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�-resonance contribution to the two-photon exchange amplitude
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We consider two-photon exchange (TPE) in the elastic electron-proton scattering and study the contribution
arising from the production of �(1232) resonance in the intermediate state. We calculate all three TPE amplitudes
(generalized form factors), and find that the � contribution mainly influences the generalized electric form factor
(contrary to the elastic contribution, which affects the magnetic form factor), and the effect grows with Q2. If
the corresponding correction is applied to the recent polarization transfer measurements of proton form factors,
their results will change markedly. Thus we suggest that TPE corrections due to inelastic intermediate states are
important to polarization experiments at high Q2, and should not be neglected.
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I. INTRODUCTION

Due to smallness of the fine structure constant α ≈ 1
137 ,

the elastic electron-proton scattering amplitude is dominated
by the first-order term, corresponding to the exchange of a
single photon, Fig. 1, left. The one-photon exchange (OPE)
amplitude has a specific structure, which allows, e.g., for the
Rosenbluth separation of form factors. In the next (second)
order the only nontrivial diagram is two-photon exchange
(TPE), Fig. 1, right. Despite its smallness, in some cases TPE
correction is very important, because it changes qualitatively
the structure of the scattering amplitude. Thus, TPE influence
naturally explains the discrepancy between Rosenbluth and po-
larization methods in proton form factor (FF) measurements.
For a further review and up-to-date bibliography see, e.g.,
Ref. [1].

The full TPE amplitude may be split into separate con-
tributions according to the hadronic intermediate state (IS),
which depicted as the blob in TPE diagram. We will have the
elastic contribution (pure proton IS), and inelastic ones, which
come from multiparticle states such as pπ , pππ , pη, and so
on. We may also distinguish the contributions of resonances,
such as �, Roper, etc. (This is so-called “hadronic approach”.
There are also QCD-style calculations [2,3], which assume IS
to be a set of quarks. In this paper we resort to the former
approach.)

At first, the TPE amplitude was approximated by the elastic
contribution, which is the most well-studied one. Then, it
was proposed to study contributions of different hadronic
resonances as ISs. Kondratyuk et al. performed calculations
with � [4] and several other light resonances [5]. They
studied the TPE correction to the cross section and concluded
that � contribution is the largest among all resonances,
though still much smaller than the elastic one. Similar
results were obtained for target normal spin asymmetry,
the observable that is related to imaginary part of the TPE
amplitude [6].

In this paper we present new results for the �-resonance
contribution to the TPE amplitude in the elastic ep scattering.
To calculate it we employ the dispersion method, which was
developed in Ref. [7] for ep scattering and applied to eπ

FIG. 1. One- and two-photon exchange diagrams.

scattering in Ref. [8]. The method is described in detail in
those papers, here we just recall that it

(i) ensures correct behavior of the TPE amplitude at
ε → 1 (the amplitude goes to zero),

(ii) eliminates a need for off-shell FFs.

In comparison to previous works of Kondratyuk et al. [4,5],
we consider not just cross-section correction, but all three
generalized FFs (TPE amplitudes) and discuss corrections to
polarization transfer (PT) experiments.

II. THEORETICAL BACKGROUND

To describe the elastic scattering amplitude in the presence
of TPE, we will use the amplitudes GE , GM , and G3, defined in
Ref. [7]:

GE = F̃1 − τ F̃2 + νF̃3/4M2,

GM = F̃1 + F̃2 + ενF̃3/4M2, (1)

G3 = νF̃3/4M2,

where F̃i are related to the scattering amplitude as

Mf i = −4πα

q2
ū′γμu

× Ū ′
(

γ μF̃1 − 1

4M
[γ μ, q̂]F̃2 + P μ

M2
K̂F̃3

)
U (2)
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FIG. 2. (Color online) �-resonance contribution to TPE amplitudes, ε = 0.25, real part (a) and imaginary part (b).

and all notation is identical to that of Ref. [7]. The TPE
contribution will be indicated by the prefix δ, viz.

GE = GE + δGE = GE + δG(el)
E + δG(�)

E + . . . , (3)

where GE is the usual proton FF, δG(el)
E is elastic contribution,

δG(�)
E is the �-resonance contribution, and the contributions of

other ISs (neglected hereafter) are indicated by the ellipsis. As
the amplitude G3 is absent in OPE approximation, it coincides
with the corresponding TPE contribution, G3 = δG3.

Recall that the observables are expressed via these ampli-
tudes as follows. The reduced cross-section correction is

δσR = 2 Re (εGEδGE + τGMδGM ) (4)

and the main contribution to it comes from δGM [9], the
correction to the FF ratio1R = GE/GM is

δR = R Re

(
δGE

GE

− δGM

GM

− ε(1 − ε)

1 + ε

δG3

GM

)
(5)

1What is measured in polarization experiments is the proton L/T

polarization ratio, which, in OPE approximation, is proportional to
the GE/GM ratio. It will be convenient to divide the polarization ratio
by the appropriate kinematical factor and define the experimentally
measured FF ratio R, which equals to GE/GM in the OPE
approximation but really differs because of TPE corrections.

and the last term in the brackets has little effect because of
small factor ε(1−ε)

1+ε
.

It is interesting to note that the same combination of the
amplitudes determines target normal spin asymmetry [6]:

An = −
√

2ε(1 + ε)
2QMR

Q2 + 4M2R2ε

× Im

(
δGE

GE

− δGM

GM

− ε(1 − ε)

1 + ε

δG3

GM

)
. (6)

The �Nγ ∗ vertex, in general, contains three FFs (magnetic,
electric, and Coulomb ones). However, it is well known that
electric and Coulomb FFs are small and experimental data
are described rather well by single magnetic FF. Thus, to
simplify the calculation, we assume purely magnetic � →
Nγ ∗ transition, which may be described by the following
amplitude (see, e.g., [10]):

M�Nγ =
√

4πα iεμαβγ pβqγ ŪVα

F�(q2)

2M2
, (7)

where p and q are � and photon momenta, respectively (the
nucleon momentum thus will be p − q), U is the nucleon
spinor, and Vα is the Rarita-Schwinger wave function of the
� resonance, normalized according to V̄αVα = −2M�. The
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FIG. 3. (Color online) TPE amplitudes at Q2 = 0.5 GeV2 (a) and 2 GeV2 (b).
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TABLE I. Parameters of N → � transition form factor, Eq. (8).

mi 0.0 2.170270 0.660810 0.715202 0.768494

ci − 3.377428 0.072839 − 20.794000 69.497989 − 45.399399

transition FF was expressed as

F�(q2) =
5∑

i=1

ciq
2

q2 − m2
i

(8)

with mi and ci given in Table I. These values were obtained by
fitting experimental data from Ref. [11]. We will neglect the
width of the resonance, as it was done in Ref. [4].

For the elastic proton FFs we use parametrization from
Ref. [12].

III. RESULTS AND DISCUSSION

The calculated TPE amplitudes are shown in Figs. 2 and 3.
Figure 2 displays the Q2 dependence of the �-resonance
contribution to the TPE amplitudes at fixed ε (ε = 0.25). As
usual, we consider “normalized” TPE amplitudes (divided by
the proton magnetic FF). The scale is made logarithmic in Q2

for better display of low-Q2 region.
Looking at the real parts of the amplitudes, we see sharp

peaks coinciding with the resonance position. It was noted
in Ref. [8], that such peaks are artifacts, appearing due to
assumed zero resonance width. With a finite width, the curve
must become “smeared” and the peaks should disappear. But
this means that the TPE amplitude in the close vicinity of
the resonance is not adequately described by the present
“zero-width” calculation. Further we will mainly concentrate
on the high-Q2 region (Q2 > 1 GeV2), where we do not hit
the resonance and the problem will not emerge.

We see that at high Q2 � contributions grow (in absolute
value) with Q2. Though the contribution δG(�)

M /GM changes
sign at Q2 ≈ 5 GeV2, it still grows beyond this point (not
shown in the figure). The elastic contribution has a similar
property (Fig. 4). The difference is that the largest contribution
goes to the amplitude GE (much larger than to GM ). This fact
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FIG. 4. (Color online) Comparison of � (solid) and elastic
(dashed) contributions, ε = 0.25.
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FIG. 5. (Color online) TPE correction to cross section at Q2 =
1 GeV2 (thin lines) and 3 GeV2 (thick lines). Proton contribution
(dashed lines), � contribution (dash-dotted lines), and total (solid
lines).

has not much effect on the cross section, but implies relatively
large corrections to the polarization ratio (see below).

The imaginary parts [Fig. 2(b)], naturally, have a step-like
behavior, i.e., they vanish below the threshold and are nonzero
above it. Having obtained the imaginary part of the amplitudes,
we can perform some crosschecks of our results. First, we can
check the sign of the TPE amplitudes with the help of the
optical theorem. It reads

ImMii = 2|p|√s σ, (9)

where Mii is forward scattering amplitude, s is c.m. energy
squared, and σ is total cross section, ep → eX. The same
holds true for contribution of each IS h separately, i.e.,

ImM(h)
ii = 2|p|√s σ (h). (10)

Here σ (h) is the cross section for ep → eh. Putting u′ = u and
U ′ = U in Eq. (2), we easily get

ImMii = 4παν

Q2
ImGE (11)

thus the optical theorem implies

Im δG(h)
E > 0 for Q2 → 0 at fixed s. (12)

Note that for the elastic contribution such a check constrains
only infrared divergent part.

We also have reproduced our results for target normal spin
asymmetry from Ref. [6], using Eq. (6).

TABLE II. Form factor ratio, measured in PT experiments (μRexp)
and corresponding TPE corrections (μδR). The explicit factor of
μ = 2.793 appears here as it is not included in our definition of R.

Expt. Q2 ε μRexp ± stat. ± syst. μδR

3.98 0.71 0.517 ± 0.055 ± 0.009 0.031
[14] 4.76 0.59 0.450 ± 0.052 ± 0.012 0.050

5.56 0.45 0.354 ± 0.085 ± 0.019 0.078
5.17 0.37 0.443 ± 0.066 ± 0.018 0.081

[15] 6.70 0.51 0.327 ± 0.105 ± 0.022 0.089
8.49 0.24 0.138 ± 0.179 ± 0.043 0.221
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FIG. 6. (Color online) TPE correction to measured form factor
ratio at ε = 0.5. Proton contribution (dashed lines), � contribution
(dash-dotted lines), and total (solid lines).

The ε dependence of the TPE amplitudes (real parts) is
shown in Fig. 3. It is substantially nonlinear for Q2 < 1 GeV2

(a) and becomes almost linear for Q2 > 1 GeV2 (b) for all
three amplitudes. Recall that the elastic contribution δG(el)

M , is
almost linear in ε, and thanks to this fact Rosenbluth plots
remain linear even with the corresponding correction taken
into account. It is interesting to study how much nonlinearity
is introduced by the � contribution. We apply the method of
Ref. [13], namely, we fit the calculated OPE cross section plus
TPE correction at fixed Q2 by the quadratic function of ε:

σ + δσ = P0[1 + P1(ε − 0.5) + P2(ε − 0.5)2]. (13)

This gives us the nonlinearity coefficient P2 as a function
of Q2. The � contribution to nonlinearity coefficient turns
out to be rather small, |P (�)

2 | < 0.014 for 0.5 GeV2 < Q2 <

5 GeV2, whereas the total (elastic + �) contribution varies
from 0.005 to −0.06. This should be compared to experimental
value P2 = 0.019 ± 0.027 [13].

In Fig. 5 we plot the TPE correction to the cross section at
Q2 = 1 GeV2 and Q2 = 3 GeV2. This is the same quantity as
in Fig. 2 of Ref. [4], and is in qualitative agreement with the
latter.

As long as now we have individual TPE amplitudes, we
may easily obtain the TPE correction to FF ratio, Eq. (5). It is
plotted in Fig. 6, for ε = 0.5. Of course, one must keep in mind
that this correction is also ε dependent, as the TPE amplitudes
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FIG. 7. (Color online) Results of PT experiments, with (solid
symbols) and without (hollow symbols) TPE correction. Points are
slightly offset in Q2 for clarity.

are. The correction grows rapidly as Q2 → ∞ due to

(i) large amplitude δGE , growing with Q2,
(ii) smallness of FF ratio R itself, as it tends to zero near

Q2 ∼ 10 GeV2.

In Table II, the total correction, δR = δR(el) + δR(�), is
shown for the kinematical conditions of experiments [14,15].
As the correction is always much larger than the quoted
systematic error, it clearly needs to be taken into account
in polarization measurements at high Q2. With this TPE
correction applied, the FF ratio becomes negative already at
Q2 = 8.5 GeV2 (Fig. 7).

But is our scheme of calculation (elastic + � ISs)
perfectly adequate for Q2 ∼ 5–10 GeV2? We think that at
least one needs to estimate the contributions of other prominent
resonances as well as multiparticle states before we may apply
the correction to data. Whether these contributions are small?
It is not quite clear. Even if they are, there are many ISs that
contribute, and it is not clear what will be the total effect.

Of course, it would be nice to have a QCD-style calculation
for this observable. Unfortunately, this is a hard task. Leading-
twist QCD calculation yields only two amplitudes, GM and
G3, since a virtual photon (gluon) cannot flip quark spin. The
calculation of electric FF GE or TPE amplitude δGE requires,
at least, knowledge of quark transverse momenta distribution.

Summarizing, we believe that our results give a strong
indication that TPE corrections coming from the inelastic
intermediate states may be of great importance to polarization
measurements at high Q2, and thus deserve further thorough
investigation.
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