in Ref. [18].

To explain the procedure for obtaining v12(3) more explicitly,
we write the reduced spin-orbit component originating from
the c1 term of the Ch-EFT 3NF:

−c1g
2
Am2

π

f 4
π

∑
1�i<j�3

(σ i · qi)(σ j · qj )(
q2

i + m2
π

)(
q2

j + m2
π

) (τ i · τ j ), (9)

where gA = 1.29, fπ = 92.4 MeV, mπ is the pion mass, and qi

is the momentum transfer of the ith nucleon. The momentum
transfer of the third nucleon k is given by qk = −qi − qj . The
Ch-EFT 3NF has a structure similar to that of the conventional
3NF [5], which is due to P -wave scattering through isobar �

excitation and S-wave scattering.
The folding of the 3NF by the third nucleon in a Fermi sea

is performed without incorporating a three-body form factor.
A form factor is later introduced on the two-body level. The
folding in symmetric nuclear matter with the Fermi momentum
kF gives, besides the central and tensor components, the
following spin-orbit term:

c1g
2
Am2

π

f 4
π

1

(2π )3

∫ ∫ ∫
|k3|�kF

dk3

× i(σ 1 + σ 2) · [−k′
1 × k1 + (k′

1 − k1) × k3][
(k′

1 − k3)2 + m2
π

][
(k1 − k3)2 + m2

π

] . (10)

When performing the folding in pure neutron matter, the
restriction on the isotopic spin generates an additional factor
of 1

3 .
The partial-wave decomposition of the above spin-orbit

term becomes

−δS1
c1g

2
Am2

π

f 4
π

�(� + 1) + 2 − J (J + 1)

2� + 1

× {
Q�−1

W,0(k′
1, k1) − Q�+1

W,0(k′
1, k1) − W�

�s,0(k′
1, k1)

}
(11)

for the orbital and total angular momenta � and J . The
functions Q�

W,0 and W�
�s,0 are defined as

Q�
W,0(k′

1, k1) ≡ 2π

(2π )3

1

2

∫ kF

0
dk3Q�(x ′)Q�(x), (12)
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W�
�s,0(k′

1, k1) ≡ 2π

(2π )3

1

2k′
1k1

∫ kF

0
dk3k3

×{k′
1Q�(x)[Q�−1(x ′) − Q�+1(x ′)]

+ k1Q�(x ′)[Q�−1(x) − Q�+1(x)]}, (13)

where Q�(x) is the Legendre function of the second kind, and

x ′ ≡ k2
3+k′2

1 +m2
π

2k′
1k3

and x ≡ k2
3+k2

1+m2
π

2k1k3
.

The spin-orbit component also originates from the c3 term
of the Ch-EFT 3NF. In this case, in addition to replacing the
coupling constant, an additional factor (k′

1 − k3) · (k3 − k1)
appears in the denominator in Eq. (10). The partial-wave
decomposition is given by

δS1
c3g

2
A

2f 4
π

�(� + 1) + 2 − J (J + 1)

2� + 1

[[
m2

π + 1

2
(k′2

1 + k2
1)

]{
Q�−1

W,0(k′
1, k1) − Q�+1

W,0(k′
1, k1) − W�

�s,0(k′
1, k1)

}
+ 3k′

1k1

{
Q�

W,0(k′
1, k1) − (� − 1)Q�−2

W,0(k′
1, k1) + (� + 2)Q�+2

W,0(k′
1, k1) + � − 1

2� − 1
W�−1

�s,0 (k′
1, k1) + � + 2

2� + 3
W�+1

�s,0 (k′
1, k1)

}

− δ�1
k′

1k1

2
(F0(k′

1) + F0(k1) − F1(k′
1) − F1(k1))

]
, (14)

where the new functions F0(k) and F1(k) are defined as

F0(k) ≡ 1

(2π )3

∫ ∫ ∫
|k3|�kF

dk3
1

(k − k3)2 + m2
π

, (15)

F1(k) ≡ 1

(2π )3

1

k2

∫ ∫ ∫
|k3|�kF

dk3
k · k3

(k − k3)2 + m2
π

. (16)

Adding the reduced two-nucleon interaction to the Ch-
EFT two-nucleon interaction, we repeat the LOBT G-matrix
calculation. Although this paper gives explicit expressions
for only the spin-orbit part, we include all the central,
tensor, and spin-orbit components of the reduced interaction
v12(3). The form factor with a functional form of f (k′

1, k1) =
exp{−[(k′

1/
)4 + (k1/
)4]} is introduced for v12(3) with the
cutoff mass 
 = 550 MeV. We use the low-energy constants
fixed for the Jülich Ch-EFT potential given by Hebeler et al.
[19]; cD = −4.381 and cE = −1.126. Other constants are
c1 = −0.81 GeV−1, c3 = −3.4 GeV−1, and c4 = 3.4 GeV−1.
Because the reduction of the 3NF to the two-nucleon force was
performed in nuclear matter, v12(3) may not be directly applied
to very light nuclei, such as 3H and 4He.

We first comment on the calculated saturation curves given
in Fig. 1. Without the contribution of the 3NF, the saturation
curve attains its minimum at a larger Fermi momentum kF

than the empirical saturation momentum, as is already known.
Nucleon-nucleon interactions, AV18 [20], NSC97 [21], and
Jülich N3LO with a cutoff mass of 550 MeV [22], give similar
saturation curves and the CD-Bonn potential [23] predicts
somewhat deeper binding. To indicate which saturation curve
is preferable for nuclear mean-field calculations, we also show
the result for the Gogny D1S interaction [12].

The thin dotted curve shows the result obtained by adding
the plane wave expectation value of the 3NF v123 to the result of
the two-nucleon N3LO. The thick dotted curve next to the thin
dotted curve is the result for the plane wave expectation value
of the reduced two-nucleon interaction v12(3). The difference
between these two curves originates from the difference in
the form factors and the necessary approximation k′

1 + k′
2 =

k1 + k2 = 0 in Eq. (8).

The solid curve is the result of the G-matrix calculation that
includes the reduced two-nucleon interaction, v12(3). Although
the energy is underestimated by a few million electron volts,
the saturation properties are significantly improved by the
repulsive contribution from the three-nucleon force. It is
currently not necessary to realize perfect agreement with the
empirical properties in the LOBT calculation in nuclear matter.

We now examine the spin-orbit strength. We tabulate, in
Table I, values of BS(q̄) in Eq. (6) at q̄ = 0.7 fm−1 calculated
in the LOBT with modern nucleon-nucleon interactions: AV18
[20], NSC97 [21], CD-Bonn [23], and Jülich N3LO [22]. The
Scheerbaum factors obtained by realistic two-nucleon forces
are similar but insufficient to explain the spin-orbit strength
required in nuclear mean-field calculations. Specifically, only
about three fourths of the empirically required strength is
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FIG. 1. (Color online) Saturation curves in symmetric nuclear
matter.
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accounted for. The two-body part of the Ch-EFT, N3LO, differs
little from other realistic two-nucleon forces. The values at
kF = 1.07 fm−1, namely at half of the normal density, vary
little from those at the normal density with kF = 1.35 fm−1.
The last column in Table I shows that the addition of the
reduced two-body interaction from the Ch-EFT 3NF reduces
the discrepancy, although the 3NF contribution is smaller at
kF = 1.07 fm−1. This is consistent with the important role of
the 3NF in spin-orbit splitting demonstrated in quantum Monte
Carlo calculations of low-energy neutron-α scattering [24] by
using the conventional 3NF in Ref. [5]. Although there are
ambiguities from the form factor and uncertainties inherent in
the folding procedure that do not account for nucleon-nucleon
correlations, no additional adjustable parameters exist because
low-energy constants c1 and c3, which contribute solely to
the spin-orbit strength, are determined in the two-nucleon
sector.

As noted after Eq. (10), the reduced two-body spin-orbit
term in neutron matter is one third that in symmetric nuclear
matter. Actual G-matrix calculations using the Ch-EFT N3LO
plus v12(3) in pure neutron matter with kn

F = 1.35 fm−1 give
BS(q̄) values at q̄ = 0.7 fm−1 of 84.7 and 93.5 MeV fm5

without and with the reduced two-nucleon interaction v12(3),
respectively. If kn

F = 1.07 fm−1 is assumed, the corresponding
values are 87.0 and 94.6 MeV fm5, respectively. Again, the kn

F

dependence is weak. While the spin-orbit strength from the
two-nucleon force differs little from that in symmetric nuclear
matter, the additional contribution from the three-nucleon
force is almost one third that in symmetric nuclear matter.
Thus, the spin-orbit strength is expected to be smaller in a
neutron-rich environment. This seems to be consistent with
the trend observed in the shell structure near the neutron

drip line [25], namely that the weaker spin-orbit interaction
is preferable in the neutron excess region.

In summary, we have quantitatively estimated the contribu-
tion of the three-nucleon force of chiral effective field theory
to the single-particle spin-orbit strength using the formulation
of Scheerbaum [9]. We first introduced the reduced two-
body interaction by folding the single-nucleon degrees of
freedom of the 3NF in nuclear matter that includes the
necessary statistical factor of 1

3 . Performing a partial-wave
expansion of the resulting two-body interaction and adding it
to the genuine two-nucleon interaction, we performed LOBT
G-matrix calculations in infinite matter and evaluated the
Scheerbaum factor corresponding to the spin-orbit strength.
The detailed procedure of the partial wave decomposition that
includes central and tensor components will be reported in a
separate paper. Because the spin-orbit field in atomic nuclei
is fundamentally important, as indicated by the nuclear magic
numbers, it is important to know that including the 3NF in
chiral effective field theory can account for the spin-orbit
strength required for nuclear mean field calculations. Because
the relevant low-energy constants, c1 and c3, are determined
in the two-nucleon interaction sector, there should be little
uncertainty in the additional spin-orbit strength except for
the treatment of the two-body form factor. The additional
spin-orbit strength from the 3NF should be weaker in neutron-
excess nuclei.
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