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Theoretical studies within the chiral unitary approach, and recent experiments, have provided evidence of the
existence of two isoscalar states in the region of the �(1405). In this paper we use the same chiral approach to
generate energy levels in a finite box. In a second step, assuming that these energies correspond to lattice QCD
results, we devise the best strategy of analysis to obtain the two states in the infinite-volume case, with sufficient
precision to distinguish them. We find out that by using energy levels obtained with asymmetric boxes and/or
with a moving frame, with reasonable errors in the energies, one has a successful scheme to get the two �(1405)
poles.
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I. INTRODUCTION

The history of the �(1405) as a composite state of meson
baryon, dynamically generated from the meson-baryon inter-
action, is rather long, starting from the works of Refs. [1,2].
Early works using the cloudy bag model also reached similar
conclusions [3]. The advent of chiral unitary theory, combining
chiral dynamics and unitarity in coupled channels, brought
new light onto this issue and the �(1405) was one of the
cleanest examples of states dynamically generated within this
approach [4–6]. Hints that there could be two states rather than
one had also been reported using the cloudy bag model [7] and
the chiral unitary approach [8–10]. A qualitative step forward
was done in Ref. [11], where two different versions of the
approach were used, the two poles remained, and their origin
was investigated. It was found that in an SU(3) symmetric
theory there were two degenerate octets and a singlet of
dynamically generated resonances, but with the breaking of
SU(3) the degeneracy was removed, one octet with isospin
I = 0 moved to become the �(1670) and the other one
moved close to the singlet, producing two poles close by
in the region of the �(1405). One of the poles appears at
energies around 1420 MeV, couples mostly to K̄N , and has
a small width of around 30 MeV. The other pole is around
1395 MeV, couples mostly to π�, and is much wider, around
120 or 250 MeV depending on the model. After the work of
Ref. [11], all further works on the chiral unitary approach have
corroborated the two poles, with remarkable agreement for the
pole at higher energy and larger variations for the pole at lower
energies [12–19].

Suggestions of experiments to confirm this finding were
made, and it was shown that one should not expect to see
two peaks in the cross sections, but rather different shapes in
different reactions. In this sense, a suggestion was made to
look for the �(1405) peak in the K−p → γπ� reaction [20],
where the γ would be radiated from the initial state, making

the K−p system lose energy and go below threshold and
then excite the high-energy state of the �(1405), to which it
couples most strongly. This reaction was not made, although it
is planned for the Japan Proton Accelerator Research Complex
(J-PARC) [21], but a similar one, where the photon was
substituted by a pion, was implemented in Ref. [22] studying
the K−p → π0π0�0 reaction at pK = 514 to 750 MeV/c.
A neat and narrow peak was seen at

√
s = 1420 MeV, which

was analyzed in Ref. [23] and interpreted in terms of the high-
energy pole of the �(1405). More recently it was noticed that
old data on the K−d → π�n reaction from Ref. [24] produced
a peak in the π� spectrum around

√
s = 1420 MeV, with also

a small width. These data were well reproduced in Ref. [25]
within the chiral unitary approach and multiple scattering, and
once again it was shown that it gave support to the existence
of the second pole of the �(1405). It was shown there that
the reaction proceeded with kaons in flight but not for stopped
kaons, because the background from single scattering was too
large in this latter case, obscuring the signal of the resonance
that stems from double scattering. Even then, it was shown in
Ref. [26] that kaons from the Double Annular Phi Factory for
Nice Experiments (DAFNE) facility, coming from the decay
of the φ, would also be suited to search for this resonance if
neutrons were measured in coincidence in order to reduce the
background. Results on the helicity amplitudes of the �(1405)
are also consistent with the two-pole scenario [27]. The search
for reactions where the �(1405) is produced has continued,
showing that, as predicted, different reactions have different
shapes. In this sense there have been recent photoproduction
experiments [28,29] and proton-induced experiments [30,31]
where the shapes are indeed different and the peaks appear at
lower energies, around 1405 MeV, as the nominal mass. There
are also theoretical studies for these reactions where the peaks
appear around these energies, and the larger contribution of
the lower-energy state that couples mostly to π� is mostly
responsible for it [32–36].
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In as much as chiral dynamics is a good representation
of QCD at low energies, the predictions of the chiral unitary
approach on the �(1405) stand on firm ground. Yet, it would
also be very interesting to have these predictions confirmed
with lattice QCD simulations. In this sense, the determination
of hadron spectra is one of the challenging tasks of lattice QCD
and many efforts are being devoted to this problem [37–55],
some of them in particular to the search of the �(1405)
[56–61]. A review on the �(1405) and attempts to see it from
different points of view is given in Ref. [62]. In some works
the “avoided level crossing” is usually taken as a signal of
a resonance, but this criteria has been shown insufficient for
resonances with a large width [63–65]. Sometimes, the lattice
spectra at finite volumes is directly associated to the energies
of the states in infinite volume invoking a weak volume
dependence of the results, as done recently searching for the
�(1405) resonance [66]. A more accurate method consists
of the use of Lüscher’s approach, for resonances with one
decay channel. The method allows us to reproduce the phase
shifts for the decay channel from the discrete energy levels in
the box [67,68]. This method has been recently simplified
and improved in Ref. [65] by keeping the full relativistic
two-body propagator (Lüscher’s approach keeps the imaginary
part of this propagator exactly but makes approximations for
the real part) and extending the method to two or more coupled
channels. The method has also been applied in Ref. [69]
to obtain finite-volume results from the Jülich model for
meson-baryon interaction, including spectra for the �(1405)
with finite volume, and in Ref. [70], to study the interaction of
the DK and ηDs system where the Ds∗0(2317) resonance is
dynamically generated from the interaction of these particles
[71–74]. The case of the κ resonance in the Kπ channel is
also addressed along the lines of Ref. [65] in Ref. [75]. A first
attempt to get phase shifts and the position of the �(1405)
from pseudo lattice data is done in Ref. [76], where a different
method is suggested and a qualitative study is made on how it
could work.

In the work of Ref. [65], the inverse problem of getting
phase shifts and resonances from lattice results using two chan-
nels was addressed, paying special attention to the evaluation
of errors and the precision needed on the lattice results to obtain
phase shifts and resonance properties with a desired accuracy.
Further work along these lines is done in Ref. [75]. The main
problem encountered is that the levels obtained from the box
of a certain size range do not cover all the desired energy
region that one would like to investigate. Several suggestions
are given in order to produce extra levels, like using twisted
boundary conditions or asymmetric boxes [65]. These are,
however, not free of problems since it is unclear whether a
full twisting can be done in actual QCD simulations including
sea quarks, and the asymmetric boxes have the problem of the
possible mixing of different partial waves. Another alternative
is to evaluate levels for a system in a moving frame as
done in Ref. [54], but this also poses problems of mixing
in principle. The generalization of Lüscher’s approach to the
moving frame is done in Refs. [77–81], and it provides a
convenient framework for lattice calculations since new levels
can be obtained without enlarging the size of the box, with an
economy in computational time. It is then quite convenient to

carry out simulations using effective theories in a finite volume,
preparing the grounds for future lattice calculations, trying to
find an optimal strategy on which configurations to evaluate in
order to obtain the desired observables in the infinite-volume
case.

The case of extracting the �(1405) parameters is specially
challenging, particularly because two resonance must be found
which are not too far from each other, which means that extra
precision will be demanded of the lattice results. Furthermore,
the two poles are not to be seen in the π� phase shifts,
since, as mentioned before, different amplitudes give different
weight to the two poles and the π� phase shifts provide
insufficient information. The other reason is that the chiral
unitary approach tells us that the two states couple strongly to
K̄N and π�, so the use of the two channels in the analysis
is mandatory and the use of one channel as in the Lüscher
approach is bound to produce incorrect results. In view of this,
we face the problem using the two channels explicitly in the
analysis and produce amplitudes in the coupled channels from
where we can extract the pole positions in the complex plane by
means of an analytical continuation of these amplitudes. Even
then, the problem is subtle because using standard periodic
boundary conditions and a wide range of lattice volumes
there is a gap of energies in the levels of the box precisely
for the energies where one finds the poles. Because of this
problem one is then forced to use either asymmetric boxes or
discretization in the moving frame in order to find eigenvalues
of the box in the desired region. In the present paper we face
all these problems and come out with some strategies that we
find better suited to determine the position of the two �(1405)
poles.

II. FORMALISM

In the chiral unitary approach the scattering matrix in
coupled channels is given by the Bethe-Salpeter equation in
its factorized form

T = [1 − V G]−1V = [V −1 − G]−1, (1)

where V is the matrix for the transition potentials between the
channels and G is a diagonal matrix with the ith element Gi

given by the loop function of two propagators, a pseudoscalar
meson and a baryon, which is defined as

Gi = i2Mi

∫
d4p

(2π )4

1

(P − p)2 − M2
i + iε

1

p2 − m2
i + iε

,

(2)

where mi and Mi are the masses of the meson and the baryon,
respectively, and P is the four-momentum of the global meson-
baryon system.

The loop function in Eq. (2) needs to be regularized and this
can be accomplished either with dimensional regularization or
with a three-momentum cutoff. The equivalence of both meth-
ods was shown in Refs. [8,82]. In dimensional regularization
the integral of Eq. (2) is evaluated and gives for meson-baryon
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systems [8,83]

GD
i (s,mi,Mi) = 2Mi

(4π )2

(
ai(μ) + log

m2
i

μ2
+ M2

i − m2
i + s

2s
log

M2
i

m2
i

+ Qi(
√

s)√
s

{
log

[
s − (

M2
i − m2

i

) + 2
√

sQi(
√

s)
]

+ log
[
s + (

M2
i − m2

i

) + 2
√

sQi(
√

s)
] − log

[−s + (
M2

i − m2
i

) + 2
√

sQi(
√

s)
]

− log
[−s − (

M2
i − m2

i

) + 2
√

sQi(
√

s)
]})

, (3)

where s = E2, with E being the energy of the system in the
center-of-mass frame, Qi being the on-shell momentum of the
particles in the channel i, μ being a regularization scale, and
ai(μ) being a subtraction constant (note that there is only one
degree of freedom, not two independent parameters).

In other works one uses regularization with a cutoff in three-
momentum, once the p0 integration is analytically performed
[84], and one gets

Gi =
∫

| �p |<pmax

d3 �p
(2π )3

2Mi

2ω1( �p )ω2( �p )

× ω1( �p ) + ω2( �p )

E2 − [ω1( �p ) + ω2( �p )]2 + iε
,

(4)
ω1,2( �p ) =

√
m2

1,2 + �p 2,

with m1, m2 corresponding to mi and Mi of Eq. (2).
When one wants to obtain the energy levels in the finite box,

instead of integrating over the energy states of the continuum,
with p being a continuous variable as in Eq. (4), one must sum
over the discrete momenta allowed in a finite box of side L

with periodic boundary conditions. We then have to replace G

by G̃ = diag(G̃1, G̃2) (in two channels), where

G̃i = 2Mi

L3

| �p |<pmax∑
�p

1

2ω1( �p )ω2( �p )

ω1( �p ) + ω2( �p )

E2 − [ω1( �p ) + ω2( �p )]2
,

�p = 2π

L
�n, �n ∈ Z3. (5)

This is the procedure followed in Ref. [65]. The eigenenergies
of the box correspond to energies that produce poles in the T

matrix [Eq. (1)], which correspond to zeros of the determinant
of 1 − V G̃,

det(1 − V G̃) = 0. (6)

For the case of two coupled channels Eq. (6) can be written as

det(1 − V G̃) = 1 − V11G̃1 − V22G̃2 + (
V11V22 − V 2

12

)
G̃1G̃2

= 0. (7)

The problem of the K̄N interaction with its coupled channels
and the �(1405) was addressed in Ref. [6] using the cutoff
method, but more recently it has been addressed using
dimensional regularization [8,83]. For this reason we will also
use the dimensional regularization method for the finite box,
which was developed in Ref. [70]. The change to be made is
also very simple, the G function of dimensional regularization

of Eq. (3) has to be substituted by

G̃(E) = GD(E) + lim
pmax→∞

×
⎡
⎣ 1

L3

pmax∑
�pi

I (pi) −
∫

p<pmax

d3p

(2π )3
I (p)

⎤
⎦ , (8)

where I (p) is given by

I (p) = 2Mi

2ω1( �p )ω2( �p )

ω1( �p ) + ω2( �p )

E2 − [ω1( �p ) + ω2( �p )]2 + iε
. (9)

We will also consider the case where the meson-baryon system
moves with a four-momentum P = (P 0, �P ) in the box. In
this case we still have to define the integrals and the sums in
the c.m. frame, where pmax is defined, but the momenta of
the two particles must be discretized in the box, where the
system moves with momentum P . We follow the approach
of Refs. [81,85] and use the boost transformation from the
moving frame, with the variables �p1 and �p2, to the c.m. frame
with the variables �p ∗

1 and �p ∗
2:

�p ∗
1,2 = �p1,2 +

[(
MI

P 0
− 1

) �p1,2 · �P
| �P |2 − p∗0

1,2

P 0

]
�P . (10)

where M2
I = P 2 = P 02 − �P 2, the subindexes 1 and 2 repre-

sent the meson and baryon particles, respectively, and p∗0
1,2 are

the c.m. energies of the particles given by

p∗0
1,2 = M2

I + m2
1,2 − m2

2,1

2MI

. (11)

Then we must do the substitution in Eq. (8) for the evaluation
of the energies in the box,

lim
pmax→∞

1

L3

pmax∑
�pi

I (pi) −→ 1

L3

| �p ∗|<pmax∑
�p

MI

P 0
I (p∗

i ),

(12)

�p = 2π

L
�n, �n ∈ Z3,

with �p ∗
i given in terms of �pi by means of Eq. (10).

Since �p1 and �p2 = �P − �p1 must both satisfy the periodic
boundary conditions, this forces �P to be also discretized and
thus we can only use values of �P such that

�P = 2π

L
�N, �N ∈ Z3. (13)
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FIG. 1. Energy levels in a symmetric box of side length L.

III. RESULTS

A. Energy levels in box

In this section we show the energy levels obtained from the
solution of Eq. (6) as a function of the side length of the box,
L, and for different physical cases: using periodic boundary
conditions in a (1) symmetric box, (2) asymmetric box, and
(3) symmetric box but in a moving frame; that is, with nonzero
value for the total center-of-mass momentum �P [Eq. (13)].

1. Periodic boundary conditions in symmetric box

In Fig. 1 we show the first six energy levels related to the
system formed by the coupled channels K̄N , π�, η�, and
K�, which generate a double-pole structure for the �(1405)
and a pole for the �(1670) [11]. These levels are obtained
by solving Eq. (6) using the chiral model of Ref. [11] and
imposing periodic boundary conditions in a symmetric box of
side length L (measured in units of m−1

π ).
As can be seen in Fig. 1, the gap between levels 0, 1 and

especially between levels 1 and 2 is considerable, giving rise to
the presence of only two levels in the energy region of interest;
that is, the energy range in which the two poles of the �(1405)
are found (1390–1430 MeV). This fact shows the difficulty
that one can face to extract information about the poles of the
�(1405) in an infinite volume considering these energy levels
as reference.

2. Periodic boundary conditions in asymmetric box

To see if we can obtain more energy levels in the region
of the �(1405), it is also possible to solve Eq. (6) but in
an asymmetric box. To do this we just need to substitute
L3 by LxLyLz and the momentum �p of Eq. (12) by �p =
(2π )(nx/Lx, ny/Ly, nz/Lz). In Fig. 2 we show the first three
energy levels determined in a box of side lengths Lx = Ly = L

and Lz = zL, and we vary z between 0.5L and 2.5L. In this
way, we get more energy levels in the region of interest, which
can provide different information about the system and the
poles of the �(1405).

FIG. 2. Energy levels in an asymmetric box of side length Lx =
Ly = L and Lz = zL, with z = 0.5 to 2.5 in steps of 0.5.

3. Periodic boundary conditions in moving frame

Another method to try to get more energy levels around the
pole positions of the �(1405) and, thus, different information
about the dynamics of the system under consideration, consists
of imposing periodic boundary conditions in a symmetric box
of side length L but considering the system in a moving frame
(i.e., with nonzero center-of-mass momentum �P ). In Fig. 3
we show the results found in this case for the first three levels
obtained and for different values of the vector �N [see Eq. (13)].
As can be seen, the use of different values of �P gives rise to
a splitting of the levels. In particular, the splitting of level 1
is precisely in the energy region of interest, 1390–1450 MeV.
This is different from the case of the asymmetric box, where
level 2 is required in order to have energy levels around 1420–
1450 MeV, as can be seen in Fig. 2.

B. Inverse problem: getting �(1405) poles from
energy levels of box

In the following we refer to the problem of determining the
pole positions of the �(1405) in the infinite volume using the

FIG. 3. Energy levels in a symmetric box of side length L with
the system having a center-of-mass momentum given by Eq. (13).
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energy levels shown in Figs. 1–3 as if they were provided to
us by a lattice calculation. In our formalism, we can simulate
lattice-like data considering points related to the energy levels
of Figs. 1–3 and assigning to them a typical error of ±10 MeV.
We call the data generated in this form “synthetic” lattice data
and the problem of getting the poles of the �(1405) from these
data points “the inverse problem.”

To solve the inverse problem we consider a potential with
the same energy dependence as the chiral potential used
to generate the energy levels shown in Figs. 1–3. In its
nonrelativistic version, this potential is given by [6]

Vij = − Cij

4f 2
(Ei + Ej ), (14)

with the Cij coefficients depending on the channel considered,
f being the pion decay constant, and Ei (Ej ) being the center-
of-mass energy of the meson in the initial (final) state. Using
that for a particular channel l

El = E2 + m2
l − M2

l

2E
, (15)

with ml and Ml being the masses of the meson and baryon
which constitute channel l, respectively, we can write Eq. (14)
as

Vij = − Cij

4f 2

{
E + 1

2E

[
m2

i + m2
j − (

M2
i + M2

j

)]}
. (16)

Choosing a region of energies around a certain value of E, E0,
the inverse function of E can be expanded as a function of
E − E0 to a good extent. Particularizing E0 to the value given
by the sum of the kaon and nucleon masses (i.e., mK + MN ),
we can write the potential in Eq. (16) as

Vij = aij + bij [E − (mK + MN )]. (17)

The value of the coefficients aij and bij can be obtained
comparing Eq. (17) with Eq. (16) and substituting 1/E by
its Taylor expansion around E0 = mK + MN .

To solve the inverse problem, we use the energy levels
obtained from Eq. (6) with the potential of Eq. (17) but treat
aij and bij as parameters which are determined by fitting the
corresponding solutions for the energy levels to the synthetic
lattice data considered. Since this potential has the same
energy dependence as the chiral potential, the best fit we
can perform will have as minimum value for χ2 the result
χ2

min = 0. However, other possible potentials, giving rise to
solutions compatible with the error assumed in the data points,
can be also found as an answer for the inverse problem. These
solutions can be obtained by generating random numbers for
the parameters aij and bij close to those of the minimum such
that χ2 � χ2

min + 1.
It is important to notice that the loop function G̃ used

in Eq. (6) needs to be regularized and, thus, depends on
a cutoff or a subtraction constant. Consequently, so do the
fitted parameters, but the T matrix obtained from Eq. (1) and
the observables related to it should be independent of this
regularization parameter. This means that the inverse method
cannot depend on the cutoff or subtraction constant assumed in
the evaluation of the G̃ function. For the case of one channel,
it is possible to show analytically this independence in the

choice of the cutoff or subtraction constant [65,70], but if
more channels are involved it can only be seen numerically
by changing the cutoff or subtraction constant in a reasonable
physical range [65,70].

In the next sections we show the results found for the inverse
problem. To accomplish this we have considered different sets
of points extracted from the energy levels shown in Figs. 1–3
and fit them from the solution that Eq. (6) produces with the
potential of Eq. (17). To solve Eq. (6) we have taken into
account two coupled channels, π� (which we named channel
1) and K̄N (or channel 2), which are the most relevant channels
to describe the properties of the �(1405). This implies, as can
be seen in Eq. (7), that we have to determine three potentials,
V11, V12 (V21 = V12), and V22 or, equivalently, 6 parameters
a11, a12, a22, b11, b12, and b22. Once the parameters and, thus,
the potentials, are known, we can use them to solve Eq. (1)
and determine the pole positions of the �(1405) in an infinite
volume.

1. Periodic boundary conditions in symmetric box

In Fig. 4 we show the results of the energy levels
reconstructed from the best fits to the synthetic lattice data
considered from Fig. 1. These data consist of 10 points for
levels 0 and 1 obtained in a symmetric box of side length
L, varying L in the range 1.5 m−1

π to 3.34 m−1
π , assigning

an error of ±10 MeV to the eigenenergies of the box (from
now on, we will always assume an error of ±10 for the
different synthetic data that we will use). The shadowed
band in the figure corresponds to the random choices of
parameters satisfying the condition χ2 � χ2

min + 1. Using the
potentials obtained from the fit and the loop function G

in infinite volume, we can solve Eq. (1) and calculate the
two-body T matrix in the unphysical sheet, which allows
us to determine the pole position of the �(1405) associated
to the band of solutions shown in Fig. 4. As a result we

FIG. 4. (Color online) First two energy levels as function of the
box side length L, reconstructed from fits to the synthetic data of
Fig. 1 in a range of L between 1.5 m−1

π and 3.34 m−1
π using the

potential of Eq. (17). The band corresponds to different choices of
parameters within errors.
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FIG. 5. (Color online) Same as in Fig. 4 but for a range of L

between 1.5 m−1
π and 4.93 m−1

π .

get a double-pole structure for the �(1405), with one pole
in the region 1385–1433 MeV with a half width between
93–137 MeV (which we call pole 1) and another one in the
energy region 1416–1427 MeV with a half width in the range
11–20 MeV (which we call pole 2). If we compare these results
with the ones of the chiral model [11], 1390 − i66 MeV and
1426 − i16 MeV, respectively, we find a big dispersion in the
determination of the real part of the first pole of the �(1405).
This shows that the information which one can extract from
the synthetic data considered in Fig. 4 is not sufficient to
determine with more precision the poles associated with the
�(1405).

A way to delimit the poles of the �(1405) with more
precision from lattice data could consist of going to higher
volumes, since for large volumes the results in the box should
be very close to those of an infinite volume. With this idea
in mind, we can generate synthetic data points for the levels
0 and 1 of Fig. 1, but in a larger range of L than considered
in Fig. 4. The data points, as well as the results from the fits,
are shown in Fig. 5. Similarly, if we use now the potentials
associated with the band of solutions shown in Fig. 5 to solve
Eq. (1) and calculate the T matrix in the unphysical sheet, we
get again two poles in the complex energy plane associated
with the �(1405): one in the region 1390–1433 MeV, with a
half width between 70 and 100 MeV, and other at 1410–1421
MeV with a half width 17–30 MeV. Comparing them with the
previous results, we find that the consideration of a bigger box
has improved slightly the width associated with the first pole
of the �(1405); however, we continue having a similar energy
dispersion for the real part of the pole.

We could also try using different levels than those employed
in Figs. 4 and 5 to see if we can get more reliable information
from them. In Fig. 6 we consider synthetic data obtained from
levels 1 and 2 of Fig. 1. We have taken into account 5 points
for level 1 in a range of L between 1.5 m−1

π and 3.9 m−1
π and 4

points for level 2 for values of L inside 2 m−1
π to 3.9 m−1

π . This
is because for level 2 the points for values of L below 2 m−1

π

are influenced by the η� and K� channels and, thus, it is not
possible to fit them considering only the π� and K̄N channels,

FIG. 6. (Color online) Fits to levels 1 and 2 of Fig. 1 constructed
from the potential of Eq. (17).

as we do. We can use now the potentials associated with the
different fits shown in Fig. 6 to calculate the pole positions
of the �(1405) in infinite volume by means of Eq. (1). In
this case, we continue getting a double-pole structure for the
�(1405), but this time one pole is at (1375–1430) − i(70–85)
MeV and the other one is at (1412–1427) − i(21–34) MeV.
The position of the second pole remains basically the same
as in the two previous cases. However, the use of synthetic
points generated from levels 1 and 2 instead than from levels
0 and 1 has restricted more the imaginary part of the first pole,
although we continue getting a similar energy dispersion for
the real part of the pole position.

Finally, we could consider all the energy levels present in
Fig. 1 below 1600 MeV to generate data points to check if
the consideration of more levels can restrict more the energy
region at which the pole positions of the �(1405) are found.
Following this idea, in Fig. 7 we consider a set of 14 points
extracted from levels 0, 1, and 2 of Fig. 1. Similar to the
previous results, the consideration of data points associated
to three energy levels puts a restriction on the imaginary
part of the first pole of the �(1405), which in this case

FIG. 7. (Color online) Fits to levels 0, 1, and 2 of Fig. 1
constructed from the potential of Eq. (17).
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is in the range 54–68 MeV (closer to the chiral solution,
66 MeV). However, the dispersion on the real part continues
basically equal, 1400–1428 MeV. For the second pole we get
(1408–1425) − i(29–40) MeV.

These results show that the information which can be
extracted from synthetic data constructed from the energy
levels obtained in a symmetric box of volume L3 is not enough
to determine with precision the pole positions of the �(1405), a
fact which is basically related to the absence of energy levels,
and thus information about the dynamics of the system, in
the region between 1400 and 1500 MeV, as can be seen in
Fig. 1.

2. Periodic boundary conditions in asymmetric box

We consider now the case of an asymmetric box of
side lengths Lx = Ly = L and Lz = zL to solve the inverse
problem. In this case, we generate a set of 20 data points
extracted from levels 0, 1, and 2 shown in Fig. 2. In particular,
we use 5 points for level 0 calculated with z = 2.5, 10 points
for level 1 (5 for the case z = 0.5 and 5 more for z = 2.0)
and 5 points for level 2 obtained with z = 2.0. In this way we
ensure the presence of some energy levels in the region of the
�(1405), as can be seen in Fig. 8.

The solution of the Bethe-Salpeter equation in an infinite
volume, Eq. (1), using the potentials related to the band of
solutions plotted in Fig. 8, shows the presence of a double-pole
structure for the �(1405) with pole positions at (1383–1407) −
i(57–69) MeV and (1425–1434) − i(25–35) MeV. Thus, using
this new set of data points, there is an improvement in the
determination of the first pole of the �(1405), which is now
quite close to the chiral result (1390 − i66 MeV). However,
the second pole appears at higher energies as compared to
the case of a symmetric box and sometimes is far from the
chiral solution (1426 − i16 MeV), being even close to the
K̄N threshold.

FIG. 8. (Color online) Fits to synthetic data extracted from energy
levels 0, 1, and 2 of Fig. 2 in an asymmetric box of side lengths
Lx = Ly = L and Lz = zL. The data points considered are generated
from level 0 for z = 2.5, level 1 for z = 0.5 and z = 2.0, and level 2
for z = 2.0.

FIG. 9. (Color online) Fits to synthetic data extracted from energy
levels 0 and 1 of Fig. 3, which correspond to the case of a symmetric
box, but with the particles being in a moving frame.

3. Periodic boundary conditions in moving frame

We can also study the information which can be extracted
for the poles of the �(1405) using the levels obtained when we
consider the system in a symmetric box, but in a moving frame,
to generate synthetic lattice data. In this case, we consider
levels 0 and 1 of Fig. 3 determined for 5 different values of the
center-of-mass momentum (the ones shown in the legend of
Fig. 3) and two points in each of these curves. In particular, we
take points at L = 1.757 m−1

π and L = 2.014 m−1
π , obtaining

then 20 data points. The results are shown in Fig. 9. From the
solution of the best fits, we can use the potentials obtained
to solve Eq. (1), getting then two poles for the �(1405): one
at (1388–1418) − i(59–77) MeV and other at (1412–1427) −
i(16–34) MeV.

In Fig. 10 we show the results for the pole positions of
the �(1405) obtained from the different data set considered in
this work. As can be seen in Fig. 10, out of the different data
sets considered to solve the inverse problem, the cases of an
asymmetric box and of a symmetric box but in a moving frame
seem to be more suited to get the two poles of the �(1405)
with more precision.

C. Phase shifts and Lüscher approach

So far, when solving the inverse problem, we have de-
termined the pole positions related to the �(1405) using the
two-body T matrix in infinite volume obtained from the energy
levels calculated in a finite volume. However, we could also
make use of the same scattering matrix to obtain the phase
shifts in infinite volume for the different channels. To do
this, we follow Ref. [84], in which the T matrix is related
to the inelasticity and the phase shifts.1 Just as an illustrative

1Please note that in Ref. [84] coupled meson-meson systems are
studied while, in the present case, we analyzed coupled meson-
baryon systems. Thus, a different normalization shall be used in the
determination of the phase shifts: instead of the scattering matrix Tij

for the transition between the channels i and j , a factor
√

2Mi2Mj
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FIG. 10. (Color online) Pole positions of �(1405) reconstructed
from the different set of synthetic data generated for the different
cases considered in this work. The shaded symbols corresponds to
the positions obtained for the first pole of the �(1405), while the
empty symbols are related to the second pole of the �(1405).

example, we can use the two coupled channel T matrices
obtained from the band of solutions shown in Fig. 4 and
calculate the phase shift, for example, for the π� channel. In
Fig. 11 we show the phase shift for the π� → π� transition
in isospin 0 and s-wave, δ0

0, in the energy region 1331 to 1500
MeV, determined within the chiral model (solid line) and using
the inverse method from the band of energies shown in Fig. 4
(shaded area). As can be seen, the agreement between the
theoretical curve and the solutions determined using the fits to
the synthetic data of Fig. 4 is good. This is more remarkable
having in mind the fact that the data points considered in
Fig. 4 reach up to a maximum energy of around 1410 MeV.
To determine the π� phase shift with more precision from
eigenenergies obtained in a finite volume more energy levels
at higher energies than 1410 MeV would be required. However,
the information contained in the synthetic data of Fig. 4 about
the dynamics of the system makes possible to get an overall
agreement with the theoretical π� phase shift for energies
bigger than the one of the last data point considered in Fig. 4.

One may wonder whether the use of the Lüscher formula for
the single π� channel can give rise to similar phase shifts as
those shown in Fig. 11 (solid line or shaded area). As we have
seen, the poles of the �(1405) come as a consequence of the
π� and K̄N coupled channel dynamics, but we have seen in

shall be included (with Mi , Mj being the baryon masses in the
channels i, j ); thus, Tij → √

2Mi2MjTij .

FIG. 11. (Color online) s-wave phase shift for π� channel in
isospin 0 determined from the chiral model (solid line), using band of
solutions for energy levels shown in Fig. 4 (shaded area) and within
Lüscher formula (dots).

the analogous case of the s wave I = 0 ππ scattering, that the
σ (600) and f0(980) resonances also require the analysis with
the ππ and KK̄ channels, but at low energies the ππ phase
shifts are very accurately obtained from finite-volume energy
levels via the Lüscher formula with just the ππ channel [65].
We might think that this is the case here too, and it is generally
accepted that the Lüscher formula can be used when one has
only one channel open. Assuming that this is the case, we pro-
ceed as follows: As shown in Ref. [65], for a one channel case
and for the discrete eigenenergies obtained in a finite volume,
the scattering matrix in infinite volume can be written as

T (E) = [G̃(E) − G(E)]−1. (18)

As proved in Ref. [65], Eq. (18) is equivalent to the
Lüscher formula. Using now Eq. (18), we can calculate the
phase shift for the π� channel for each of the eigenenergies
(synthetic data points) shown in Fig. 4 which fall above the π�

threshold. This means only the upper level since the energies
of the lower level are below the π� threshold. The results
obtained are shown as dots in Fig. 11. As can be seen, the
phase shift determined within the Lüscher formula [Eq. (18)]
have a completely different behavior than the theoretical result
determined from the chiral model (solid line) or those of the
shaded area calculated from the fits to the synthetic lattice
data of Fig. 4. This fact indicates that the π� and K̄N coupled
channel dynamics plays a very important role in the generation
of the �(1405) and, thus, in the determination of physical
observables like the phase shifts.

The reason for this failure is that the higher level of Fig. 4
is mostly tied to the K̄N channel and, hence, forcing it to
provide information on π� leads to unrealistic results. This is
an important result which could not be anticipated and tells
us that the straightforward application of Lüscher formula
to obtain phase shifts can provide quite unrealistic results if
applied in physical cases where two or more channels are very
much connected. The value of the present approach to make
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prospective studies in different cases becomes apparent. How-
ever, the discussion requires a closer look, as we argue below.

IV. FURTHER DISCUSSIONS

The results obtained in the previous subsection could be
surprising to the light of a well-known fact in coupled channels
studies where the effect of coupled channels that one would
like to disregard in the analysis can be reabsorbed by a
redefinition of the potential in a chosen channel. Imagine we
have N channels and we want to include the effect of (N − 1)
channels redefining the potential of channel 1. This is done in
Refs. [86,87] and the effective potential for channel 1 is now
given by

Veff = V11 +
N∑

m=2

V1mGmVm1 +
N∑

m,l=2

V1mGmt
(N−1)
ml GlVl1,

(19)

where t
(N−1)
ml = [V (N−1)−1 − G(N−1)]−1 is the (N − 1)(N − 1)

t matrix of the system of (N − 1) channels, after removing
channel 1. This means that it is possible to construct an
effective potential and work with just one channel, but it
involves Gm and t

(N−1)
ml for the channels not considered.

This has obvious repercussions since for finite volume Gm

and t
(N−1)
ml would become G̃m and t̃

(N−1)
ml , respectively, which

are volume dependent. Then the Lüscher approach is bound
to have problems since it implicitly relies upon volume-
independent potentials.

For the case of finite-volume studies it is more practical
to state this fact in a different way. Let us start from Eq. (1)
that gives the T matrix in the infinite volume and write the
correspondent scattering matrix in the finite volume, T̃ :

T̃ = [V −1 − G̃]−1. (20)

Using Eqs. (1) and (20), we get

T̃ −1 = T −1 − δG = T −1[1 − T δG], (21)

where we have defined δG ≡ G̃ − G. Hence,

T̃ = [1 − T δG]−1T . (22)

One can note that this formula is like Eqs. (1) or (20) for T̃ ,
substituting V → T and G̃ → δG. Hence, the condition to
obtain the energy levels in the box, det(T̃ ) = 0, leads to the
analogous secular equation of Eq. (7) in terms of T and δG

substituting V and G̃, respectively:

(1 − T11δG11)(1 − T22δG2) − T 2
12δG1δG2 = 0, (23)

from where we derive for the eigenenergies of the eigenstates
of the box2

T11 = δG−1
1 − T 2

12δG2

1 − T22δG2
. (24)

It is now interesting to note that if channel 2 is a closed channel,
like K̄N below threshold, then δG2 is volume exponentially

2We are indebted to the referee for providing us this formula.

suppressed and in the large-L limit we recover Lüscher formula
T11 = δG−1

1 .
It is also interesting to establish the connection of δG

with another function used in finite-volume studies, F (d)(kL).
Indeed, δG is proportional to the function F (d)(kL) used
in Ref. [79], where it is shown in detail that it is actually
exponentially suppressed. The superindex d in F (d)(kL) stands
for the total momentum (in units of 2π/L) of the two-particle
system. In Ref. [79] it is also shown that the use of moving
frames and some particular combinations of them can help
reducing the volume dependence in the determination of
binding energies of systems.

For what respects us in the present case, we can already
appreciate in Fig. 11 that, for higher energies, which are
reached in Fig. 4 for large volumes, the π� phase shift
determined with the Lüscher formula starts converging to the
exact one. However, as can be seen in Eq. (24), the divergence
of T11 (where, in this case, 1 represents the π� channel) from
the Lüscher formula is tied not only to the exponentially
suppressed magnitude δG2, but also to the magnitude of
T12 (transition matrix between π� and K̄N ), and thus the
actual accuracy of Lüscher formula to derive the π� phase
shift cannot be determined a priori without knowledge of the
underlying dynamics.

In view of this, let us investigate this issue further: if the
second term in Eq. (24) is suppressed at large L as compared
to the first one, the Lüscher term, how relevant is it then in
the determination of the scattering matrix for the different
cases considered here: symmetric box, asymmetric box, and
the system in a moving frame? Can we neglect it for some of
these cases and work just with the Lüscher formula to obtain
the scattering matrix?

To answer these question let us first illustrate the sup-
pression at large L of the second term in Eq. (24). To do
this, we consider points in the energy region above the π�

threshold and close to the K̄N threshold for the different cases
and determine the contribution of each of the two terms in
Eq. (24). In particular, for the symmetric box, we take the
eigenenergies related to the level 1 shown in Fig. 7. In case
of an asymmetric box, we use the points shown in Fig. 8
for the level 1 with z = 0.5 and for the system in a moving
frame the two points in Fig. 9 associated to the level 1 and
the vector �P = (2π/L)(2, 0, 0). We then use the T11 matrix
(i.e., π� T matrix) obtained for each case from the best fit to
the energies shown in Figs. 7–9, respectively, calculated at the
corresponding eigenenergies. Next, for these eigenenergies,
we determine δG−1

1 and the difference δG−1
1 − T11, which

corresponds to the second term in Eq. (24). In Figs. 12–14 we
show the results obtained for the symmetric box, asymmetric
box and the system in a moving frame, respectively. In these
figures, the filled triangles represent the modulus squared of the
contribution arising from the Lüscher approach (i.e., δG−1

1 ),
while the empty triangles correspond to the contribution
coming from the second term in Eq. (24). As we can see,
in case of a symmetric box, the Lüscher term in Eq. (24)
dominates the second one for L � 3.3m−1

π . For an asymmetric
box, this happens for L � 3.8m−1

π . For the system in a moving
frame, since the biggest value of L associated with the points
considered in Fig. 9 is L ∼ 2m−1

π , to check if the second term
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FIG. 12. Modulus squared of contributions arising from first
(filled triangles) and second (empty triangles) term of Eq. (24) for
eigenenergies related to level 1 of Fig. 7 (symmetric box) as a function
of side length L of box.

of Eq. (24) is suppressed for bigger values of L we have
extended the calculation to higher values of L by considering
all the eigenenergies related to level 1 and �P = (2π/L)(2, 0, 0)
of Fig. 3. The results are shown in Fig. 14 as a solid line for
the Lüscher term and as a dashed line for the second term
in Eq. (24). As can be seen, the value of L after which the
second term in Eq. (24) is negligible as compared to the
first one is L � 2.7m−1

π . This value of L is smaller than
that found in a symmetric and an asymmetric box. Thus, it
comes out that the use of a moving frame helps in reducing
the volume dependence in the determination of phase shifts
via the one-channel Lüscher formula, as shown in Ref. [79].

After showing the suppression with L which occurs for
the second term in Eq. (24), one may wonder why then one
would need to consider coupled channels to determine the
poles of the �(1405) and why the Lüscher approach would
fail. One reason is that channel π� couples strongly to the
lower pole and more weakly to the higher one, while the K̄N

channel is the one that couples more strongly to the upper pole.

FIG. 13. Same as in Fig. 12, but for level 1 of an asymmetric box
of dimension Lx = L, Ly = L and Lz = 0.5L (see Fig. 8).

FIG. 14. Same as in Fig. 12 but for the level 1 of a system in a
moving frame with �P = (2π/L)(2, 0, 0) (see Fig. 9). The solid and
dashed lines are obtained using the eigenenergies shown in Fig. 3 for
the same level and �P .

The K̄N → K̄N amplitude bears stronger information on the
upper pole than the π� → π� one. This second pole is also
close to the K̄N threshold where the second term of Eq. (24)
will be important. We can see in practice the problems that we
face in the realistic situation where the information is taken
from the levels considered. Let us go back to the results shown
in Figs. 12–14. There, we have shown a suppression with L

for the second term in Eq. (24) with respect to the Lüscher
contribution to the scattering matrix for a certain energy level.
However, it should be emphasized that the energy levels in
the box start converging to some particular energy for large
values of L. For example, level 0 in Fig. 7 starts from an
energy of around 1280 MeV at L = 1.5 m−1

π and converges as
L increases to the threshold of the π� channel. Similarly, the
energy level 1 begins at an energy value close to 1370 MeV and
as L increases it stabilizes to an energy of around 1400 MeV,
while the second level seems to converge to an energy around
1435 MeV (i.e., the K̄N threshold). Thus, by using a particular
energy level in a range of L one cannot determine the scattering
matrix for the system at infinite volume at any energy. To do
this, we need to use different energy levels covering different
energy regions. For example, using the levels shown in Fig. 7,
the scattering matrix in infinite volume can be determined at
an energy of 1330 MeV using the level 0 at L ∼ 4m−1

π , but
to obtain it at higher energies we need to shift to level 1,
which starts at an energy of 1370 MeV at a much smaller
value of L: L = 1.5m−1

π . It would be interesting now to know
what happens to the first and the second term in Eq. (24)
when several energy levels covering different energy ranges
are considered to determine the scattering matrix at infinite
volume. We show the results obtained for the three cases
studied, symmetric box, asymmetric box, and moving frame, in
Figs. 15–17, using the eigenenergies of Figs. 7–9, respectively,
which are above the π� threshold (1331 MeV), up to a
maximum energy of 1500 MeV (above the K̄N threshold).
In these figures, the solid line corresponds to the modulus
squared of the π� amplitude in infinite volume obtained
from the best fit to the energies shown in Figs. 7–9. The
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FIG. 15. Contributions arising from the first and second terms of
Eq. (24) for the case of a symmetric box. The solid line corresponds
to the modulus squared of the π� T matrix, Tπ� , in infinite volume
obtained from the best fit to the data points shown in Fig. 7. The
circles correspond to the same quantity but evaluated at the data
points (eigenenergies) of Fig. 7 which fall above the π� threshold
and below 1500 MeV (a value higher than the K̄N threshold). The
filled triangles represent the modulus squared of the Lüscher term in
Eq. (24) for the respective eigenenergies, while the empty triangles
are for the contribution of the second term in Eq. (24).

circles correspond to the same quantity but for the respective
eigenenergies which fall in the energy range 1331–1500 MeV.
The filled and empty triangles represent the modulus squared
of the first and second terms in Eq. (24), respectively, at the
particular eigenenergies. As one can see in these figures, there
are large oscillations and, for a certain energy the Lüscher term
can be negligible as compared to the second one in Eq. (24), but
for the next energy the situation can be completely reversed.
Thus, the fact that one needs to use different energy levels to
determine the scattering matrix in infinite volume below and
above the different thresholds makes it necessary to consider
the contribution arising from the second term in Eq. (24).

Once more, the exercise presented in this subsection reveals
the relevance of the two channels in this particular problem
and makes manifest the power of using effective theories at
finite volumes as a prospective tool for further QCD lattice
calculations.

FIG. 16. Same as in Fig. 15 but for an asymmetric box (eigenen-
ergies taken from Fig. 8).

FIG. 17. Same as in Fig. 15 but for a moving frame (eigenenergies
taken from Fig. 9).

V. CONCLUSIONS

We have made a study of the K̄N interaction with its
coupled channels in a finite box and found the levels obtained
as a function of box size. We have done this for standard
periodic conditions and symmetric boxes, for asymmetric
boxes, and for symmetric boxes but with the particles in a
moving frame. The aim of the work has been to solve the
inverse problem in which, assuming that the levels in the
box would correspond to “QCD lattice results,” we want to
determine the pole positions in the complex plane for the two
�(1405) states provided by the chiral unitary approach and
supported by several experiments.

We found that the problem is not trivial, and even the use of a
large number of energies of the box corresponding to different
levels and volumes with standard periodic conditions cannot
provide the mass and width of the states with the accuracy
of the chiral unitary approach and present experiments. For
this reason we investigated other possible strategies and found
that the use of asymmetric boxes and levels coming from
the particles in moving frames helped considerably to narrow
down the uncertainties in the determination of the mass and
width of these resonances. The choices of levels and energies
made for this analysis should be a guiding tool for future QCD
lattice evaluations, showing the number of levels needed, the
errors that should be demanded in the determination of the
energies of the box, and the type of asymmetric boxes or total
momenta of the pair of particles in the moving frames. Having
this information beforehand is of tremendous value given the
time consuming runs of actual QCD lattice runs.

Our analysis has also another important conclusion. The
Lüscher approach with one channel is universally accepted
as an accurate tool to get phase shifts for energies where
only one channel is open. In the present case we found that,
since the π� and K̄N channels are not much separated in
energy and are very entangled, the use of Lüscher approach
to get the π� phase shifts from lattice energy levels leads
to erroneous results, unless large volumes are used. But one
cannot anticipate how large should L be to get a certain
accuracy in the phase shifts. This should give us a warning
for other cases and makes the finite volume studies within the

055201-11
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chiral unitary approach very valuable as a prospective tool to
be used for each individual case.

We also found, in agreement with previous analytical stud-
ies, that the moving frames provide more accurate results for
a given volume, via one-channel analysis, than the one at rest.
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