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In the context of a 3P0 quark-pair creation model for the process ρ → ππ , a method is developed for taking
relativity into account in the calculation of hadron decays. Following a brief review of relativistic quantum
mechanics, an expression is derived for the general relation between a momentum-space, two-particle, instant
form wave function in an arbitrary frame and the wave function associated with the c.m. frame. This relation
is used to develop relativistic wave functions for the π and ρ mesons. Second quantized state vectors for ππ

and ρ states are constructed with the help of these relativistic wave functions. The ρ → ππ transition amplitude
is obtained by using these state vectors to calculate matrix elements of a second quantized 3P0 quark-pair
creation operator derived from a scalar Lagrangian density. The amplitude differs from the one obtained using
nonrelativistic wave functions in the appearance of Wigner rotations. In spite of the complications arising from
these rotations the calculation of the relativistic amplitude is reduced to carrying out a two-dimensional integral.
The amplitude is of the same form as one derived from an effective ρππ Lagrangian except for the presence of
a form factor that depends on the magnitude of the three-momentum of a final-state pion. The shape of the form
factor is determined by the relativistic π and ρ wave functions. Using the ρ → ππ transition amplitude as a
vertex interaction in a relativistic model of ππ scattering, the p-wave, ππ scattering amplitude is calculated and
fit to data by adjusting the interaction strength and the ρ bare mass. This leads to a mass shift and decay width
for the ρ meson. Using nonrelativistic wave functions to calculate the form factor leads to a negligible mass shift,
whereas using the relativistic wave functions leads to a bare ρ mass of 855.7 MeV, corresponding to a physical
ρ mass of 775.5 MeV. The quark-pair creation operator strength parameter for the relativistic case is roughly a
factor of 2 larger than that for the nonrelativistic case.
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I. INTRODUCTION

Here relativistic quantum mechanics refers to the frame-
work for developing relativistic models that grew out of
an important paper by Dirac [1] in which he discussed the
various ways for incorporating interactions in the generators
of the Poincaré group. Dirac called these various possibilities
the instant form, the point form, and the front form. Each
form is associated with a three-dimensional hypersurface in
Minkowski space that is invariant under a supgroup of the
Poincaré transformation, x ′ = ax + b, and intersects every
world line just once. For the instant, point, and front forms the
hypersurfaces can be taken to be t = const., c2t2 − x2 = a2

with t > 0, and ct + z = 0, respectively. In Dirac’s approach
the generators associated with these hypersurfaces are taken to
be noninteracting, and interactions are put into the remaining
generators. In the instant form, which is the one we adopt
here, the three-momentum P and the angular momentum
J are noninteracting, while the Hamiltonian H and the
generator of rotationless boosts K contain interactions. Since
P and J generate translations and rotations in ordinary three-
dimensional space, it is clear that these transformation do not
move a space-time point off of the hypersurface t = const.

A practical method for constructing models in the various
forms of relativistic quantum mechanics is due to Bakamjian
and Thomas [2,3]. In their approach for constructing instant
form generators the 10 Poincaré generators are expressed in
terms of the 10 operators {M, P, S, X}, where M is the mass
operator, S is a spin operator, and X is the so-called Newton-
Wigner position operator [3,4]. This set of operators satisfies

much simpler commutation rules than the Poincaré generators,
which facilitates the construction of models. In the Bakamjian-
Thomas scheme P, S, and X are taken to be noninteracting,
and an interaction is put only in the mass operator M .

Here we show that the Bakamjian-Thomas scheme provides
a natural framework for constructing relativistic quark models
in which the strong coupling to decay channels is taken into
account by means of the 3P0 quark-pair creation model. In
this model it is assumed that the qq pair that is created has
the quantum numbers of the vacuum. This implies that the
qq pair must be a color singlet and a flavor singlet and have
zero total linear momentum and zero total angular momentum.
For a fermion-antifermion pair P = (−1)l+1 and C = (−1)l+s ,
where P is parity, C is charge conjugation, l is orbital angular
momentum, and s is spin angular momentum. For the vacuum
we have jPC = 0++; therefore the qq pair must have l = 1
and s = 1 combined to give j = 0; i.e., the qq pair is created
in a 3P0 state.

The 3P0 model grew out of some work by Micu [5] in
which he used the model to calculate the decay rates of meson
resonances described by the quark model. The model was
subsequently applied to both meson and baryon strong decays
by Le Yaouanc et al. [6,7]. A very thorough early application
of the 3P0 model to three-meson vertices was carried out
by Chaichian and Kögerler [8]. All of these analyses used
nonrelativistic qq and qqq wave functions to describe the
hadrons. Here we propose a remedy for dealing with this
shortcoming.

The 3P0 mechanism is somewhat similar to the mechanism
for strong decays that arises in the Isgur-Paton [9] flux-tube
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model, a model derived from the strong-coupling Hamiltonian
lattice formulation of QCD. The flux tubes provide the
interactions between quarks as well as a decay mechanism. A
decay can occur when a flux tube breaks, thereby leading to the
appearance of a quark and an antiquark on the new ends [10].
Ultimately the flux-tube decay model turns out to be a fairly
straightforward extension [11,12] of the usual 3P0 model. In
the usual model the q and q are assumed to be pointlike and to
occur with equal amplitude everywhere in space. Geiger and
Isgur [11,12] introduced three modifications. In their model
the pair is created in a finite region defined by the overlap of
the initial and final flux-tube wave functions, a form factor
is introduced to take account of the constituent quark size,
and another factor is introduced to suppress pair creation
at short distances. Here we do not deal explicitly with the
Geiger-Isgur extension of the 3P0 model, but it will become
clear that the relativistic approach developed here is capable of
doing so.

One of the most interesting questions that arises when
strong coupling to decay channels is included in quark
models is the effect on the hadron mass spectrum. These
couplings can provide self-energy contributions to the masses
of mesons (m) through the process m → m′ + m′′ → m, as
well as to baryons (b) through the process b → b′ + m → b.
Furthermore, mixing between hadrons with the same quantum
numbers can arise from processes such as m → m′ + m′′ →
m′′′ and b → b′ + m → b′′. These processes, of course, are
associated with loop diagrams.

The effect of loop diagrams on the meson spectrum was
investigated in detail by Törnqvist [13–16] and on the baryon
spectrum by Törnqvist and Zenczkykowski [17–19]. In their
approach the loop diagrams are generated by unitarity so the
model is referred to as the unitarized quark model (UQM).
With this model the mass shift of hadron A due to various open
and closed decay channels can be written as the dispersion
relation

m2
A − (

m0
A

)2 =
∑

i

wA
i

∫
si

threshold

φ(s,mB,mC)

m2
A − s

ds, i = (B,C),

(1.1)

where the sum runs over the decay channels. Here m0
A and mA

are the bare mass and physical or dressed mass of hadron A,
respectively, φ is a spectral function, wA

i is a numerical weight,
and mB and mC are the masses of the hadrons that comprise
channel i. If A is a meson then B and C are mesons, while if
A is a baryon B is a baryon and C is a meson. The weights and
the spectral function can be determined within a specific decay
model such as the 3P0 pair-creation model. With the UQM it is
possible to explain many mass shifts, mass widths, and mixing
effects among the light mesons and among the heavy cc and bb

states [13–16], as well as among the ground state and P -wave
baryons [17–19].

In a variation of the UQM Silvestre-Brac and Gignoux [20]
used the dispersion relation

Ei − E0
i = lim

ε→0

∑
c

∫ ∞

0

k2dk|Vic(k)|2
Ei − Ec(k) + iε

, (1.2)

where Ei is the perturbed energy of a state, E0
i is the

corresponding unperturbed energy, and the sum on c is over
the various decay channels. In their calculations the matrix
elements, Vic(k), that determine the coupling of state i to the
decay channels c are taken from the 3P0 model. Their analysis
helps to explain the order and importance of spin-orbit splitting
in L = 1 baryons, as well as partial and total decay widths.

Roberts and Silvestre-Brac [21] developed a very general
formalism for applying the 3P0 model to any hadron decay
of the form A → B + C. Capstick and Roberts [22–24] used
this formalism to calculate the decay amplitudes of nonstrange
baryons to a large number of baryon-meson decay channels.
They employed hadron wave functions derived from the
relativized quark model of Capstick and Isgur [25]. This model
uses the relativistic expression E =

√
p2 + m2 for the quark

energies rather than the nonrelativistic form E = p2/2m + m,
and in it the quark masses m that appear in the potentials with
E =

√
p2 + m2 are also replaced. A very useful review paper

on quark models of baryon masses and decays is by Capstick
and Roberts [26].

It should be noted that introducing relativistic expressions
into nonrelativistic quark models does not guarantee Poincaré
invariance. In principle to do this it is necessary to establish
the existence of 10 Poincaré generators with which the unitary
operators that map quantum mechanical state vectors from one
inertial frame to another can be constructed. The Bakamjian-
Thomas scheme [2,3] described above is probably the simplest
way to satisfy this requirement for Poincaré invariance. In the
instant form, for example, it is only necessary to construct
a mass operator M that commutes with P, S, and X. A
number of authors have used the Bakamjian-Thomas scheme
to construct Poincaré invariant quark models for mesons and
baryons.

Coester and Riska [27] used the point form to construct
a Poincaré invariant quark model for the baryons. The
interaction in their mass operator involves harmonic oscil-
lator confinement, a hyperfine interaction whose spin-flavor
structure is motivated by the spin-flavor part of the interaction
mediated by the exchange of the octet of light pseudoscalar
bosons [28], and an angular-momentum-dependent term. An
interesting feature of their model is that the quark masses do
not appear in their mass operator. Their model reproduces the
empirical baryon masses up to ∼1700 MeV to an accuracy
of ∼6%. A more sophisticated version of the model [29]
reproduces the empirical spectra of the baryons in all flavor
sectors to an accuracy of a few percent. This model has
a confining interaction that is a function of a hyper-radial
variable that is the radius of a six-dimensional hypersphere. It
also includes an operator that depends on the flavor quantum
numbers of strangeness, charm, and beauty, as well as a
phenomenological hyperfine interaction.

The semirelativistic quark model for baryons due to
Glozman et al. [30] consists of a linear confinement interaction
and a Goldstone boson exchange potential. Wagenbrunn et al.
[31] made this model Poincaré invariant by reinterpreting its
Hamiltonian as a point form mass operator.

Krassnigg et al. [32] used the point form to construct a
Poincaré invariant quark model for vector mesons. Their model
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employs harmonic oscillator confinement and a hyperfine
interaction generated by Goldstone boson exchange.

Here we develop a method for incorporating a Poincaré
invariant version of the 3P0 quark-pair creation model into
Poincaré invariant quark models such as those presented in
Refs. [27,29,31,32]. This is done in the context of a specific
decay process, i.e., ρ → ππ . Here the ρ and π mesons are
each described as bound states of a quark and an antiquark.

In Sec. II we briefly review relativistic quantum mechanics
in the instant form, with emphasis on the Lorentz transfor-
mation of instant form state vectors from one inertial frame
to another. The relation between the momentum-space wave
function of a two-particle system in an arbitrary frame and in
a c.m. or rest frame is derived.

Section III presents a derivation of the 3P0 interaction from
the scalar Lagrangian density LI (x) = gψ(x)ψ(x), where
ψ(x) is a Dirac quark field [33]. This shows that there is
nothing inherently nonrelativistic about the 3P0 interaction.

By using the momentum-space wave function relation
derived in Sec. II, the relativistic wave functions for the π

and ρ mesons, including the color and flavor variables, are
presented in Sec. IV. The properly normalized ππ and ρ

second quantized state vectors are also given, which makes
it possible to evaluate the ρ → ππ transition amplitude by
taking matrix elements of the second quantized 3P0 interaction.

The ρ → ππ transition amplitude is developed in Sec. V.
Here we see the distinctive feature that occurs in the relativistic
treatment of the π and ρ wave functions, but not in a nonrela-
tivistic treatment—namely, the appearance of Wigner rotations
[3]. By using standard SU(2) relations we find that it is
possible, even with the complication of the Wigner rotations, to
reduce the calculation of the transition amplitude to evaluating
a two-dimensional integral. The final result is identical to the
form obtained from the effective hadronic, Lagrangian density
Lρππ (x) = −gρππ [π(x) × ∂μπ(x)] · ρμ(x), except for the
appearance of a form factor that depends on the magnitude
of the three-momentum of a pion in the final state c.m. frame.
The momentum dependence of the form factor is determined
by the quark wave functions of the mesons in their rest
frames.

In Sec. VI a simple mass operator is given whose eigenstates
are the qq wave functions for the π and ρ mesons. The operator
consists of a harmonic oscillator confinement interaction and
a hyperfine interaction. Both mesons have the same qq rest
frame radial wave function, which is a simple Gaussian.

The nonrelatistic ρ → ππ transition amplitude is devel-
oped in Sec. VII. We find that the relativistic result found
in Sec. V goes over to the nonrelativistic one if a couple of
relativistic relations for energy and momentum are replaced
by the nonrelatistic ones and the Wigner rotations are “turned
off.”

In Sec. VIII we analyze p-wave ππ scattering using a mass
operator that acts in the space spanned by p-wave ππ and ρ

meson states. The only interaction is the vertex interaction that
follows from the ρ → ππ transition amplitude. The p-wave
ππ scattering amplitude is calculated and the two adjustable
parameters of the model are fit to the data. This leads to results
for the mass shift and width of the ρ meson. The nonrelativistic

and relativistic results for these properties of the ρ meson are
compared.

Section IX gives a brief discussion of future extensions and
applications of the method developed here. Necessary results
for Wigner rotations are given in the Appendix.

Throughout we work in units in which h̄ = c = 1.

II. RELATIVISTIC QUANTUM MECHANICS

Here we analyze the construction of states that have well-
defined transformation properties under Lorentz transforma-
tions and indicate how they are used in a Bakamjian-Thomas
construction of an instant form model of a two-particle system.

Single-particle states are denoted by |pm〉, where p is the
particle’s three-momentum and m is the z component of its spin
s. In the rest frame of the particle the state rotates according to

U (r)|0m〉 =
∑
m′

|0m′〉D(s)
m′m(r), (2.1)

where U (r) is a unitary operator corresponding to the rotation
r , and D(s)(r) is a standard SU(2) matrix representative of
the rotation r . We boost the rest frame state to one of three-
momentum p by applying the unitary operator corresponding
to a canonical Lorentz boost lc(p), i.e.,

|pm〉 = U [lc(p)]|0m〉[μ/ε(p)]1/2, (2.2a)

ε(p) =
√

p2 + m2, p = (ε(p), p), (2.2b)

〈pm|p′m′〉 = δ3(p − p′)δmm′ . (2.2c)

Here μ is the mass of the particle. The square root factor in
(2.2a) is consistent with the inner product (2.2c) [34]. The
canonical boost is given by

x = lc(p)xc.m., p = (p0, p), (2.3a)

x0 = (
p0x0

c.m. + p · xc.m.

)/
W,

x = xc.m. +
(

x0
c.m. +

p · xc.m.

p0 + W

)
p
W

,

W = (p · p)1/2. (2.3b)

Under a general Lorentz transformation x ′ = ax the state
(2.2a) transforms according to [3,34]

U (a)|pm〉 =
∑
m′

|p′m′〉D(s)
m′m[rc(a, p)][ε(p′)/ε(p)]1/2,

p′ = ap, (2.4)

where rc(a, p) is a so-called Wigner rotation [3,4] defined by

rc(a, p) = l−1
c (ap)alc(p). (2.5)

If a is a rotation r this simplifies to [3,34]

rc(r, p) = r. (2.6)
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Two-particle states can be obtained by boosting from the
c.m. frame of the two particles according to [34]

|pkm1m2〉 = U [lc(p)]|km1〉 ⊗ |−k,m2〉
× [W (k)/E(p, k)]1/2, (2.7a)

(ε1(k), k) = l−1
c (p)(ε(p1), p1),

(ε2(−k),−k) = l−1
c (p)(ε2(p2), p2), (2.7b)

〈pkm1m2|p′k′m′
1m

′
2〉 = δ3(p − p′)δ3(k − k′)δm1m

′
1
δm2m

′
2
.

(2.7c)

Here k is the three-momentum of particle 1 in the c.m. frame,
p1 and p2 are the three-momenta of particles 1 and 2 in a
general frame, while the other quantities that appear are given
by

W (k) = ε1(k) + ε2(−k), (2.8a)

p = (ε(p1) + ε2(p2), p1 + p2) = (E(p, k), p), (2.8b)

E(p, k) =
√

p2 + W 2(k). (2.8c)

Under a general Lorentz transformation a, the state (2.7a)
transforms according to [3,34]

U (a)|pkm1m2〉 =
∑
m′

1m
′
2

|p′, rc(a, p)k,m′
1m

′
2〉D(s1)

m′
1m1

[rc(a, p)]

×D
(s)
m′

2m2
[rc(a, p)][E(p′, k)/E(p, k)]1/2,

p′ = ap. (2.9)

Using (2.4) in (2.7a) we can show that the direct product of
two single-particle states is related to the state (2.7) by the
relation

|p1m1, p2m2〉 = |p1m1〉 ⊗ |p2m2〉

=
[
ε1 (k) ε2 (−k)

W (k)

E (p, k)

ε (p1) ε2 (p2)

]1/2

×
∑
m′

1m
′
2

|pk,m′
1m

′
2〉D(s1)

m′
1m1

{
r−1
c [lc (p) , k1]

}
×D

(s)
m′

2m2

{
r−1
c [lc (p) , k2]

}
, (2.10a)

k1 = (ε1(k), k), k2 = (ε2(−k),−k). (2.10b)

With the help of this relation we can derive the Jacobian
that relates the p1, p2 variables to the p, k variables. The
completeness relations for the states that appear in (2.10) are
given by

1 =
∑
m1m2

∫
|p1m1, p2m2〉 d3p1d

3p2 〈p1m1, p2m2|

=
∑
m1m2

∫
|pkm1m2〉 d3pd3k 〈pkm1m2| . (2.11)

Inserting (2.10a) into this relation immediately leads to the
result

d3p1d
3p2 = W (k)

ε1 (k) ε2 (−k)

ε (p1) ε2 (p2)

E (p, k)
d3pd3k

= W (k)

ε1 (k) ε2 (−k)

ε (p1) ε2 (p2)

ε (p1) + ε2 (p2)
d3pd3k. (2.12)

By coupling angular momenta we can construct from the
state (2.7a) a state that transforms irreducibly under a Lorentz
transformation [3]. It is given by

|pklsjm〉
=

∑
mlms

∑
m1m2

∫
d	k|pkm1m2〉Yml

l (̂k)〈s1s2m1m2|sms〉

× 〈lsmlms |jm〉, (2.13a)

〈pklsjm|p′k′l′s ′j ′m′〉
= δ3(p − p)k−2δ(k − k′)δll′δss ′δjj ′δmm′ . (2.13b)

Using the identities

δJJ ′D
(J )
MM ′ =

∑
m1m2

∑
m′

1m
′
2

〈j1j2m1m2|JM〉D(j1)
m1m

′
1
D

(j2)
m2m

′
2

×〈j1j2m
′
1m

′
2|J ′M ′〉, (2.14)

Y
ml

l (r−1k̂) =
∑
m′

l

Y
m′

l

l (̂k)D(l)
m′

lml
(r), (2.15)

it can be verified that under the Lorentz transformation x ′ = ax

the state (2.13a) transforms according to

U (a)|pklsjm〉 =
∑
m′

|p′klsjm′〉D(j )
m′m[rc(a, p)]

× [E(p′, k)/E(p, k)]1/2,

p′ = ap. (2.16)

We note that the transformation is very similar to the
transformation of a single-particle state as given by (2.4). By
solving (2.13a) for |pkm1m2〉 and putting the result in (2.10a)
we find the relation

|p1m1, p2m2〉

=
[
ε1 (k) ε2 (−k)

W (k)

E (p, k)

ε (p1) ε2 (p2)

]1/2

×
∑
m′

1m
′
2

∑
lml

∑
sms

∑
jm

|pklsjm〉〈lsmlms |jm〉

×Y
ml∗
l (̂k)〈s1s2m

′
1m

′
2|sms〉D(s1)

m′
1m1

{
r−1
c [lc (p) , k1]

}
×D

(s)
m′

2m2

{
r−1
c [lc(p), k2]

}
. (2.17)

The result (2.17) will allow us to incorporate relativistic
wave functions for the bound states of quarks into the quark-
pair creation model. The framework we will use to construct
such wave functions is based on the Bakamjian-Thomas
[2,3] instant form scheme for relativistic quantum mechanics.
In a satisfactory relativistic quantum mechanics there exist
unitary operators U (a, b) that correspond to the Poincaré
transformation x ′ = ax + b and map quantum mechanical
state vectors from the x frame to the x ′ frame. For proper
transformations these unitary operators can be expressed in
terms of the 10 Poincaré generators, four of which are the
components of the four-momentum operator P = (H, P),
while the other six are the components of the three-vector
operators J and K. Here H is the Hamiltonian operator, P
is the three-momentum operator, J is the angular momentum
operator, and K is the generator of rotationless boosts.
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In a Bakamjian-Thomas scheme the 10 generators
{H, P, J, K} are expressed in terms of another set of ten
Hermitian operators {M, P, S, X} by means of the relations

H = (P2 + M2)1/2, (2.18a)

J = X × P + S, (2.18b)

K = −1

2
(XH + HX) − P × S

M + H
. (2.18c)

Here M is the mass operator, S is the spin operator, and X
is the Newton-Wigner [3,4] position operator. The advantage
of the second set of operators over the generators is that
they satisfy much simpler commutation rules. In particular
the only nonzero commutators are given by the well-known
commutation rules

[Pj ,Xk] = −iδjk, [Sj , Sk] = iεjklSl. (2.19)

The operators P, S, and X are chosen to be the same as those
for the system of particles without interactions, while the mass
operator M contains interactions. The commutation rules for
P, S, and X are then automatically satisfied, and in order to
guarantee Poincaré invariance it is only necessary to ensure
that

[M, P] = 0, [M, S] = 0, [M, X] = 0. (2.20)

With this scheme the generators P and J are noninteracting,
while H and K contain interactions. This defines an instant
form of relativistic quantum mechanics, since the Poincaré
transformations constructed from the noninteracting genera-
tors map a Minkowski subspace t = const. into itself.

The representatives of the noninteracting operators in the
space spanned by the states (2.13) are given by

〈pklsjm| P = p 〈pklsjm|, 〈pklsjm| X = i∇p 〈pklsjm|,
〈pklsjm| S2 = j (j + 1) 〈pklsjm|,
〈pklsjm| S3 = m 〈pklsjm|,
〈pklsjm| S± = 〈pklsjm| (S1 ± iS)

= [j (j + 1) − m (m ∓ 1)]1/2 〈pklsj,m ∓ 1|.
(2.21)

Using (2.21) and the conditions imposed by (2.20) we can
show that the matrix elements of the mass operator must be of
the form

〈pklsjm|M|p′k′l′s ′j ′m′〉 = δ3(p − p′)δjj ′δmm′M
j

ls,l′s ′ (k, k′).
(2.22)

The operators M , P, S2, and S3 commute with each other;
therefore we can construct simultaneous eigenstates of them
according to

M |qWjm〉 = W |qWjm〉, (2.23a)

P |qWjm〉 = q|qWjm〉,
S2 |qWjm〉 = j (j + 1) |qWjm〉, (2.23b)

S3 |qWjm〉 = m|qWjm〉.

If we write the mass eigenstates in the form

|qWjm〉 =
∑
ls

∫
|qklsjm〉 k2dk φ

Wj

ls (k) , (2.24)

we see that they explicitly satisfy (2.23b). By putting this form
into (2.23a), contracting with one of the states (2.13), and using
(2.21) and (2.22), we find the integral equation∑

l′s ′

∫
M

j

ls,l′s ′ (k, k′)k′2dk′ φWj

l′s ′ (k′) = Wφ
Wj

ls (k) . (2.25)

We note that this equation verifies that the wave function
φ

Wj

ls (k) that appears in (2.24) does not depend on q or m.
Assuming that∑

ls

∫ ∞

0
φ

Wj∗
ls (k) φ

W ′j
ls (k) k2dk = δWW ′ , (2.26)

and using (2.13b), we find that the mass eigenstates are
normalized according to

〈qWjm|q′W ′j ′m′〉 = δ3(q − q′)δWW ′δjj ′δmm′ . (2.27)

Using (2.10), (2.24), (2.13a), and (2.12) we find that in the
|p1m1, p2m2〉 basis the mass eigenstates are given by


Wjm
m1m2

(p1, p2; q)

= 〈p1m1, p2m2 |qWjm〉
= δ3 (p − q)

∑
m′

1m
′
2

A
(s1,s2)
m1m2,m

′
1m

′
2

(p1, p2) ψ
Wjm

m′
1m

′
2

(k) , (2.28a)

A
(s1,s2)
m1m2,m

′
1m

′
2

(p1, p2)

=
[
ε1 (k) ε2 (−k)

W (k)

E (p, k)

ε (p1) ε2 (p2)

]1/2

×D
(s1)
m1m

′
1
{rc [lc (p) , k1]} D

(s)
m2m

′
2
{rc[lc(p), k2]}, (2.28b)

ψWjm
m1m2

(k)

=
∑
ls

∑
mlms

〈s1s2m1m2|sms〉

× 〈lsmlms |jm〉Yml

l ( k̂ )φWj

ls (|k|) , (2.28c)

p = (ε(p1) + ε2(p2), p1 + p2)

= (E(p, k), p) = (
√

p2 + W 2(k), p), (2.28d)

k1 = l−1
c (p)(ε(p1), p1) = (ε1(k), k),

k2 = l−1
c (p)(ε(p2), p2) = (ε2(−k),−k). (2.28e)

Equation (2.28a) gives the relation between 

Wjm
m1m2 (p1, p2; q),

the wave function of the system in an arbitrary frame, and
ψ

Wjm
m1m2 (k), the rest frame wave function of the system. This

equation plays an essential role in incorporating relativistic
wave functions into the 3P0 quark-pair creation model. For
future reference we note that by inverting (2.10a) we can easily
show that

〈pkm1m2 |qWjm〉 = δ3 (p − q) ψWjm
m1m2

(k) . (2.29)
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III. THE INTERACTION

The interaction in the quark-pair creation model can be
derived from the quantum field theory Hamiltonian [33]

HI = g

∫
d3x ψ(x)ψ(x), t = 0, (3.1)

where ψ (x) is a Dirac field operator associated with the space-
time point x. Since under a Lorentz transformation x ′ = ax,
the interaction density ψ (x) ψ (x) is a Lorentz scalar function
the above interaction can be said to be relativistic. The field
operator can be expanded in the form

ψ (x) =
2∑

r=1

∫
d3p

(2π )3/2

√
m

ε(p)
[br (p)e−ip·xur (p)

+ (−1)r+1d†
r (p)eip·xvr (p)]. (3.2)

Here b
†
r and d

†
r create a quark and an antiquark, respectively.

The corresponding spinors are given by

ur (p) =
√

ε (p) + m

2m

[
χr

σ ·p
ε(p)+m

χr

]
,

vr (p) =
√

ε (p) + m

2m

[ σ ·p
ε(p)+m

χ ′
r

χ ′
r

]
, (3.3a)

χ1 = χ ′
2 = χ1/2 =

[
1
0

]
, χ2 = χ ′

1 = χ−1/2 =
[

0
1

]
.

(3.3b)

The factor (−1)r+1 that appears in (3.2) has been put there
so that d

†
r creates angular momentum states that follow the

Condon-Shortley phase conventions [35]. With this factor the
angular momentum operator is given by

J =
∫

d3x ψ† (x)

[
L (x) + 1

2
σ

]
ψ (x)

=
∫

d3p
∑
r,s

{
b†r (p)

[
δrsL (p) + 1

2
σ rs

]
bs (p)

+ d†
r (p)

[
δrsL (p) + 1

2
σ rs

]
ds (p)

}
, (3.4a)

L(p) = i∇p × p. (3.4b)

Thanks to the (−1)r+1factor the roles of the quark and
antiquark creation and annihilation operators are completely
symmetrical in their application to creating angular momen-
tum eigenstates.

Putting (3.2) into (3.1) we find that the quark-pair creation
part of the interaction Hamiltonian is given by

HQPC = g
∑
r,s

∫
d3p1d

3p2
m√

ε(p1)ε(p2)
b†r (p1)d†

s (p2)

× δ3(p1 + p2)ur (p1)vs(p2)(−1)s+1. (3.5)

By using (3.3) it is straightforward to show that

lim
p1+p2→0

∑
r,s

mb†r (p1) d†
s (p2) ur (p1) vs (p2) (−1)s+1

= −
√

8π

3

{
Y−1

1 (p) b
†
1 (p1) d

†
1 (p2) − 1√

2
Y0

1 (p)

× [b†1 (p1) d
†
2 (p2) + b

†
2 (p1) d

†
1 (p2)]

+ Y1
1 (p) b

†
2 (p1) d

†
2 (p2)

}
. (3.6a)

p = (p1−p2)/2, (3.6b)

where

Ym
1 (p) =

√
3

4π
εm · p = |p|Ym

1 ( p̂ ), (3.7)

with εm a spherical unit vector defined by

ε± = ∓ 1√
2

(e1 ± ie2) , ε0 = e3. (3.8)

The result (3.6) can be written more compactly by introduc-
ing the Clebsch-Gordon coefficients 〈1, 1,m,−m|0, 0〉 and
〈1/2, 1/2,m1,m2|1,−m〉 and slightly changing notation. This
leads to the following expression for the quark-pair creation
interaction:

HQPC = −g
√

8π
∑
r,s

∫
d3p1d

3p2√
ε (p1) ε (p2)

δ3 (p1 + p2)

×
∑
m

∑
m1m2

〈1, 1, m,−m|0, 0〉Ym
1 (p)

×〈1/2, 1/2,m1,m2|1,−m〉b†m1
(p1) d†

m2
(p2) . (3.9)

In order to apply this interaction to quarks we must
introduce the flavor and color degrees of freedom. For the
SU(3) flavor singlet φ0 and the SU(3) color singlet ω0 we
write

φ0 = (1/
√

3)(−uu + dd + ss),
(3.10)

ω0 = (1/
√

3)(−rr + yy + bb).

It should be noted that we are following deSwart’s conventions
[36] for the SU(3) Clebsch-Gordon coefficients. Numbering
the quark flavor and color states 1, 2, 3, we can write

(φ0)i1i2
= ηi1i2 = δi1i2ηi1/

√
3,

(ω0)j1j2
= ηj1j2 = δj1j2ηj1/

√
3, (3.11)

η1 = −1, η2 = η3 = 1.

We now take for our quark-pair creation operator

T = −2mqγ
∑
i1i2

∑
j1j2

∫
d3p1d

3p2√
ε (p1) ε (p2)

δ3 (p1 + p2)

×
∑
m

∑
m1m2

〈1, 1,m,−m| 0, 0〉Ym
1

(
p1 − p2

2

)
×〈1/2, 1/2,m1, m2|1,−m〉
× b

†
m1i1j1

(p1) ηi1i2ηj1j2d
†
m2i2j2

(p2) , (3.12)
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where mq is a quark mass and γ is a dimensionless strength
parameter.

IV. MESON STATE VECTORS

To specify the state vectors of the π and ρ mesons we must
add color and flavor variables to the relativistic wave function
(2.28). The color singlet for these mesons is the ω0 given by
(3.10) and (3.11). The flavor states for them are the same and
are given by

f1 = ud, f0 = (1/
√

2)(uu + dd), f−1 = du, (4.1)

which describe particles with isospin one. u and d have isospin
components i = 1/2 while d and u have isospin i = −1/2. If
we let i1 and i2 designate the isospin components of particles
1 and 2, we can write

(ft )i1i2 = 〈1/2, 1/2, i1, i2|1t〉,
t = ±1, 0. (4.2)

Since our meson states involve only up and down quarks and
antiquarks the ss term in (3.10) makes no contribution, so in
(3.11) and (3.12) we can make the replacements

φ0 → −
√

2

3

(
1√
2
uu − 1√

2
dd

)
, (4.3)

(φ0)i1i2 = ηi1i2 → −
√

2/3〈1/2, 1/2, i1, i2|0, 0〉. (4.4)

Adapting the wave function (2.28) by adding the color and
flavor variables, we can specify the π and ρ state vectors by
writing

πt
m1i1j1,m2i2j2

(p1, p2; q)

= δ3 (p − q)
∑
m′

1m
′
2

A
(1/2,1/2)
m1m2,m

′
1m

′
2

(p1, p2) 〈1/2, 1/2,m′
1,m

′
2|0, 0〉

×〈1/2, 1/2, i1, i2|1, t〉 ηj1j2φ (|k|) /
√

4π, (4.5a)

ρmt
m1i1j1,m2i2j2

(p1, p2; q)

= δ3 (p − q)
∑
m′

1m
′
2

A
(1/2,1/2)
m1m2,m

′
1m

′
2

(p1, p2) 〈1/2, 1/2,m′
1,m

′
2|1,m〉

× 〈1/2, 1/2, i1, i2|1, t〉 ηj1j2χ (|k|) /
√

4π. (4.5b)

In order to condense our notation we let α be a cover index for
the indices m,i, and j , i.e., α = {m, i, j}. Using this notation,
along with (2.12), (2.26), (2.28b), and (3.11), we can easily
show that the orthonormality relations of the π and ρ state
vectors are given by

〈πqt |πq′t ′〉 =
∑
α1α2

∫
d3p1d

3p2

×πt∗
α1α2

(p1, p2; q) πt ′
α1α2

(p1, p2; q′)

= δ3(q − q′)δtt ′ , (4.6a)

〈ρqmt |ρq′m′t ′〉 =
∑
α1α2

∫
d3p1d

3p2

× ρmt∗
α1α2

(p1, p2; q) ρm′t ′
α1α2

(p1, p2; q′)

= δ3(q − q′)δmm′δtt ′ , (4.6b)

〈πqt |ρq′m′t ′〉 = 0. (4.6c)

In order to use the π and ρ wave functions in conjunction with
the quark-creation operator (3.12) we write the ππ state vector
and the ρ state vector in second quantized form, i.e.,

|πq1t1, πq2t2〉 = (1/
√

2)
∑

α1α2α3α4

∫
d3p1d

3p2d
3p3d

3p4

× b†α1
(p1) d†

α2
(p2) b†α3

(p3) d†
α4

(p4) |0〉
×πt1

α1α2
(p1, p2; q1) πt2

α3α4
(p3, p4; q2) ,

(4.7a)

|ρqmt〉 =
∑
α1α2

∫
d3p1d

3p2b
†
α1

(p1) d†
α2

(p2) |0〉

× ρmt
α1α2

(p1, p2; q) . (4.7b)

The normalization factor (1/
√

2) in (4.7a) requires some
justification. If we attempt to evaluate the inner product
〈πq1t1, πq2t2|πq3t3, πq4t4〉 we encounter in the integrand the
expression

πt1∗
α1α2

(p1, p2; q1) πt2∗
α3α4

(p3, p4; q2) [e + (13)(24) − (13)

− (24)]πt3
α1α2

(p1, p2; q3) πt4
α3α4

(p3, p4; q4) , (4.8)

where the permutations act on the subscripts of the α’s and
p’s, but not on those of the t’s and q’s. The permutation
(13)(24) switches the quarks and antiquarks between the
two pions, while (13) switches just the quarks, and (24)
switches just the antiquarks. If we envision the final-state
pions in a configuration-space, time-dependent picture, we
recognize that the pions are far apart and receding from
each other. The issue of antisymmetrizing between two
nonoverlapping systems is discussed in a number of references
[21,37,38]. Here we consider a simple argument. If we
ignore relativity for the moment and let r1, r2, r3, and r4

be the position vectors corresponding to the p’s in (4.7a)
then the bound-state, quark-antiquark wave functions are
significant only when r12 = |r1 − r2| and r34 = |r3 − r4| are
small. When, for example, we switch quark 1 and quark 3,
then r12 → r32 = |r3 − r2| and r34 → r14 = |r1 − r4|, where
both r32 and r14 are large, so the quark-antiquark wave
functions become vanishingly small. As a result of this
the product πt1∗

α1α2
(r1, r2; q1)πt2∗

α3α4
(r3, r4; q2)πt3

α3α2
(r3, r2; q3)

πt4
α1α4

(r1, r4; q4) essentially vanishes, and similarly for the
(24) switch. The upshot of this is that in determining the
normalization factor for the pion-pion final state only the first
two terms in (4.8) are taken into account. Using (4.6a) we
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find

(1/2)
∑

α1α2α3α4

∫
d3p1d

3p2d
3p3d

3p4π
t1∗
α1α2

(p1, p2; q1) πt2∗
α3α4

(p3, p4; q2)

× [
πt3

α1α2
(p1, p2; q3) πt4

α3α4
(p3, p4; q4) + πt4

α1α2
(p1, p2; q4) πt3

α3α4
(p3, p4; q3)

]
= (1/2)

[
δ3 (q1 − q3) δt1t3δ

3 (q2 − q4) δt2t4 + δ3 (q1 − q4) δt1t4δ
3 (q2 − q3) δt2t3

]
. (4.9)

The factor (1/2) takes care of the fact that there are two contributions to the normalization of the state.

V. THE ρ → ππ AMPLITUDE

Combining (3.12), (4.4), and (4.7) we find, for the ρ → ππ amplitude,

〈πq1t1, πq2t2|T |ρqmt〉 = (2mqγ/
√

3)
∑

m1m2m3m4

∑
i1i2i3i4

∑
j1j2j3j4

∫
d3p1d

3p2d
3p3d

3p4
{
[e + (13) (24) − (13) − (24)]

×π
t1∗
m1i1j1,m2i2j2

(p1, p2; q1) π
t2∗
m3i3j3,m4i4j4

(p3, p4; q2)
} δ3 (p1 + p2)√

ε (p1) ε (p2)

∑
n

〈1, 1, n,−n|0, 0〉

×Yn
1

(
p1 − p2

2

)
〈1/2, 1/2,m1,m2|1,−n〉〈1/2, 1/2, i1, i2|0, 0〉ηj1j2ρ

mt
m3i3j3,m4i4j4

(p3, p4; q) .

As a result of the orthogonality relation (4.6c), the e and the (13)(24) terms drop out. We now consider the (13) term. If we switch
the indices on the p’s, i’s, and j ’s according to (12)(34), and use (4.5) and (2.83), we find that the (13) term transforms into the
(24) term, so we can replace [e + (13)(24) − (13) − (24)] with [−2(24)], leading to

〈πq1t1, πq2t2|T |ρqmt〉 = −(4mqγ/
√

3)
∑

m1m2m3m4

∑
i1i2i3i4

∑
j1j2j3j4

∫
d3p1d

3p2d
3p3d

3p4π
t1∗
m1i1j1,m4i4j4

(p1, p4; q1)

×π
t2∗
m3i3j3,m2i2j2

(p3, p2; q2)
δ3 (p1 + p2)√
ε (p1) ε (p2)

∑
n

〈1, 1, n,−n| 0, 0〉Yn
1

(
p1 − p2

2

)
×〈1/2, 1/2,m1,m2|1,−n〉〈1/2, 1/2, i1, i2|0, 0〉ηj1j2ρ

mt
m3i3j3,m4i4j4

(p3, p4; q) . (5.1)

With the help of (3.11) and (4.5), we find that the color
factor in (5.1) is given by∑

j1j2j3j4

ηj1j4ηj3j2ηj1j2ηj3j4 = 1/3. (5.2)

Using (4.5) and (3.8), we find that the flavor factor is given by∑
i1i2i3i4

〈1/2, 1/2, i1, i4|1, t1〉〈1/2, 1/2, i3, i2|1, t2〉

×〈1/2, 1/2, i1, i2|0, 0〉〈1/2, 1/2, i3, i4|1, t〉
= i

2

(
ε∗

t1
× ε∗

t2

) · εt . (5.3)

According to (5.1), the total and relative momentum variables
that appear in the meson wave functions (4.5a) and (4.5b), are
defined by

pij = (ε(pi) + ε(pj ), pi + pj ) = (E(pij , kij ), pij ), (5.4a)

kij = (ε(kij ), kij ) = l−1
c (pij )(ε(pi), pi),

k′
ij = (ε(−kij ),−kij ) = l−1

c (pij )(ε(pj ), pj ). (5.4b)

We can use (2.12) to replace the integration elements in (5.1)
according to

d3p1d
3p2d

3p3d
3p4

→ W (k14)

ε (k14) ε (−k14)

ε (p1) ε (p4)

E (p14, k14)
d3p14d

3k14d
3p2d

3p3.

(5.5)

We now assume the ρ meson is at rest, i.e., q = 0. With the
help of (4.5b), (2.26), and (2.5), we find that the rest frame ρ

wave function is simply

ρm
m3m4

(p3, p4; 0)

= δ3 (p3 + p4) 〈1/2, 1/2,m3,m4|1,m〉χ (|−p4|) /
√

4π,

(5.6)

where we have removed the color and flavor factors. If we
integrate out p14, p2, and p3, and use the inverse of the Lorentz
transformation (2.3) to express k14 and k32 in terms of the pi’s,
we find that

p2 → −p1, p3 → −p4, p32 → (
p0

14,−p14
)
, k32 → k14,

p14 → (E(q1, k14), q1), p32 → (E(q2, k14), q2). (5.7)
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We now let k = k14, q = q1, and p1 → p and define

q1 = (E(q, k), q), q2 = (E(−q,−k),−q), (5.8a)

k1 = (ε(k), k), k2 = (ε(−k),−k), (5.8b)

ε(p) = E(q, k)ε(k) + q · k
W (k)

, p = k +
[
ε(k) + q · k

E(q, k) + W (k)

]
q

W (k)
. (5.8c)

With the help of these relations, as well as (2.28b) and (4.5), we find that the amplitude (5.1) can be written in the form

〈πq1t1, πq2t2|T |ρ0mt〉 = δ3(q1 + q2)

[
− i2mqγ

(12π )3/2

](
ε∗

t1
× ε∗

t2

) · εt

∑
m1m2m3m4

∑
n1n2n3n4

∫
d3k

ε(p)
φ2(|k|)χ (|p − q|)

×〈1/2, 1/2, n1, n4|0, 0〉D(1/2)
n1m1

{
r−1
c [lc(q1), k1]

}
D(1/2)

n4m4

{
r−1
c [lc(q1), k2]

}
×〈1/2, 1/2, n3, n2|0, 0〉D(1/2)

n3m3

{
r−1
c [lc(q2), k1]

}
D(1/2)

n2m2

{
r−1
c [lc(q2), k2]

}
×

∑
n

〈1, 1, n,−n|0, 0〉Yn
1 (p)〈1/2, 1/2,m1,m2|1,−n〉〈1/2, 1/2,m3,m4|1,m〉. (5.9)

Using the results from the Appendix, we can write for the Wigner rotations that appear in (5.9)

D(1/2)
{
r−1
c [lc(q1), k1]

} = D(1/2)
{
r−1
c [lc(q2), k2]

} = exp(−iθ · σ/2) = D(1/2)(θ), θ = ζ (q, k)u(q, k), (5.10a)

D(1/2){r−1
c [lc(q1), k2]

} = D(1/2){r−1
c [lc(q2), k1]

} = exp(−iξ · σ/2) = D(1/2)(ξ ), ξ = −ζ (q,−k)u(q, k), (5.10b)

where ζ and u are given by (A9) and (A8c), respectively.
Clearly the D’s in (5.10) are the spin-1/2 irreducible repre-
sentations for the Wigner rotations. We also need the spin-1,
irreducible representations for these rotations. The spin-1 D’s
can be expressed in terms of the spin-1 matrix given by

S =

⎡⎢⎣ε0 ε−1 0

−ε1 0 ε−1

0 −ε1 −ε0

⎤⎥⎦ , (5.11)

which has the convenient property

(S · u)3 = S · u. (5.12)

By using this property, it is straightforward to show that the
spin-1 D is given by

D(1)(ψ) = D(1)(ψu)

= exp(−iψS · u)

= 1 − i(S · u) sin(ψ) − (S · u)2[1 − cos(ψ)].

(5.13)

We now turn our attention to carrying out the sums that
appear in (5.9). Putting (5.10) into (5.9) we are led to define

Bnm =
∑

n1n2n3n4

〈1/2, 1/2, n1, n4|0, 0〉〈1/2, 1/2, n3, n2|0, 0〉

×
∑
m1m2

D(1/2)
n1m1

(θ)D(1/2)
n2m2

(θ)〈1/2, 1/2,m1,m2|1,−n〉

×
∑
m3m4

D(1/2)
n3m3

(ξ )D(1/2)
n4m4

(ξ )〈1/2, 1/2,m3,m4|1,m〉.

(5.14)

Using the well-known identity [see (2.14)]

D
(j1)
m1m

′
1
D

(j2)
m2m

′
2
=

∑
JMM ′

〈j1, j2,m1,m2|J,M〉D(J )
MM ′

× 〈j1, j2,m
′
1,m

′
2|J,M ′〉, (5.15)

we can rewrite (5.14) in the form

Bnm =
∑

n1n2n3n4

∑
n′m′

〈1/2, 1/2, n1, n4|0, 0〉

× 〈1/2, 1/2, n3, n2|0, 0〉〈1/2, 1/2, n1, n2|1,−n′〉
× 〈1/2, 1/2, n3, n4|1,m′〉D(1)

−n′,−n(θ )D(1)
m′m(ξ ). (5.16)

A straightforward evaluation of the Clebsch-Gordon coeffi-
cients in (5.16) leads to the result

Bnm = (1/2)
∑

a

(−1)aD(1)
−a,−n(θ)D(1)

am(ξ ). (5.17)

With the help of the identity [37]

D
(J )∗
MM ′ = (−1)M−M ′

D
(J )
−M,−M ′ , (5.18)

we can further simplify (5.17) to the result

Bnm = (1/2)(−1)n[D(1)†(θ )D(1)(ξ )]nm

= (1/2)(−1)n{exp[i(θ + ξ )S · u]}nm

= (1/2)(−1)n{I + i(S · u) sin(θ + ξ ) − (S · u)2

× [1 − cos(θ + ξ )]}nm, (5.19a)

θ = ζ (q, k), ξ = ζ (q,−k), u = u(q, k). (5.19b)

According to (5.9) we now need to calculate

Cm =
∑

n

〈1, 1, n,−n|0, 0〉Yn
1 (p)Bnm

= (1/
√

4π )
∑

n

(−1)n+1(εn · p)Bnm, (5.20)
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where we have used (3.7). Using the identity

a × b = i det

⎡⎢⎣ε1 ε0 ε−1

ε1 · a ε0 · a ε−1 · a

ε1 · b ε0 · b ε−1 · b

⎤⎥⎦ , (5.21)

we can derive the results∑
n

(εn · p)(S · u)nm = iεm · (p × u), (5.22a)∑
n

(εn · p)[(S · u)2]nm = εm · [u × (p × u)] = εm · p.

(5.22b)

In deriving (5.22b) we used the fact that u · p = 0, which
follows from (A8c) and (5.8c). Using these results in (5.20)
we obtain

Cm = −(1/
√

16π )εm · [p cos(θ + ξ ) + (u × p) sin(θ + ξ )].

(5.23)

Combining the above results, we find that (5.9) becomes

〈πq1t1, πq2t2|T |ρ0mt〉
= δ3(q1 + q2)

imqγ

48
√

3π2

(
ε∗

t1
× ε∗

t2

) · εt

×
∫

d3k

ε(p)
φ2(|k|)χ (|p − q|)

× εm · {p cos[ζ (q, k) + ζ (q,−k)] + (u × p)

× sin[ζ (q, k) + ζ (q,−k)]},
q = q1 = −q2. (5.24)

With the help of (A9) and standard trigonometric identities,
we can easily show that

cos[ζ (q, k) + ζ (q,−k)]

= 2
[E(q, k)m+W (k)ε(k)]2

[E(q, k)ε(k) + W (k)m]2 − (q · k)2
− 1, (5.25a)

sin[ζ (q, k) + ζ (q,−k)]

= 2
[q2k2 − (q · k)2]1/2[E(q, k)m+W (k)ε(k)]

[E(q, k)ε(k) + W (k)m]2 − (q · k)2
. (5.25b)

Putting these results, along with (A8c) and (5.8c), into (5.24),
we are led to define

F (q, k) = φ2(|k|)χ (|p − q|)
ε(p)

{
cos[ζ (q, k) + ζ (q,−k)]

+ (p · q) sin[ζ (q, k) + ζ (q,−k)]

[q2k2 − (q · k)2]1/2

}
, (5.26a)

G(q, k) = φ2(|k|)χ (|p − q|)
ε(p)

{[
ε(k) + q · k

E(q, k) + W (k)

]
× cos[ζ (q, k) + ζ (q,−k)]

W (k)

− (p · k) sin[ζ (q, k) + ζ (q,−k)]

[q2k2 − (q · k)2]1/2

}
. (5.26b)

Now we can rewrite (5.24) as

〈πq1t1, πq2t2|T |ρ0mt〉
= δ3(q1 + q2)

imqγ

48
√

3π2

(
ε∗

t1
× ε∗

t2

) · εt

×
∫

d3k εm · [F (q, k)k + G(q, k)q], q = q1 = −q2.

(5.27)

With the help of (5.8c) we see that F (q, k) and G(q, k) are
actually only functions of q = |q|, k = |k|, and x = q̂ · k̂.
Accordingly, we can write

F (q, k) =
∞∑
l=0

l∑
m=−l

Fl(q, k)Ym∗
l (̂k)

4π

2l + 1
Ym

l (̂q),

(5.28a)

Fl(q, k) = 2l + 1

2

∫ 1

−1
dxPl(x)F (q, k),

G(q, k) =
∞∑
l=0

l∑
m=−l

Gl(q, k)Ym∗
l (̂k)

4π

2l + 1
Ym

l (̂q),

Gl(q, k) = 2l + 1

2

∫ 1

−1
dxPl(x)G(q, k). (5.28b)

Using these expressions in (5.27), along with (3.7), and
integrating over the direction of k, we find that

〈πq1t1, πq2t2|T |ρ0mt〉
= δ3(q1 + q2)

imqγ

48
√

3π2

(
ε∗

t1
× ε∗

t2

) · εt (εm · q)E(q),

(5.29a)

q = q1 = −q2, q = |q|, x = q̂ · k̂,

E(q) =
∫ ∞

0
dkk2

∫ 1

−1
2πdx[xF (q, k)(k/q) + G(q, k)].

(5.29b)

It is worth noting that
∫ 1
−1dx xF (q, k) vanishes as q goes to

zero, so the integral in (5.29b) is well defined in this limit.
For the physical process ρ → ππ the magnitude of the final
momentum of each pion is given by

qρ = [
(mρ/2)2 − m2

π

]1/2
. (5.30)

We define a form factor normalized to one at q = qρ by

�(q) = E(q)/E(qρ). (5.31)

With this definition (5.29) becomes

〈πq1t1, πq2t2|T |ρ0mt〉
= δ3(q1 + q2)

imqγE(qρ)

48
√

3π2
(ε∗

t1
× ε∗

t2
) · εt (εm · q)�(q),

q = q1 = −q2. (5.32)

It is instructive to compare this result with the one obtained
from the effective ρππ interaction Lagrangian density and the
corresponding Hamilton given by

Lρππ (x) = −gρππ [π(x) × ∂μπ(x)] · ρμ(x),

Hρππ = −
∫

d3xLρππ (x)|t=0. (5.33)
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A straightforward calculation leads to the amplitude

〈πq1t1, πq2t2|Hρππ |ρ0mt〉
= δ3(q1 + q2)

igρππ

(2π )3/22ωπ (q)
√

mρ

(
ε∗

t1
× ε∗

t2

) · εt (εm · q),

(5.34)

Comparing this result with (5.32) at q = qρ , we see that we
can rewrite (5.32) as

〈πq1t1, πq2t2|T |ρ0mt〉 = δ3(q1 + q2)
igρππ

(2πmρ)3/2

(
ε∗

t1
× ε∗

t2

)
·εt (εm · q)�(q),

q = q1 = −q2. (5.35)

VI. MESON MASS OPERATOR

In order to construct a mass operator for the π and ρ mesons
we need representatives of the various angular momentum
operators. From (2.9) it follows that

〈pkm1m2|U †(r) =
∑
m′

1m
′
2

D
(1/2)
m1m

′
1
(r−1)D(1/2)

m2m
′
2
(r−1)〈rp,rk,m′

1m
′
2|,

(6.1)

where the relevant representations for the rotations are given
by

r(ψ) = exp(−iψ · j), (jl)mn = −iεlmn,

U (r) = exp(−iψ · J), D(1/2)(r) = exp(−iψ · σ/2). (6.2)

Expanding both sides of (6.1) to first order in ψ , comparing,
and using (2.21), we find

J = X × P + L + 	, (6.3a)

〈pkm1m2|L = L(k)〈pkm1m2|, L(k) = i∇k × k, (6.3b)

	 = 	(1)+	(2),

〈pkm1m2|	(1) =
∑
m′

1m
′
2

〈pkm′
1m

′
2|(1/2)σ (1)

m′
1m1

δm′
2m2 ,

〈pkm1m2|	(2) =
∑
m′

1m
′
2

〈pkm′
1m

′
2|δm′

1m1 (1/2)σ (2)
m′

2m2
. (6.3c)

According to (2.18b) the spin operator is given by

S = L + 	. (6.4)

For our mass operator we choose

M = M0 + M1, (6.5a)

〈pkm1m2|M2
0 = [W 2(k) + 4ω4(i∇k)2]〈pkm1m2|, (6.5b)

M1 = C
σ (1) · σ (2)

m2
u

, σ (i) = 2	(i), (6.5c)

where M0 is a harmonic oscillator interaction and M1 is
a hyperfine interaction. We suppress the color and flavor
variables since they do not play a role here. We choose the
masses of the up and down quarks to be the same.

We note that the operators L and 	 satisfy the commutation
relations

[L,M0] = [	,M0] = [L,M1] = [	,M1] = 0; (6.6)

therefore we can construct simultaneous eigenstates of M , P,
L2, �2, S2, and S3. Extending (2.23), we can write

M|qWlsjm〉 = W |qWlsjm〉,
P|qWlsjm〉 = q|qWlsjm〉,

L2|qWlsjm〉 = l(l + 1)|qWlsjm〉,
(6.7)

	2|qWlsjm〉 = s(s + 1)|qWlsjm〉,
S2|qWlsjm〉 = j (j + 1)|qWlsjm〉,
S3|qWlsjm〉 = m|qWlsjm〉.

We see from (2.13a) and (2.21) that except for the mass
eigenvalue equation all of these equations are satisfied by the
state

|qWlsjm〉 =
∫ ∞

0
|qklsjm〉k2dk φ

Wj

ls (k), (6.8)

for any choice of the function φ
Wj

ls (k). Of course the mass
eigenvalue equation determines this function. By using the
elementary identity σ (1) · σ (2) = 2	2 − 3 we can replace the
mass eigenvalue equation with

M2
0 |qWlsjm〉 =

[
W − C

2s(s + 1) − 3

m2
u

]2

|qWlsjm〉. (6.9)

With the help of (2.13) we can show that

〈pklsjm|M2
0 =

[
W 2(k) − 4ω4

k

∂2

∂k2
k + 4ω4 l(l + 1)

k2

]
×〈pklsjm|. (6.10)

Letting this identity act on (6.9), and using (6.8) and (2.13b),
we find the differential equation{

1

k

∂2

∂k2
k − l(l + 1)

k2
− k2 + m2

u

ω4

+ 1

4ω4

[
W − C

2s(s + 1) − 3

m2
u

]2}
φ

Wj

ls (k) = 0. (6.11)

The solution of this harmonic oscillator differential equation
is well known and is given by

Wnls = [
4m2

u + 8ω2(2n + l + 3/2)
]1/2 + C

2s(s + 1) − 3

m2
u

,

n = 0, 1, 2, . . . , l = 0, 1, 2, . . . , (6.12)

φ
Wj

ls (k) → φnl(k)

= Nnl

(
k

ω

)l

exp

(
− k2

2ω2

)
M

(
− n, l + 3

2
,

k2

ω2

)
= Nnl

(
k

ω

)l

exp

(
− k2

2ω2

)
n!

(l + 3/2)n
L(l+1/2)

n

(
k2

ω2

)
,

(6.13a)

Nnl =
[

2(l + 3/2)n
ω3n!�(l + 3/2)

]1/2

. (6.13b)
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Here M(a, b, z) is a Kummer function, L(α)
n (z) is a generalized

Laugerre polynomial, and (z)n is a Pochhammer symbol.
In order to verify the Poincaré invariance of our model we

must check to see whether we have agreement with (2.22). Our
mass eigenstates have the normalization

〈qnlsjm|q′n′l′s ′j ′m′〉 = δ3(q − q′)δnn′δll′δss ′δjj ′δmm′ ,

(6.14)

which leads to the following representation for the mass
operator:

M =
∑
nlsjm

∫
|qnlsjm〉d3qWnls〈qnlsjm|. (6.15)

Using (6.8) and (2.13b) we find

〈pklsjm|qnl′s ′j ′m′〉 = δ3(p − q)δll′δss ′δjj ′δmm′φnl(k),

(6.16)

which in turn leads to

〈pklsjm|M|p′k′l′s ′j ′m′〉 = δ3(p − p′)δjj ′δmm′M
j

ls,l′s ′ (k, k′),
(6.17a)

M
j

ls,l′s ′ (k, k′) = δll′δss ′
∑

n

φnl(k)Wnls φnl(k
′).

(6.17b)

This validates (2.22), so we have Poincaré invariance.
For both the π and ρ we have n = l = 0, while their spins

are given by s = 0 and s = 1, respectively, so it follows from
(6.13) that their common spatial wave function is given by

φ(k) = χ (k) = φ00(k) = 2

ω3/2π1/4
exp

(
− k2

2ω2

)
, (6.18)

and from (6.12) their masses are given by

mπ =
√

4m2
u + 12ω2 − 3C

m2
u

,

m(0)
ρ =

√
4m2

u + 12ω2 + C

m2
u

. (6.19)

The superscript on m(0)
ρ has been introduced to indicate that this

is not the physical mass of the ρ since it has been determined by
a model in which the decay channel ρ → ππ has been ignored.
We will rectify this omission in Sec. VIII. Determining C from
the difference of the masses we have C/m2

u = (m(0)
ρ − mπ )/4,

which in turn leads to

ω2 = 1

3

[(
mπ + 3m(0)

ρ

8

)2

− m2
u

]
. (6.20)

VII. COMPARISONS

Here we compare the relativistic result for the ρ → ππ

amplitude, given by (5.29), with the nonrelativistic result.
In order to obtain the nonrelativistic result we make the
replacement

A
(1/2,1/2)
m1m2,m

′
1m

′
2
(p1, p2) → δm1m

′
1
δm2m

′
2

(7.1)

in (4.5). By putting the resulting π and ρ wave functions
in (5.1), and using (5.2), (5.3), and (5.14) and (5.16) with
θ = ξ = 0, it is straightforward to show that the nonrelativistic
amplitude is given by

〈πq1t1, πq2t2|Tnr |ρqmt〉
= iγ√

3(12π )3/2

(
ε∗

t1
× ε∗

t2

) · εt

∫
d3p1d

3p2d
3p3d

3p4

× δ3(p1 + p4 − q1)δ3(p3 + p2 − q2)δ3(p1 + p2)

× δ3(p3 + p4 − q)φ(|k14|)φ(|k32|)χ (|k34|)Ym
1

(
p1 − p2

2

)
,

kab = (pa − pb)/2. (7.2)

Here kab is the nonrelativistic rest frame momentum for
particle a. If we replace the integration variables p1 and p4

with p14 = p1 + p4 and k = k14, integrate out p2 and p3 using
the delta functions, and set q = 0, we find

〈πq1t1, πq2t2|Tnr |ρ0mt〉
= δ3(q1 + q2)

iγ

48
√

3π2

(
ε∗

t1
× ε∗

t2

) · εt

×
∫

d3kφ(|k|)2χ (|p − q|)εm · p,

p = k + q/2, q = q1 = −q2. (7.3)

We note that the p defined here is given by a nonrelativistic
expression, while previously it was given by the relativistic
result (5.8c). Comparing (7.3) with (5.4), we see that (7.3)
is transformed into (5.4) if we let ε(p) → mq , replace the
relativistic expression for p with the nonrelativistic one, and
turn off the Wigner rotations by letting ζ → 0.

For the π and ρ wave functions we use (6.20). The integral
in (7.3) can be done analytically, which leads to

〈πq1t1, πq2t2|Tnr |ρ0mt〉 = δ3(q1 + q2)
iγ 2

√
2

81π5/4ω3/2

(
ε∗

t1
×ε∗

t2

)
·εt (εm · q)exp

(
− q2

12ω2

)
.

(7.4)

If we compare (7.4) with (5.34) at q = qρ we see that we can
replace (7.4) with

〈πq1t1, πq2t2|Tnr |ρ0mt〉 = δ3(q1 + q2)
igρππ

(2πmρ)3/2

(
ε∗

t1
× ε∗

t2

)
·εt (εm · q) �nr (q), (7.5a)

�nr (q) = exp

(
− q2 − q2

ρ

12ω2

)
,

q = q1 = −q2. (7.5b)

VIII. p-WAVE PION-PION SCATTERING

Here we construct a simple, Poincaré invariant model of
p-wave ππ scattering in a model space spanned by p-wave
ππ states and ρ states. The ππ states are given by (2.7) and
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(2.8) with isospin indices added, i.e.,

|pqt1t2〉 = U [lc(p)]|qt1〉
⊗| − q,t2〉[W (q)/E(p, q)]1/2, (8.1a)

W (q) = 2ωπ (q), E(p, q) =
√

p2 + W 2(q),

(8.1b)

〈pqt1t2|p′q′t ′1t
′
2〉 = δ3(p − p′)δ3(q − q′)δt1t

′
1
δt2t

′
2
. (8.1c)

The ρ states are given by (2.2) with an isospin index added,
i.e.,

|pmt〉 = U [lc(p)]|0mt〉[mρ/ωρ(p)]1/2, (8.2a)

〈pmt |p′m′t ′〉 = δ3(p − p′)δmm′δtt ′ . (8.2b)

We assume that the ππ states are orthogonal to the ρ states.
The noninteracting mass operator is defined by its action on
the above states. We have

M0|pqt1t2〉 = W (q)|pqt1t2〉, M0|pmt〉 = m(0)
ρ |pmt〉.

(8.3)

The only interaction is a vertex interaction, which according
to (5.35) can be taken to be

〈pqt1t2|V |pρmt〉 = δ3(p − pρ)V (qt1t2; mt), (8.4a)

V (qt1t2; mt) = ig(0)
ρππ

(2πmρ)3/2

(
ε∗

t1
× ε∗

t2

) · εt (εm · q) �(q).

(8.4b)

The superscript (0) has been added to the coupling constant
to indicate that it will be renormalized, as we shall soon see.
By using the techniques described in Sec. V of Ref. [34] it
is relatively straightforward to verify that the interaction V

commutes with P, X, and S, the three-momentum, position,
and spin operators for the noninteracting ππ -ρ system. This
ensures that the ππ -ρ model presented here is Poincaré
invariant.

Using the time-independent theory of scattering we can
take for our scattering states the solutions of the equation

|
(p′q′t ′1t
′
2)〉 = |p′q′t ′1t

′
2〉 + [W (q′) + iε − M0]−1V

× |
(p′q′t ′1t
′
2)〉, (8.5)

where we have taken for our “initial state” the ππ state
|p′q′t ′1t

′
2〉. The projections of our state vector onto our basis

states are given by

〈pmt |
(p′q′t ′1t
′
2)〉 = δ3(p − p′)ψ(mt ; q′t ′1t

′
2), (8.6a)

〈pqt1t2|
(p′q′t ′1t
′
2)〉 = δ3(p − p′)ψ(qt1t2; q′t ′1t

′
2). (8.6b)

Using (8.3)–(8.6) along with the completeness relation for
the states given by (8.1) and (8.2), we can readily derive the
coupled equations

ψ(mt ; q′t ′1t
′
2) = [

W (q′) − m(0)
ρ

]−1∑
t ′′1 t ′′2

∫
V ∗(q′′t ′′1 t ′′2 ; mt)

× d3q ′′ψ(q′′t ′′1 t ′′2 ; q′t ′1t
′
2), (8.7)

ψ(qt1t2; q′t ′1t
′
2) = δ3(q − q′)δt1t

′
1
δt2t

′
2
+ [W (q′) + iε − W (q)]−1

×
∑
m′′t ′′

V (qt1t2; m′′t ′′)ψ(m′′t ′′; q′t ′1t
′
2). (8.8)

Inserting (8.7) into (8.8) we find that the ππ component of the
wave function can be obtained by solving the equation

ψ(qt1t2; q′t ′1t
′
2) = δ3(q − q′)δt1t

′
1
δt2t

′
2

+
∑
t ′′1 t ′′2

∫
B[qt1t2; q′′t ′′1 t ′′2 ; W (q′)]
W (q′) + iε − W (q)

× d3q ′′ψ(q′′t ′′1 t ′′2 ; q′t ′1t
′
2), (8.9)

where B is an effective ππ potential given by

B(qt1t2; q′t ′1t
′
2; z) =

∑
m′′t ′′

V (qt1t2; m′′t ′′)
(
z − m(0)

ρ

)−1

×V ∗(q′t ′1t
′
2; m′′t ′′). (8.10)

It is straightforward to verify that the solution to (8.9) can be
expressed in the form

ψ(qt1t2; q′t ′1t
′
2) = δ3(q − q′)δt1t

′
1
δt2t

′
2

+ X[qt1t2; q′t ′1t
′
2; W (q′) + iε]

W (q′) + iε − W (q)
, (8.11)

where X is the solution of the equation

X(qt1t2; q′t ′1t
′
2; z) = B(qt1t2; q′t ′1t

′
2; z)

+
∑
t ′′1 t ′′2

∫
B(qt1t2; q′′t

′′
1 t

′′
2 ; z)

z − W (q′′)

× d3q ′′X(q′′t ′′1 t ′′2 ; q′t ′1t
′
2; z). (8.12)

This equation can be simplified by coupling the isospins
according to the relations∑
t1t2

∑
t ′1t

′
2

〈1, 1, t1, t2|T ,M〉X(qt1t2; q′t ′1t
′
2; z)〈1, 1, t ′1, t

′
2|T ′,M ′〉

= δT T ′δMM ′XT (q, q′; z), (8.13a)∑
t1t2

∑
t ′1t

′
2

〈1, 1, t1, t2|T ,M〉B(qt1t2; q′t ′1t
′
2; z)〈1, 1, t ′1, t

′
2|T ′,M ′〉

= δT T ′δMM ′BT (q, q′; z). (8.13b)

Instead of (8.12) we now have

XT (q, q′; z) = BT (q, q′; z) +
∫

BT (q, q′′; z)
d3q ′′

z − W (q′′)
×XT (q′′, q′; z). (8.14)

Combining (8.10), (8.4b), (8.13b), and the identity∑
t1t2

∑
t ′1t

′
2

∑
t

〈1, 1, t1, t2|T ,M〉(ε∗
t1

× ε∗
t2

) · εt ε
∗
t

(
εt ′1 × εt ′2

)
×〈1, 1, t ′1, t

′
2|T ′,M ′〉 = 2δT T ′δMM ′δT 1, (8.15)

we find that

BT (q, q′; z) = δT 1
g(0)2

ρππ

4π3m3
ρ

∑
m

(εm · q)
�(q)�(q ′)

z − m
(0)
ρ

(ε∗
m · q′).

(8.16)
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As a result of the separable nature of the potential (8.16) it
is straightforward to solve (8.14). With the help of (3.7) we
find

X1(q, q′; z) = s(0)
πρ

1∑
m=−1

Ym
1 (̂q)

[q�(q)][�(q ′)q ′]
d(z)

Ym∗
1 (̂q′),

(8.17)

s(0)
πρ = g(0)2

ρππ

3π2m3
ρ

, (8.18)

d(z) = z − m(0)
ρ − s(0)

πρ

∫ ∞

0
dq

q4�2(q)

z − W (q)
. (8.19)

We take for the on-shell, p-wave elastic scattering ampli-
tude

X(k) = s(0)
πρ [k�(k)]2

d[W (k + iε)]
. (8.20)

It follows from (8.19) that

Re d[W (k + iε)]

= W (k) − m(0)
ρ − s(0)

πρP
∫ ∞

0
dq

q4�2(q)

W (k) − W (q)
, (8.21a)

d[W (k + iε)] − d[W (k − iε)]

2i

= Im d[W (k + iε)] = π

4
s(0)
πρk3W (k)�2(k). (8.21b)

Writing d = |d| exp(−δ1
1), where δ1

1 is the p-wave, ππ phase
shift, and using (8.21) we can easily derive the results

X(k) = − 4

πW (k)k
exp

[
iδ1

1(k)
]

sin
[
δ1

1(k)
]
, (8.22a)

cot
[
δ1

1(k)
] = −Re d[W (k + iε)]

Im d[W (k + iε)]
. (8.22b)

We determine the position of the ρ resonance by setting
Re(d) = 0, which gives the relation between the physical ρ

mass mρ and the bare mass m(0)
ρ , i.e.,

mρ − m(0)
ρ − s(0)

πρP
∫ ∞

0
dq

q4�2(q)

mρ − W (q)
= 0. (8.23)

Using this equation to eliminate m(0)
ρ from (8.19) we find

Re d[W (k + iε)]

= [W (k) − mρ]

×
{

1 + s(0)
πρP

∫ ∞

0
dq

q4�2(q)

[W (k) − W (q)][mρ − W (q)]

}
.

(8.24)

As in the renormalization of the Lee model [39,40], we define
a renormalization parameter Zρ by requiring that

lim
W (k)→mρ

Re d[W (k + iε)]/[W (k) − mρ] = Z−1
ρ , (8.25)

which leads to

Zρ =
{

1 + s(0)
πρP

∫ ∞

0
dq

q4�2(q)

[mρ − W (q)]2

}−1

. (8.26)

From here it appears that Zρ < 1, but because of the peculiar
nature of the principal value integral [41] this is not necessarily
so. Solving for the number one in (8.26) and putting the result
in (8.24), we find

Re d[W (k + iε)] = Z−1
ρ [W (k) − mρ][1 + J (k)], (8.27a)

J (k) = [W (k) − mρ]sπρP

×
∫ ∞

0
dq

q4�2(q)

[W (k)−W (q)][mρ−W (q)]2
,

(8.27b)

where

sπρ = Zs(0)
πρ = g2

ρππ

3π2m3
ρ

, gρππ = Z1/2
ρ g(0)

ρππ . (8.28)

Using these expressions in (8.20), we can write

X(k) = sπρ[k�(k)]2

[W (k) − mρ][1 + J (k)] + i�(k)/2
, (8.29a)

�(k) = (π/2)sπρk
3W (k)�2(k). (8.29b)

Evaluating (8.29b) at qρ , the momentum of each pion in the
final state of the ρ decay, and using the fact that �(qρ) = 1,
we find

�(qρ) = g2
ρππq3

ρ

6πm2
ρ

, qρ = [
(mρ/2)2 − m2

π

]1/2
. (8.30)

In fitting our model to data we assume mu = md =
200.0 MeV, and we take as our adjustable parameters the
bare ρ mass m(0)

ρ and the bare coupling constant g(0)
ρππ . The

interaction (8.4) depends on g(0)
ρππ and on the parameters that

appear in the cutoff function �(q). The relativistic cutoff
function is defined by (5.29b)–(5.31), and it is determined
by the functions F (q, k) and G(q, k), which are given by
(5.25) and (5.26). The meson wave functions, φ(k) and χ (k),
which are given by (6.18), depend on the bare ρ mass m(0)

ρ

through (6.20). The nonrelativistic cutoff function is given by
(7.5b), (6.20), and (5.30). According to (5.32), (5.35), (7.4),
and (7.5), the relativistic and nonrelativistic relations between
the strength parameter γ that appears in the quark-pair creation
operator (3.12) and the bare coupling constant g(0)

ρππ are given
by

γ = 12
√

6πg(0)
ρππ

E(qρ)mqm
3/2
ρ

, γnr = 81ω3/2 exp
(
q2

ρ/12ω2
)
g(0)

ρππ

8π1/4m
3/2
ρ

.

(8.31)

Our fit to the ππ p-wave phase shifts [42,43] is shown
in Table I. The results for the parameters are given in
Table II.

We see that there is a significant difference between the
relativistic and nonrelativistic results for the bare ρ mass
m(0)

ρ . This suggests that relativistic effects can be important in
determining the effect that strong coupling to decay channels
has on the hadron spectrum. It is interesting to note that the
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TABLE I. p-wave ππ phase shifts.

W (MeV) δ1
1(◦) relativistic δ1

1(◦) nonrelativistic δ1
1(◦) experiment

689.89 34.6 34.3 34.8 ± 1.4
707.18 42.6 42.4 42.5 ± 1.4
731.38 56.9 57.0 55.7 ± 0.7
748.67 69.4 69.5 67.6 ± 0.7
810.90 113. 113. 111. ± 2.1
831.65 123. 123. 123. ± 0.7
848.94 130. 129. 130. ± 0.7
869.68 136. 136. 136. ± 0.7
890.43 141. 141. 139. ± 0.7
911.17 144. 145. 145. ± 0.1

differences between the relativistic and nonrelativistic values
for the bare and renormalized coupling constants, g(0)

ρππ and
gρππ , are quite small. The value of gρππ obtained here is
rather close to the value gρππ = 6.199 used in hadronic models
of the pion-nucleon system [44]. The widths found for the ρ

resonance are comparable to the value �ρ = 149.1 ± 0.8 given
in the most recent review of particle physics [45]. The differ-
ence between the relativistic and nonrelativistic values of ω,
which determines the strength of the quark-antiquark harmonic
oscillator interaction, suggests that relativistic effects can be
significant in determining the properties of the interactions
between quarks and antiquarks. The fact that the relativistic
and nonrelativistic values of the quark-pair creation operator
strength parameter γ differ by over a factor of 2 also makes
clear the importance of relativistic effects.

It should be noted when comparing values of γ with those
obtained by Le Yaouanc et al. [6,7] that our quark-pair creation
operator, given by (3.12), differs somewhat from theirs. They
put a factor of 3 in their quark-pair creation operator to cancel
the 1/3 that arises from the color factor given by (5.2). Also in
(3.12), where we have mq/

√
ε(p1)ε(p2), they have 1. Dividing

our nonrelativistic result for γ in Table II by 3 gives γLeY =
1.88. It should be noted that γnr , given by (8.31), when divided
by 3 agrees with the expression given by Le Yaouanc et al. [6]
for the relation between γ and the ρππ coupling constant.
Downum et al. [46] have obtained a value for γ . The relation
between our γ and theirs is given by γ = 3

√
24πγD. By fitting

a number of strong decays they decide on γ = 10.4, which
differs from our nonrelativistic result by roughly a factor of
2. Clearly there is no reason to believe that γ is a universal
constant.

TABLE II. Model parameters.

Parameter Relativistic Nonrelativistic

mρ (MeV) 775.5 775.5

m(0)
ρ (MeV) 855.7 776.3

g(0)
ρππ 5.704 5.595

gρππ 6.033 6.065
Zρ 1.119 1.175
�ρ(qρ) (MeV) 152.7 154.4
ω (MeV) 157.4 135.5
γ 13.637 5.640

IX. DISCUSSION

There are a number of obvious extensions and applications
of the present work that should be considered.

As mentioned in Sec. I, the results obtained here can also be
applied to the flux-tube model for decays studied by Isgur et al.
[9–12]. This will test relativistic effects when nonpoint quarks
are considered, when it is no longer assumed that quark-pair
creation occurs with equal probability everywhere in space,
and when pair creation is suppressed at short distances.

Clearly our calculation of the ρ mass shift and decay width
should be extended to more of the meson spectrum. Results for
these shifts and width can be compared to those obtained by
Törnqvist [13–16] using the UQM. It is interesting to note that
our relation between the bare and physical ρ mass, given by
(8.23), is similar in structure to the dispersion relations used
in the UQM, i.e., (1.1) and (1.2).

The method developed here for meson decays can be
extended to baryon decays. The essential ingredient in all of
this is the transformation of hadron, quark-model, momentum-
space wave functions from an arbitrary frame to a c.m. frame.
The analysis of three-particle states presented in Ref. [34]
makes it possible to obtain this transformation for three-quark
wave functions, and hence for baryons. Relativistic results for
baryon mass shifts and widths can be compared to the UQM
results presented by Törnqvist and Zenczkykowski [17–19]
and Silvestre-Brac and Gignoux [20], as well as the extensive
results obtained by Capstick and Roberts [22–24].

APPENDIX: WIGNER ROTATIONS

The Wigner rotations that are of interest to us are given
by [3]

rc[lc(q), k] = l−1
c (p)lc(q)lc(k), p = lc(q)k. (A1)

In deriving formulas for this rotation it is convenient to work
with the elements of SL (2,C), the covering group for the
Lorentz transformations [3]. This group is the set of all 2 × 2
complex matrices with determinant +1. With this group four-
vectors are represented by 2 × 2 Hermitian matrices,

X = xμσμ =
[

x0 + x3 x1 − ix2

x1 + ix2 x0 − x3

]
, (A2)

where the xμ are the components of a four-vector x, σ0 is the
unit matrix, while σ1, σ2, and σ3 are the usual Pauli matrices.
A Lorentz transformation is given by

X → X′ = �X�†, det(�) = +1. (A3)

The four-momenta that appear in (A1) are given by

q = (E(q), q), E(q) =
√

q2 + W 2, W = √
q · q,

k = (ε(k), k), ε(k) =
√

k2 + m2, p = (ε(p), p),

ε(p) =
√

p2 + m2. (A4)
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The rotationless boosts determined by these momenta are
defined by

Lc(q) = exp(ω · σ/2), ω = ωq̂, ω = tanh−1[|q|/E(q)],

(A5a)

Lc(k) = exp(η · σ/2), η = ηk̂, η = tanh−1[|k|/ε(k)],

(A5b)

Lc(p) = exp(λ · σ/2), λ = λ̂p, λ = tanh−1[|p|/ε(p)].

(A5c)

The SL(2,C) representative of the Wigner rotation (A1) is of
the form

D(1/2){rc[lc(q), k]} = exp(iζ · σ/2), ζ = ζu, u · u =1,

(A6)

where we note that D(1/2) is also an SU(2) representative. In
order to find ζ = ζu we solve the equation

Lc(p) exp(iζ · σ/2) = Lc(q)Lc(k). (A7)

We find

cos(ζ/2) = cosh−1(λ/2)[cosh(ω/2) cosh(η/2)

+ (̂q · k̂) sinh(ω/2) sinh(η/2)], (A8a)

sin(ζ/2) = cosh−1(λ/2)[1 − (̂q · k̂)]1/2 sinh(ω/2) sinh(η/2),

(A8b)

u(q, k) = q × k
|q × k| = q × k

[q2k2 − (q · k)2]1/2
. (A8c)

Upon dividing (A8b) by (A8a) and using standard identities
for hyperbolic functions we find that the angle for the Wigner
rotation is given by

ζ (q, k) = 2 tan−1

{
[q2k2 − (q · k)2]1/2

[E(q) + W ][ε(k) + m] + q · k
}. (A9)

Clearly, ζ depends on |q|, |k|, and q̂ · k̂. Finally, we can write
for our Wigner rotation

D(1/2){rc[lc(q), k]} = exp[iζ (q · k)·σ/2]

= 1 cos[ζ (q · k)/2]

+ iζ̂ (q · k) · σ sin[ζ (q · k)/2]. (A10)
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