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The equilibrium properties of the outer crust of cold nonaccreting magnetars (i.e., neutron stars endowed with
very strong magnetic fields) are studied using the latest experimental atomic mass data complemented with a
microscopic atomic mass model based on the Hartree-Fock-Bogoliubov method. The Landau quantization of
electron motion caused by the strong magnetic field is found to have a significant impact on the composition and
the equation of state of crustal matter. It is also shown that the outer crust of magnetars could be much more
massive than that of ordinary neutron stars.

DOI: 10.1103/PhysRevC.86.055804 PACS number(s): 26.60.Gj, 26.60.Kp, 97.60.Jd, 97.10.Cv

I. INTRODUCTION

Neutron stars are among the most strongly magnetized
objects in the universe [1]. Radio pulsars are endowed with
typical surface magnetic fields of order 1012 G [2]. A few
radio pulsars have been found to have significantly higher
surface magnetic fields of order 1013–1014 G [3]. Surface
magnetic fields up to 2.4 × 1015 G have been inferred in
soft gamma-ray repeaters (SGRs) and anomalous x-ray pulsars
(AXPs) from both spin-down and spectroscopic studies [4,5].
Even stronger fields might exist in the interior of these
neutron stars, as suggested by various observations [6–8].
Duncan and Thompson showed that strong magnetic fields
up to ∼1016–1017 G can be generated via dynamo effects
in hot newly born neutron stars with initial periods of a
few milliseconds [9] leading to the formation of strongly
magnetized neutron stars thus dubbed magnetars (see, e.g.,
Ref. [10] for a review). Numerical simulations confirmed
that magnetic fields of order ∼1015–1016 G can be produced
during supernovae explosions due to the magnetorotational
instability [11]. A very large amount of magnetic energy can
be occasionally released in crustquakes thus triggering the
gamma-ray bursts observed in SGRs and AXPs [12]. This
scenario has been recently supported by the detection of
quasiperiodic oscillations (QPOs) in the x-ray flux of giant
flares from a few SGRs. Some of these QPOs coincide rea-
sonably well with seismic crustal modes thought to arise from
the release of magnetic stresses [13,14]. The huge luminosity
variation suggests B � 1015 G at the star surface thus lending
support to the magnetar hypothesis [15]. According to the virial
theorem, the upper limit on the neutron-star magnetic fields is
of the order of 1018 G [16]. This limit has been confirmed by
numerical magnetohydrodynamics simulations [17–19].

In this paper, we study the impact of a strong magnetic
field on the equilibrium properties of the outer crust of cold
nonaccreting neutron stars along the lines of Ref. [16]. For this
purpose we made use of the most recent experimental atomic
mass data complemented with a theoretical atomic mass table

based on the Hartree-Fock-Bogoliubov (HFB) method [20].
In Sec. II, we present the microscopic model used to describe
the outer crust of a magnetar. The results are discussed in
Sec. III and simple analytical formulas are derived in the limit
of strongly quantizing fields in Sec. IV.

II. MICROSCOPIC MODEL OF MAGNETAR CRUSTS

In the magnetar theory, neutron stars are born with very
strong magnetic fields of order B ∼ 1016–1017 G which decay
on a typical time scale of order �103 years [21]. We assume
that the magnetic fields are sustained long enough to alter
the formation of neutron-star crusts. In the model we adopt
here [16], the neutron-star crust is assumed to be made of
“cold catalyzed matter” (i.e., matter in its ground state at zero
temperature and in a uniform magnetic field). The magnetic
field mostly affects the outermost region of the crust where
atoms are supposed to be fully ionized and arranged in a body-
centered-cubic lattice [22]. We determined the equilibrium
composition of each layer of the outer crust at a given pressure
P by minimizing the Gibbs free energy per nucleon

g = E + P

n
, (1)

where E is the average energy density and n the average
nucleon number density. Assuming that each layer of the outer
crust contains only one nuclear species with proton number
Z and atomic number A, the average energy density can be
expressed as

E = nNM ′(Z,A) + Ee + EL, (2)

where nN = n/A is the number density of nuclei, M ′(Z,A)
their mass (including the rest mass of nucleons and Z

electrons), Ee the energy density of electrons after subtracting
out the electron rest mass energy density, and EL the lattice
energy density. The nuclear mass M ′(Z,A) can be obtained
from the atomic mass M(Z,A) after subtracting out the
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binding energy of the atomic electrons (see Eq. (A4) of
Ref. [23])

M ′(A,Z) = M(A,Z) + 1.44381 × 10−5 Z2.39

+ 1.55468 × 10−12 Z5.35, (3)

where both masses are expressed in units of MeV. As in
Ref. [16], we will ignore the effects of the magnetic field on
nuclear masses. Shell correction calculations using the simple
Nilsson model predict that magnetic fields ∼1016 G can change
nuclear shell structure hence also nuclear masses [24,25].
However, a very recent study based on fully self-consistent
relativistic mean-field calculations concluded that significantly
higher fields B � 1017 G are required to affect substantially
the composition of the outer crust [26]. In Ref. [16], the
authors used the experimental atomic masses from Ref. [27]
supplemented with the mass model of Ref. [28]. In this paper,
we made use of the most recent experimental atomic mass data
from a preliminary unpublished version of an updated atomic
mass evaluation (AME) [29]. For the masses that have not yet
been measured, we employed the microscopic atomic mass
model HFB-21 of Ref. [20] based on the HFB method using a
generalized Skyrme effective nucleon-nucleon interaction [30]
supplemented with a microscopic contact pairing interaction
[31]. The parameters of the Skyrme interaction BSk21 underly-
ing the HFB-21 model were fitted to the 2149 measured masses
of nuclei with N and Z � 8 given in the 2003 AME [32]. For
this it was necessary to add two phenomenological corrections
to the HFB ground-state energy: (i) a Wigner energy (which
contributes significantly only for light nuclei or nuclei with
N close to Z) and (ii) a correction for the spurious rotational
and vibrational collective energies. With an rms deviation as
low as 0.58 MeV, this atomic mass model is well suited for
describing the neutron-rich nuclei found in the outer crust
of a neutron star. Incidentally, the parameters of the Skyrme
interaction were simultaneously constrained to reproduce the
zero-temperature equation of state of homogeneous neutron
matter, as determined by many-body calculations with realistic
two- and three-nucleon forces [33], from very low densities
up to the maximum density found in stable neutron stars. For
this reason, the Skyrme interaction BSk21 could be reliably
extrapolated beyond the outer crust thus providing a unified
description of all regions of a neutron star. In particular, this
interaction has been recently used to determine the equation of
state of cold nonaccreting nonmagnetized neutron stars [34,35]
and has been found to be compatible with measurements of
neutron-star masses [36].

In the presence of a strong magnetic field, the electron
motion perpendicular to the field is quantized into Landau
levels (see, for instance, Ref. [1]). For sufficiently strong
fields, the electron cyclotron energy becomes comparable to
the electron rest-mass energy. This happens for B > Bc where
the critical magnetic field Bc is given by

Bc = m2
ec

3

eh̄
� 4.4 × 1013 G . (4)

Surface magnetic fields B > Bc have been inferred in various
kinds of neutron stars [3,4]. Ignoring electron polarization
effects (see, e.g., Chap. 4 in Ref. [1] and references therein)

and treating electrons as a relativistic Fermi gas, the energies
of Landau levels (which were actually first found by Rabi as
early as 1928 [37]) are given by

eν =
√

c2p2
z + m2

ec
4(1 + 2νB�), (5)

ν = nL + 1
2 + σ , (6)

where nL is any nonnegative integer, σ = ±1/2 is the spin, pz

is the component of the momentum along the field, and B� =
B/Bc. The electron anomalous magnetic moment is small and
has been neglected. For a given magnetic field strength B�,
the number of occupied Landau levels is determined by the
electron number density ne

ne = 2B�

(2π )2λ3
e

νmax∑
ν=0

gνxe(ν) , (7)

xe(ν) =
√

γ 2
e − 1 − 2νB� , (8)

where λe = h̄/mec is the electron Compton wavelength, γe

is the electron chemical potential in units of the electron rest
mass energy, that is,

γe = μe

mec2
, (9)

while the degeneracy gν is gν = 1 for ν = 0 and gν = 2 for
ν � 1.

The electron energy density Ee and corresponding electron
pressure Pe are given by (see, e.g., Ref. [16] and references
therein)

Ee = B�mec
2

(2π )2λ3
e

νmax∑
ν=0

gν(1 + 2νB�)ψ+

[
xe(ν)√

1 + 2νB�

]
− nemec

2 ,

(10)

and

Pe = B�mec
2

(2π )2λ3
e

νmax∑
ν=0

gν(1 + 2νB�)ψ−

[
xe(ν)√

1 + 2νB�

]
, (11)

respectively, where

ψ±(x) = x
√

1 + x2 ± ln(x +
√

1 + x2) . (12)

In the absence of magnetic fields B = 0, the electron energy
density and pressure reduce to (see, e.g., Chap. 2 in Ref. [1])

Ee = mec
2

8π2λ3
e

[
xr

(
1 + 2x2

r

)√
1 + x2

r − ln
(
xr +

√
1 + x2

r

)]
− nemec

2 , (13)

and

Pe = mec
2

8π2λ3
e

[
xr

(
2

3
x2

r − 1

) √
1 + x2

r + ln
(
xr +

√
1 + x2

r

)]
,

(14)

respectively, where xr = h̄(3π2ne)1/3/(mec) is the relativity
parameter.

According to the Bohr–van Leeuwen theorem [38], the
lattice energy density is not affected by the magnetic field
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(we neglect here the small contribution due to the quantum
zero-point motion of ions [39]). For point-like ions arranged
in a body-centered-cubic lattice, the lattice energy density is
approximately given by [40]

EL = −1.44423Z2/3e2n4/3
e , (15)

and the associated pressure is

PL = 1
3EL . (16)

The total pressure P is therefore

P = Pe + PL . (17)

Equations (10) through (17) remain approximately valid
at finite temperatures T provided the Coulomb coupling
parameter 	 � 102 and the temperature T is much smaller
than the electron Fermi temperature TF.

III. EQUILIBRIUM COMPOSITION AND EQUATION OF
STATE OF MAGNETAR CRUSTS

The equilibrium composition of the outer crust of a
nonaccreting magnetized neutron star at T = 0 in a layer
characterized by a pressure P is determined by minimizing
the Gibbs free energy per nucleon

g = E + P

n
= M ′(A,Z)

A
+ Z

A

(
μe − mec

2 + 4

3

EL

ne

)
.

(18)

Note that the value of g at equilibrium is simply equal to
the neutron chemical potential. Starting from the shallowest
part of the crust where P ∼ 0, we repeated the calculations
by increasing the pressure until g equals mnc

2 (mn being the
neutron mass) for some pressure Pdrip. The present model is
not suited for describing the inner regions of the crust because
neutrons drip out of nuclei for P > Pdrip (for a study of the
denser regions of strongly magnetized neutron stars, see, e.g.,
Ref. [41] for the inner crust and Refs. [42,43] for the core).

The results are summarized in Tables I–IV. For comparison,
we also determined the composition of the outer crust in the
absence of magnetic field. Note that our results shown in Table
V are slightly different from those given in Table III of Ref. [34]
using the same HFB-21 atomic mass model because of our
neglect of electron exchange and other small corrections that
were included in Ref. [34]. Our results for B� = 0 also differ
from those obtained previously by the authors of Ref. [16]
because of the use of more recent experimental and theoretical
atomic mass data. In particular, the elements 126Ru and 118Kr
that were found by the authors of Ref. [16] are now absent,
whereas 79Cu, 80Ni, 124Sr, and 121Y are present. Using the latest
experimental mass tables the outer crust is found to contain
nine nuclides with experimentally measured masses versus
only six in the calculations of the authors of Ref. [16].

For the “weak” magnetic fields prevailing in most pulsars
B� � 1, the sequence of equilibrium nuclides in their outer
crust is the same as that obtained in the absence of magnetic
fields. However the highest density at which each nuclide
can be found is increased, especially in the shallow region
of the crust where the effects of Landau quantization are

TABLE I. Composition of the outer crust of strongly magnetized
neutron stars with B� = B/Bc = 1. nmin (nmax) is the minimum
(maximum) average baryon density (in units of fm−3) at which the
given nucleus is present. The pressure Pmax (in units of MeV fm−3) is
the maximum pressure at which the given nucleus can be found. The
surface density is estimated from Eq. (27).

Z N A nmin nmax Pmax

26 30 56 2.50 × 10−10 5.60 × 10−9 4.15 × 10−10

28 34 62 5.77 × 10−9 1.60 × 10−7 4.22 × 10−8

26 32 58 1.61 × 10−7 1.65 × 10−7 4.40 × 10−8

28 36 64 1.70 × 10−7 8.01 × 10−7 3.56 × 10−7

28 38 66 8.27 × 10−7 9.24 × 10−7 4.14 × 10−7

36 50 86 9.42 × 10−7 1.86 × 10−6 1.03 × 10−6

34 50 84 1.92 × 10−6 6.79 × 10−6 5.58 × 10−6

32 50 82 7.03 × 10−6 1.67 × 10−5 1.77 × 10−5

30 50 80 1.74 × 10−5 3.19 × 10−5 3.98 × 10−5

29 50 79 3.26 × 10−5 4.35 × 10−5 5.87 × 10−5

28 50 78 4.45 × 10−5 5.41 × 10−5 7.64 × 10−5

28 52 80 5.56 × 10−5 8.09 × 10−5 1.24 × 10−4

42 82 124 8.37 × 10−5 1.22 × 10−4 2.07 × 10−4

40 82 122 1.27 × 10−4 1.48 × 10−4 2.55 × 10−4

39 82 121 1.51 × 10−4 1.74 × 10−4 3.11 × 10−4

38 82 120 1.78 × 10−4 1.95 × 10−4 3.53 × 10−4

38 84 122 1.99 × 10−4 2.39 × 10−4 4.54 × 10−4

38 86 124 2.44 × 10−4 2.56 × 10−4 4.87 × 10−4

the most important. For instance, the maximum density at
which 56Fe is found is raised from 4.93 × 10−9 fm−3 for
B� = 0 to 5.60 × 10−9 fm−3 for B� = 1. For the strong
fields expected to exist in magnetars B� � 1 the sequence
of equilibrium nuclides is changed. Table VI indicates the
magnetic field strength above which a nuclide appears or
disappears. Moreover, strong magnetic fields tend to prevent
neutrons from dripping out of nuclei. The pressure at the
neutron-drip transition thus increases from 4.88 × 10−4 MeV
fm−3 for B� = 0 to 1.15 × 10−3 MeV fm−3 for B� = 2000, as

TABLE II. Same as Table I for B� = 10.

Z N A nmin nmax Pmax

26 30 56 3.96 × 10−9 2.66 × 10−8 2.700 × 10−9

28 34 62 3.06 × 10−8 1.85 × 10−7 5.67 × 10−8

28 36 64 1.93 × 10−7 8.14 × 10−7 3.75 × 10−7

28 38 66 8.40 × 10−7 9.14 × 10−7 4.36 × 10−7

36 50 86 9.31 × 10−7 1.85 × 10−6 1.05 × 10−6

34 50 84 1.91 × 10−6 6.74 × 10−6 5.59 × 10−6

32 50 82 6.99 × 10−6 1.67 × 10−5 1.77 × 10−5

30 50 80 1.73 × 10−5 3.19 × 10−5 3.98 × 10−5

29 50 79 3.26 × 10−5 4.36 × 10−5 5.88 × 10−5

28 50 78 4.46 × 10−5 5.42 × 10−5 7.64 × 10−5

28 52 80 5.56 × 10−5 8.00 × 10−5 1.24 × 10−4

42 82 124 8.36 × 10−5 1.23 × 10−4 2.07 × 10−4

40 82 122 1.26 × 10−4 1.48 × 10−4 2.56 × 10−4

39 82 121 1.50 × 10−4 1.74 × 10−4 3.12 × 10−4

38 82 120 1.77 × 10−4 1.95 × 10−4 3.53 × 10−4

38 84 122 1.98 × 10−4 2.40 × 10−4 4.55 × 10−4

38 86 124 2.44 × 10−4 2.57 × 10−4 4.88 × 10−4
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TABLE III. Same as Table I for B� = 100.

Z N A nmin nmax Pmax

26 30 56 6.28 × 10−8 2.84 × 10−7 2.97 × 10−8

28 34 62 2.96 × 10−7 1.01 × 10−6 5.41 × 10−7

28 36 64 1.04 × 10−6 1.68 × 10−6 1.47 × 10−6

36 50 86 1.76 × 10−6 2.33 × 10−6 2.62 × 10−6

34 50 84 2.40 × 10−6 7.58 × 10−6 7.34 × 10−6

32 50 82 7.85 × 10−6 1.73 × 10−5 1.97 × 10−5

30 50 80 1.80 × 10−5 3.17 × 10−5 4.19 × 10−5

29 50 79 3.24 × 10−5 4.41 × 10−5 6.10 × 10−5

28 50 78 4.51 × 10−5 5.48 × 10−5 7.85 × 10−5

28 52 80 5.62 × 10−5 8.04 × 10−5 1.27 × 10−4

42 82 124 8.38 × 10−5 1.23 × 10−4 2.10 × 10−4

40 82 122 1.27 × 10−4 1.49 × 10−4 2.58 × 10−4

39 82 121 1.51 × 10−4 1.75 × 10−4 3.14 × 10−4

38 82 120 1.78 × 10−4 1.95 × 10−4 3.55 × 10−4

38 84 122 1.99 × 10−4 2.40 × 10−4 4.57 × 10−4

38 86 124 2.44 × 10−4 2.57 × 10−4 4.90 × 10−4

shown in Fig. 1. Note, however, that the equilibrium nuclide
at the neutron-drip point remains 124Sr in all cases.

As shown in Fig. 2, the strongly quantizing magnetic field
prevailing in magnetar interiors is found to have a large impact
on the equation of state in the regions where only a few
Landau levels are filled. In particular, the quantization of
electron motion makes the outermost layers of the crust almost
incompressible, the density remaining essentially unchanged
over a wide range of pressures. However, the present model is
not well suited for describing the surface of the star because
of the nonuniformity of the electron gas [44]. In addition, at
finite temperatures thermal effects can considerably change the
equation of state [45]. With increasing density, the effects of
the magnetic field become less and less important as more and
more levels are populated and the equation of state matches
smoothly with that obtained in the absence of magnetic fields.

TABLE IV. Same as Table I for B� = 1000.

Z N A nmin nmax Pmax

26 30 56 9.96 × 10−7 2.62 × 10−6 1.98 × 10−7

28 34 62 2.71 × 10−6 1.10 × 10−5 6.23 × 10−6

28 36 64 1.14 × 10−5 1.42 × 10−5 1.01 × 10−5

38 50 88 1.45 × 10−5 1.55 × 10−5 1.16 × 10−5

36 50 86 1.60 × 10−5 2.60 × 10−5 3.21 × 10−5

34 50 84 2.69 × 10−5 3.88 × 10−5 6.81 × 10−5

32 50 82 4.03 × 10−5 5.22 × 10−5 1.16 × 10−4

30 50 80 5.43 × 10−5 6.54 × 10−5 1.69 × 10−4

29 50 79 6.68 × 10−5 7.32 × 10−5 2.03 × 10−4

28 50 78 7.48 × 10−5 7.92 × 10−5 2.28 × 10−4

28 52 80 8.12 × 10−5 9.03 × 10−5 2.83 × 10−4

42 82 124 9.37 × 10−5 1.07 × 10−4 3.70 × 10−4

40 82 122 1.10 × 10−4 1.16 × 10−4 4.09 × 10−4

39 82 121 1.18 × 10−4 1.79 × 10−4 4.59 × 10−4

38 82 120 1.82 × 10−4 2.17 × 10−4 5.04 × 10−4

38 84 122 2.21 × 10−4 2.74 × 10−4 6.20 × 10−4

38 86 124 2.78 × 10−4 2.92 × 10−4 6.57 × 10−4

TABLE V. Same as Table I for B� = 0.

Z N A nmin nmax Pmax

26 30 56 0 4.93 × 10−9 3.36 × 10−10

28 34 62 5.09 × 10−9 1.59 × 10−7 4.20 × 10−8

26 32 58 1.60 × 10−7 1.65 × 10−7 4.39 × 10−8

28 36 64 1.70 × 10−7 7.99 × 10−7 3.55 × 10−7

28 38 66 8.26 × 10−7 9.22 × 10−7 4.13 × 10−7

36 50 86 9.42 × 10−7 1.86 × 10−6 1.03 × 10−6

34 50 84 1.92 × 10−6 6.79 × 10−6 5.57 × 10−6

32 50 82 7.05 × 10−6 1.67 × 10−5 1.77 × 10−5

30 50 80 1.74 × 10−5 3.18 × 10−5 3.98 × 10−5

29 50 79 3.26 × 10−5 4.35 × 10−5 5.87 × 10−5

28 50 78 4.46 × 10−5 5.42 × 10−5 7.64 × 10−5

28 52 80 5.57 × 10−5 7.99 × 10−5 1.24 × 10−4

42 82 124 8.36 × 10−5 1.23 × 10−4 2.07 × 10−4

40 82 122 1.27 × 10−4 1.48 × 10−4 2.55 × 10−4

39 82 121 1.51 × 10−4 1.74 × 10−4 3.11 × 10−4

38 82 120 1.78 × 10−4 1.95 × 10−4 3.53 × 10−4

38 84 122 1.99 × 10−4 2.39 × 10−4 4.54 × 10−4

38 86 124 2.44 × 10−4 2.56 × 10−4 4.86 × 10−4

IV. EQUILIBRIUM COMPOSITION AND EQUATION OF
STATE OF NEUTRON-STAR CRUSTS FOR STRONGLY

QUANTIZING MAGNETIC FIELDS

A magnetic field is strongly quantizing if only the lowest
level ν = 0 is filled. This situation occurs whenever the
electron number density ne satisfies the inequality (see, e.g.,
Chap. 4 in Ref. [1])

ne <
1√

2π2a3
m

, (19)

where am = √
h̄c/eB. Since the average nucleon density is

given by n = (A/Z)ne, Eq. (19) can be equivalently expressed
as n < nB with

nB � 1.24 × 10−9 A

Z
B3/2

� fm−3 . (20)

TABLE VI. Magnetic field strength B� = B/Bc

for the appearance ( + ) or the disappearance (−) of
a nuclide in the outer crust of a cold nonaccreting
neutron star.

Nuclide B�

58Fe(−) 9
66Ni(−) 67
88Sr(+) 859

126Ru(+) 1118
128Pd(+) 1120
78Ni(−) 1120
80Ni(−) 1250
64Ni(−) 1668
79Cu(−) 1791
130Cd(+) 1804
132Sn(+) 1987
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FIG. 1. Pressure Pdrip at the neutron-drip transition in the crust of
cold nonaccreting neutron stars as a function of the magnetic field
strength B� = B/Bc. The dashed line corresponds to the approximate
expression (48) obtained in the strongly quantizing regime for which
only the lowest level ν = 0 is filled.

In the following sections, electrons will be assumed to fill
only the lowest level ν = 0 in all regions of the outer crust. We
found that this assumption is fulfilled whenever B� > 1304.

A. Equation of state

In strongly quantizing magnetic fields, the electron en-
ergy density (10) and the electron pressure (11) reduce
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FIG. 2. Pressure P versus average nucleon number density n

in the outer crust of a cold nonaccreting neutron star for different
magnetic field strengths B�. The filled squares indicate the points
above which the lowest level ν = 0 is fully occupied.

to

Ee = B�mec
2

(2π )2λ3
e

ψ+(xe) − nemec
2 , (21)

Pe = B�mec
2

(2π )2λ3
e

ψ−(xe) , (22)

respectively, with

xe = 2π2λ3
ene

B�

. (23)

The electron chemical potential can be obtained from

γe =
√

1 + x2
e . (24)

In the upper layers of the crust where xe � 1, the electron
pressure (22) is approximately given by

Pe ≈ 1

3
mec

2n3
e

[
2π2λ3

e

B�

]2

. (25)

Substituting Eq. (25) into Eq. (17) with P = 0 using Eq. (16)
yields the average density at the surface of a cold nonaccreting
magnetar [16]

ns ≈ As

Zs

[
1.44423Z

2/3
s e2

mec2

(
B�

2π2λ3
e

)2]3/5

, (26)

with Zs and As the proton number and the charge number of
the equilibrium nuclide at the surface. Considering that the
surface of a neutron star is made of iron with Zs = 26 and
As = 56 leads to

ns � 2.5 × 10−10B6/5
� fm−3 . (27)

This simple formula shows that the stronger the magnetic
field is, the higher the surface density. It should be stressed,
however, that Eq. (27) provides only an approximate estimate
of the surface density because for sufficiently strong fields the
condition xe � 1 is not fulfilled. Moreover, the present model
is not strictly valid at the surface of a neutron star, as mentioned
earlier. Using Eqs. (23) and (26), the condition xe � 1 at the
neutron star surface translates to

B� � 2π2

Z2
s

(
h̄c

1.44423e2

)3

� 2.5 × 104 . (28)

In the dense region of the outer crust where n � ns , the
lattice pressure (16) is negligible and the total pressure is
approximately given by

P � Pe ≈ mec
2n2

e

π2λ3
e

B�

. (29)

Inverting this equation yields

n = A

Z

(
PB�

mec2π2λ3
e

)1/2

. (30)

Interpolating between the shallow and the deep regions of
the outer crust, the density n in a layer at pressure P can be
approximately expressed as

n ≈ ns

(
1 +

√
P

P0

)
, (31)
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FIG. 3. Pressure P versus average nucleon number density n in
the outer crust of a cold nonaccreting neutron star for B� = 1400
from the full minimization of the Gibbs free energy (solid line) and
from the analytical representation (31) (dashed line).

where

P0 = mec
2 n2

sπ
2λ3

e

B�

(
Z

A

)2

� 1.82 × 10−11B7/5
�

(
Z

A

)2

MeV fm−3. (32)

As illustrated in Fig. 3, the analytical representation (31) yields
a fairly good fit to the equation of state obtained from the full
minimization of the Gibbs free energy g. The typical error is
found to be less than 11% for B� > 10 in any region of the
outer crust where the condition (19) holds.

At densities n � nB or equivalently at pressures P � PB ,
many Landau levels are populated so that the quantization
effects disappear and the properties of the crust are almost
unaffected by the magnetic field. According to Eqs. (20) and
(30), the pressure PB is given by

PB = B2
�

2π2

mec
2

λ3
e

. (33)

B. Composition

The results about the crustal composition presented in
Sec. III can be qualitatively understood using a simplified
atomic mass formula. Neglecting Coulomb and surface con-
tributions, the mass of a nucleus with Z protons and A nucleons
is given by

M ′(A,Z) = A(av + J (1 − 2ye)2 + muc
2) + Zmec

2 , (34)

where ye ≡ Z/A is the electron fraction, av is the binding
energy of symmetric nuclear matter, J the symmetry energy,
and mu the atomic mass unit (ignoring here the small difference
between neutron and proton masses). For the HFB-21 nuclear
mass model that we consider here [20], av = −16.053 MeV

and J = 30 MeV. Dropping the lattice energy density EL

(which is a small correction to the total energy density E), the
Gibbs free energy per nucleon as given by Eq. (18) reduces to

g = av + J (1 − 2ye)2 + muc
2 + yeμe . (35)

Minimizing Eq. (35) for a given pressure P ∼ Pe (i.e., μe

fixed) and treating ye as a continuous variable yields

ye = 1

2
− μe

8J
. (36)

Using Eqs. (23), (24), and (29) leads to

ye = 1

2

(
1 −

√
P

Pneu

)
, (37)

where

Pneu = 4B�J
2

π2λ3
emec2

. (38)

For comparison, using Eqs. (13) and (14) the electron
fraction in the absence of magnetic field is approximately
given by

y0
e = 1

2

[
1 −

(
P

P 0
neu

)1/4
]

, (39)

where

P 0
neu =

(
4J

mec2

)4
mec

2

12π2λ3
e

, (40)

assuming P � Pe and xr � 1. Introducing the isospin asym-
metry parameters η = 1 − 2ye and η0 = 1 − 2y0

e , their ratio is
given by

η

η0
=

(
P

Pneu

)1/4 (
P 0

neu

Pneu

)1/4

. (41)

As will be shown in the next section P � Pneu in any region
of the outer crust. Noting that(

P 0
neu

Pneu

)1/4

=
√

J

mec2

2

(3B�)1/4
< 2 (42)

for B� > 1304 (strongly quantizing field), we find that η < η0.
In other words, nuclei in the outer crust of a magnetar are more
symmetric than those found in the outer crust of a weakly
magnetized neutron star at the same pressure. This conclusion
is confirmed by numerical calculations using the experimental
and HFB-21 atomic masses, as shown in Fig. 4.

C. Neutron-drip transition

With increasing pressure, the crustal matter becomes more
and more neutron rich, as shown by Eq. (37). The pressure
Pneu can be interpreted as the pressure at which nuclei will
convert to neutron drops. In reality, neutrons start to drip out
of nuclei above some pressure Pdrip which is lower than Pneu.
This transition occurs when the neutron chemical potential
μn exceeds the neutron rest mass energy. As can be seen in
Tables I–V, the equilibrium nucleus at the neutron-drip point
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FIG. 4. Electron fraction ye versus pressure P in the outer crust
of a cold nonaccreting neutron star for B� = 1400 (solid line) and for
B� = 0 (dashed line). Note that in both cases the equilibrium nuclide
at the bottom of the outer crust is 124Sr even though the neutron-drip
pressures are different.

is independent of the magnetic field strength and is found to
be 124Sr for the HFB-21 atomic mass model considered here.
The reason is the following. Equilibrium with respect to weak
interaction processes requires

μp + μe = μn , (43)

where μp is the proton chemical potential. However at
equilibrium, the neutron chemical potential coincides with
the Gibbs free energy per nucleon g. Neglecting the small
contribution of the lattice energy density, Eq. (18) leads to

μe ≈ mec
2 + A

Z

(
μn − M ′(A,Z)

A

)
. (44)

Substituting the neutron-drip value of the neutron chemical
potential μn = mnc

2 in Eqs. (43) and (44), we find

μp − mpc2 = Qn,β + A

Z

(
M ′(A,Z)

A
− mnc

2

)
, (45)

where mp is the proton mass and Qn,β is the beta decay
energy of the neutron. The quantity on the left-hand side of
Eq. (45) is approximately equal to the opposite of the one-
proton separation energy. The equilibrium nucleus at neutron
drip is therefore uniquely determined by atomic masses. Using
the two-parameter mass formula discussed in Sec. IV B, we
find that the proton fraction is approximately given by

Zdrip

Adrip
≈ 1

2

√
1 + av

J
. (46)

Substituting the values of av and J from the atomic mass
model HFB-21 in Eq. (46) yields a fairly good estimate of
the proton fraction of 124Sr with an error of about 11% only.
Note, however, that without Coulomb and surface terms in the
mass formula, it is not possible to determine Zdrip and Adrip

separately.
Equation (44) shows that the electron chemical potential at

neutron drip is independent of the magnetic field and is given

by

μdrip
e = mec

2 + Adrip

Zdrip

(
mnc

2 − M ′(Adrip, Zdrip)

Adrip

)
. (47)

For 124Sr, we find μ
drip
e � 26 MeV. Using Eqs. (23), (24),

(29), and (47) implies that the pressure at the neutron-drip
point increases linearly with the magnetic field strength (in the
strongly quantizing regime) as shown in Fig. 1 and is given by

Pdrip = mec
2

λ3
e

(
γ

drip
e

)2

4π2
B� . (48)

The corresponding baryon density is given by

ndrip = Adrip

Zdrip

γ
drip
e

2π2λ3
e

B� . (49)

Using the two-parameter mass formula yields

Pdrip = Pneu

(
1 −

√
1 + av

J

)2

< Pneu , (50)

ndrip = 4JB�

π2λ3
emec2

√
1 + av

J

−1 (
1 −

√
1 + av

J

)
. (51)

Electrons fill only the lowest level ν = 0 in any region of
the outer crust provided PB � Pdrip. Using Eqs. (33) and (48),
we find that this condition is equivalent to B� > B

drip
� with

Bdrip
� = 1

2

(
γ drip

e

)2
. (52)

This estimate could have been immediately obtained from
Eq. (8) requiring x2

e � 0. For 124Sr, we find B
drip
� � 1300.

In the absence of magnetic fields, the neutron-drip pressure
and baryon density (in the ultrarelativistic regime xr � 1) are
approximately given by

P 0
drip ≈ mec

2

λ3
e

(
γ

drip
e

)4

12π2
, (53)

n0
drip ≈ Adrip

Zdrip

(
γ

drip
e

)3

3π2λ3
e

, (54)

respectively. Using Eqs. (48), (52), and (53) leads to

Pdrip

P 0
drip

= 3

2

B�

B
drip
�

>
3

2
. (55)

This shows that the neutron-drip transition occurs at a higher
pressure in a magnetar than in a weakly magnetized neutron
star.

D. Elastic properties

Because a sufficiently strong magnetic field changes the
composition of the outer crust of a neutron star, it can also
have an impact on the crustal properties. In view of the
recent detection of QPOs in the x-ray flux of giant flares
from SGRs, a particularly important property of strongly
magnetized neutron star crusts is the shear modulus which
determines the frequencies of torsional oscillations.
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FIG. 5. Effective shear modulus S versus pressure P in the outer
crust of a cold nonaccreting neutron star for B� = 1400 (solid line)
and for B� = 0 (dashed line). Note that the neutron-drip pressures are
different in the two cases.

We have calculated the “effective” shear modulus S of the
outer crust, assuming that it is made of a body-centered-cubic
lattice polycrystal, using the following expression [46]:

S = 0.1194nN

Z2e2

RN

, (56)

where RN is the ion-sphere radius defined by

RN =
(

3

4πnN

)1/3

. (57)

As shown in Fig. 5, the effective shear modulus of the outer
crust of a neutron star can be enhanced by the presence of a
strong magnetic field.

E. Global structure

In the outer crust of a nonrotating neutron star of grav-
itational mass M and circumferential radius R, the general
relativistic equations can be approximately written as (see,
e.g., Ref. [34])

dP

dz
≈ gsρ , (58)

where gs is the surface gravity defined by

gs = GM
R2

(
1 − rg

R

)−1/2
, (59)

z is the depth below the surface, rg = 2GM/c2 is the
Schwarzschild radius, and ρ ≈ nmu is the mass density. The
gravitational mass M � M contained in the outer crust is
approximately given by

M ≈ 8πR3Pdrip

c2

(
R

rg

− 1

)
. (60)

Comparing Eqs. (48) and (53) shows that the crustal mass
for neutron stars endowed with strongly quantizing magnetic

fields is larger than that of weakly magnetized neutron stars
with the same mass and radius and is given by

M = 2R3me

(
γ

drip
e

)2
B�

πλ3
e

(
R

rg

− 1

)
. (61)

Likewise the magnetic field increases the baryonic mass
contained in the outer crust, which is approximately
given by

MB ≈
√

1 − rg

R
M . (62)

On the contrary, the depth z below the surface where neutron
drip occurs and which therefore delimits the boundary between
the outer and inner crusts does not depend on the magnetic
field strength. Indeed, in the absence of magnetic fields
assuming that the main contribution to the pressure is due
to ultrarelativistic electrons (i.e., P ∝ ρ4/3), Eq. (58) can be
easily solved, leading to [34]

z0 ≈ 8P 0
dripR

ρ0
dripc

2

√
R

rg

(
R

rg

− 1

)
, (63)

which can be expressed as

z0 = 2meγ
drip
e y

drip
e R

mu

√
R

rg

(
R

rg

− 1

)
, (64)

where we used Eqs. (53) and (54). In the presence of a strongly
quantizing magnetic field, Eq. (29) shows that the pressure
varies approximately as P ∝ ρ2. Solving Eq. (58) thus yields

z ≈ 4PdripR

ρdripc2

√
R

rg

(
R

rg

− 1

)
. (65)

Using Eqs. (48) and (49) leads to Eq. (64) so that z = z0.

V. CONCLUSION

We calculated the composition and the equation of state of
the outer crust of cold nonaccreting neutron stars endowed with
very strong magnetic fields of order B � m2

ec
3/(eh̄) � 4.4 ×

1013 G, as measured in soft gamma-ray repeaters, anomalous
x-ray pulsars, and even in a few radio pulsars [3,5]. For this
purpose, we made use of the most recent experimental atomic
mass data [29] complemented with the latest Hartree-Fock-
Bogoliubov atomic mass model [20].

The Landau quantization of electron motion due to the
strong magnetic field is found to have a significant impact
on the neutron-star crust properties: (i) it changes the crustal
composition (the sequence of equilibrium nuclides being
different than that found in weakly magnetized crusts, as
summarized in Table VI) and (ii) it makes the matter less
neutron rich as shown in Fig. 4 and tends to prevent neutrons
from dripping out of nuclei (the pressure at neutron drip
increasing with B as shown in Fig. 1). As a consequence, the
presence of a strong magnetic field can have an impact on the
crustal properties like the shear modulus, as shown in Fig. 5.
These results may have implications for the interpretation
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of the quasiperiodic oscillations observed in soft gamma-
ray repeaters. Likewise, other crustal properties such as the
thermal and electric conductivities could be affected. The
present results might therefore also impact the thermal and
magnetic field evolution of magnetars. This warrants further
study.

The outer crust of a magnetar is also found to be much more
massive than the outer crust of a weakly magnetized neutron
star with the same gravitational mass M and circumferential
radius R. This implies that the contribution of magnetars to
the galactic enrichment in nuclides heavier than iron from the
rapid neutron capture process (r process) of nucleosynthesis

following the ejection and the decompression of crustal
material [47] could be much more important than previously
thought.
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