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Background: Quantum chromodynamics is expected to have a phase transition in the same static universality
class as the 3D Ising model and the liquid-gas phase transition. The properties of the equation of state, the
transport coefficients, and especially the location of the critical point are under intense theoretical investigation.
Some experiments are underway, and many more are planned, at high-energy heavy ion accelerators.
Purpose: Develop a model of the thermal conductivity, which diverges at the critical point, and use it to study
the impact of hydrodynamic fluctuations on observables in high-energy heavy ion collisions.
Methods: We apply mode-coupling theory, together with a previously developed model of the free energy that
incorporates the critical exponents and amplitudes, to construct a model of the thermal conductivity in the vicinity
of the critical point. The effect of the thermal conductivity on correlation functions in heavy ion collisions is
studied in a boost-invariant hydrodynamic model via fluctuations, or noise.
Results: We find that the closer a thermodynamic trajectory comes to the critical point the greater is the magnitude
of the fluctuations in thermodynamic variables and in the 2-particle correlation functions in momentum space.
Conclusions: It may be possible to discern the existence of a critical point, its location, and thermodynamic and
transport properties near to it in heavy ion collisions using the methods developed here.
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I. INTRODUCTION

It has now been firmly established, via lattice calculations,
that QCD with its physical quark masses does not exhibit a
phase transition at finite temperature and zero baryon density
but only a very rapid crossover from quark-gluon plasma-like
behavior to hadronic gas-like behavior [1–5]. However, since
the up and down quark masses are so small, and chiral symme-
try is nearly exact, there are reasons to suspect that there is a
curve of first-order phase transition in the temperature T versus
baryon chemical potential μ plane, terminating at a critical
point at Tc > 0 and μc > 0. The existence of such a critical
point has been found in various effective field theory models,
such as the Nambu–Jona-Lasinio model [6–8], a composite
operator model [9], a random matrix model [10], a linear σ

model [8], an effective potential model [11], and a hadronic
bootstrap model [12]. Lattice QCD has yet to confirm or deny
the existence of a critical point. The reason is that inclusion of
a chemical potential does not allow for straightforward Monte
Carlo samplings of the field configurations. For reviews see
Refs. [13,14].

High-energy heavy ion collisions may provide experimental
evidence for a critical point and provide information on the
behavior of the equation of state in its vicinity. Relevant to
this are low-energy runs at the Relativistic Heavy Ion Collider
(RHIC), and in the future at the Facility for Antiproton and
Ion Research (FAIR), at the SPS Heavy Ion and Neutrino
Experiment (SHINE), and at the Nuclotron-based Ion Collider
Facility (NICA). Critical points are characterized by large
fluctuations. This led to the suggestion to study fluctuations in
conserved quantities, such as electric charge, baryon number,
and strangeness, on an event-by-event basis [15,16]. The
effect is proportional to the spatial size of the domain or
correlated region, which is probably rather small due to the
finite size and lifetime in heavy ion collisions [17]. Therefore,

it was suggested to measure higher moments to search for
non-Gaussian behavior [18]. However, at present there is
no experimental evidence for anomalous fluctuations of this
kind [19].

A crucial issue is whether the critical point can ever be
reached in a heavy ion collision. Colliding nuclei is necessary
to reach high baryon density, but at the same time it creates
entropy. If the initial entropy per baryon is much larger than
that at the critical point, then the expanding matter will never
pass close to it, even under the assumption of an ideal adiabatic
expansion, since entropy can only increase with time, not
decrease. The problem is similar to that of trying to create
superheavy nuclei by colliding nuclei: Too much entropy is
created.

In this paper we construct a semirealistic model of the
thermal conductivity due to an assumed critical point in
the QCD phase diagram. At a critical point the thermal
conductivity diverges, as does the shear viscosity. However, the
critical exponent for the shear viscosity is much smaller than
that for the thermal conductivity, with the implication that the
influence of the divergence of the shear viscosity is confined
to a very narrow window in temperature, probably too small to
have any effect on the matter produced in a heavy ion collision.
In contrast, the temperature window for the enhancement
of the thermal conductivity is much wider. These transport
coefficients, along with the bulk viscosity, control the strength
of hydrodynamic fluctuations in heavy ion collisions [20]. In
particular, the strength of the hydrodynamic fluctuations due
to thermal conductivity λ are quantified by the correlation
function

〈f (x1)f (x2)〉 = 2λ

(
nT

sw

)2

δ(x1 − x2), (1)
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where f (x) is a dimensionless fluctuation, or noise term,
that appears in the hydrodynamic equations. Reference [20]
applied the relativistic theory of hydrodynamic fluctuations
to heavy ion collisions, with a specific example worked out
for matter created with zero average baryon density.1 In
this paper we will focus on thermal conductivity and ignore
viscosities for simplicity of exposition. This allows us to study
the influence of a critical point on the produced matter in a
controlled and quantitative manner, although the model we use
is not realistic enough for direct comparison with experiment.
The Landau-Lifshitz definition of flow velocity is used in this
paper since it naturally extends to baryon-free matter, whereas
the Eckart definition becomes ambiguous in that limit; see, for
example, [20,23]. Due to this rational choice of reference frame
the behavior of the shear and bulk viscosities near the critical
point only affect the background solution of the hydrodynamic
equations for which, in this exploratory study, we use the
perfect fluid solutions. Even greater effects may be anticipated
when all of these effects are incorporated self-consistently.

Reference [24] constructed the free energy in the vicinity of
the critical point that incorporated both the critical exponents
and critical amplitudes. Using this free energy, the Landau
theory of fluctuations was applied to estimate the probability
of fluctuations away from the equilibrium state, which was
found to be very large. However, the Landau theory considers
baryon number fluctuations in a finite volume in contact with a
heat reservoir at fixed temperature, which does not adequately
represent the space-time evolution of matter in a heavy ion
collision. Dynamical simulations of spinodal decomposition,
or phase separation, were done in Refs. [25,26], but without
the incorporation of intrinsic hydrodynamical fluctuations or
noise. In this article we assume that the entropy created in
the collision is too high to allow any trajectories in the T -μ
plane to pass through the coexistence region. Rather, following
the earlier remarks on entropy in heavy ion collisions, we
assume that the trajectories always pass to the left of the critical
point, never entering the coexistence region or crossing the
line of first-order phase transition. This is a more conservative
scenario for heavy ion experiments.

Hydrodynamic fluctuations, or noise, may be crucial for
studying the effects of a critical point in heavy ion collisions.
As an analogy, Ref. [27] performed a theoretical study of the
breakup of liquid nanojets with the conclusion that “noise is
the driving force behind pinching, speeding up the breakup to
make surface tension irrelevant.” Similar conclusions were
reached in Ref. [28], which studied the breakup of liquid
nanobridges.

The outline of the article is as follows. In Sec. II we
construct a semirealistic model for the critical enhancement
of the thermal conductivity. This is based on the mode-
coupling theory which has been successfully applied to the
liquid-gas phase transition in a variety of ordinary atomic
systems. In Sec. III we discuss the equation of state to be
used in conjunction with the thermal conductivity to model
the expansion phase of heavy ion collisions. In Sec. IV we

1Earlier studies for extracting the shear viscosity in heavy ion
collisions were done by [21] and for the bulk viscosity by [22].

implement these ideas in a boost-invariant hydrodynamic
model; although not the most relevant fluid dynamic model
for studying the critical point, it allows us to gain insight
and intuition, and to discover the magnitude of the effect on
observables in Sec. V. We summarize and conclude in Sec. VI.

It should be acknowledged that there are other sources of
fluctuations in heavy ion collisions, such as initial-state fluctua-
tions, fluctuations induced by jets and other high-momentum-
transfer processes, and fluctuations during hadronization in
the final state. These were surveyed in Ref. [20]. Fluctuations
caused by passage near a critical point should be characterized
by a strong beam energy dependence. Fluctuations due to jets
should not be relevant at the energies where the critical point
might be reached.

II. THERMAL CONDUCTIVITY

In ordinary materials, thermal conductivity is typically
inferred from measurements of a diffusion constant rather
than measured directly. There are several kinds of diffusion
constants depending on the experimental conditions. The
baryon diffusion constant DB is defined by the diffusion
equation

∂X

∂t
= DB∇2X, (2)

where X is the departure from the equilibrium baryon density
n or baryon chemical potential μ at fixed temperature T . The
fully relativistic expression for this diffusion constant is

DB = λT

(∂n/∂μ)T

(
n

w

)2

, (3)

where w is the enthalpy density and λ is the thermal conduc-
tivity (dimension of energy-squared). The partial derivative in
this expression is just the baryon number susceptibility

χB = (∂n/∂μ)T . (4)

The isothermal compressibility κT is

κ−1
T = n

(
∂P

∂n

)
T

, (5)

where P is the pressure. These are simply related by χB =
n2κT .

The diffusion equation for heat is

∂T

∂t
= DT ∇2T , (6)

which is carried out at constant pressure. This diffusion
constant can be derived from first-order relativistic viscous
fluid dynamics to be

DT = λ

cP

, (7)

where cP = T (∂s/∂T )P is the heat capacity per unit volume
at constant pressure.

For liquids and gases near their critical point it is easier
to measure DT than DB . As is well known, the thermal
conductivity diverges at such a critical point. It is conventional
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and useful to separate the thermal conductivity into a smooth
background piece λb and a piece �λ which diverges at the
critical point and which goes to zero away from the critical
point so that λ = λb + �λ. Exactly how this is done is
not unique and is considered a bit of an art. Then �λ =
cP �DT .

We would like to know the thermal conductivity not
only in the asymptotic critical region but in the noncritical
region too. For this one must go beyond the renormalization
group, which is only valid asymptotically close to the critical
point. A rather successful approach to this problem is to use
mode-coupling theory for the dynamics of critical fluctuations
in fluids extended away from the critical region [29–33]. The
basic idea is the recognition that in a fluid the slow modes
are the diffusive modes of heat and viscosity while the sound
mode is considered a fast mode. The approach is quite general,
and has been developed for fluids near and above the critical
temperature in the universality class of the liquid-gas phase
transition. Only the essential points will be reviewed and
summarized here [34].

The part �DT due to the critical enhancement takes the
form

�DT = RDT

6πηξ
�(qDξ ). (8)

Here ξ is the correlation length, η is the shear viscosity, RD is
a universal constant approximately equal to 1.05, and � is a
crossover function which goes to zero as qDξ goes to zero and
which goes to 1 as qDξ goes to infinity. The qD is a cutoff in
wave number and is material dependent.2 As the critical point
is approached, ξ → ∞, and the Stokes-Einstein diffusion law
is recovered

�DT → RDT

6πηξ
. (9)

The smooth background value of η, without the critical
enhancement, is sometimes used because its critical exponent
of 0.063 for the reduced temperature [35–37] is much smaller
than the critical exponent for the thermal conductivity, and its
divergence at the critical point contributes negligibly to the
results.

A model for the crossover function �(qDξ ), which partly
accounts for nonasymptotic critical behavior for the thermal
conductivity, was presented in Fig. 4 of Ref. [34]. The
complicated numerical results can be approximated to two
significant digits in the range 0.5 < qDξ < ∞ by

�(x) ≈ 0.48 tanh(0.23x) + 1.04

π
arctan(0.65x). (10)

The correlation length needs a precise definition. Reference
[34] uses

ξ = ξ0

(
�χ∗

B



)ν/γ

, (11)

2To be precise, both �DT and the crossover function � depend on
the wave number q. In the hydrodynamic limit one takes qξ → 0
while qDξ remains finite. Hence we consider �(qDξ ) a function with
a single argument.

where

χ∗
B =

(
Pc

n2
c

)
χB = Pc

n2
c

(
∂n

∂μ

)
T

(12)

is a dimensionless susceptibility. Both ξ0 and  are smoothly
and slowly varying functions of n and T . A function

�χ∗
B(n, T ) = χ∗

B(n, T ) − χ∗
B(n, Tref)

Tref

T
(13)

was used in Ref. [34] so that the enhancement from criticality
goes to zero at some reference temperature Tref . The critical
exponents are γ ≈ 1.24 for the isothermal compressibility or
baryon number susceptibility, and ν ≈ 0.63 for the correlation
length. These are the critical exponents for systems in the same
static universality class as the liquid-gas phase transition and
the 3D Ising model; it is generally accepted that the QCD phase
transition under discussion belongs to the same universality
class [38]. It has further been shown [39] that this QCD phase
transition belongs to the dynamic universality class of model
H of Ref. [40].

An explicit expression is needed for the correlation length.
Based on the work in Ref. [24] we take the baryon number
susceptibility in the critical region to be

�χ∗
B = 5Pc

(δ + 1)fσ

[(
δ − 1

2 − γ

) (
�n

nc

)
tγ + 5δ |η|δ−1

]−1

.

(14)

This results in the correlation length

ξ (n, T ) = ξ̄0

[(
δ − 1

2 − γ

)(
�n

nc

)
tγ + 5δ |η|δ−1

]−ν/γ

. (15)

Here t ≡ (T − Tc)/Tc � 0 and η ≡ (n − nc)/nc (not to be
confused with the shear viscosity). The other critical exponent
is δ = 4.815. The �n is the discontinuity in the baryon density
at zero temperature. It was estimated in Ref. [24] as �n =
nc/3. All the other constants or slowly varying quantities are
absorbed into

ξ̄0 = ξ0

(
5Pc

(δ + 1)fσ

)ν/γ

. (16)

Note that the expression (14) automatically goes to zero, or
becomes very small, far away from the critical point. Hence
there is no absolute need to make a subtraction as in Eq. (13).
Finally, when considering heavy ion collisions later on, it
is necessary to know �λ for t somewhat less than zero but
still outside the phase coexistence region. To do so we shall
replace tγ in the previous formulas with |t |γ , which is a smooth
extrapolation outside the domain of the derivation.

Now we come to a discussion of the remaining parameters.
Reference [34] made a theoretical fit to the transport properties
of carbon dioxide and ethane. Their fit parameters are ξ0 =
1.5 Å, q−1

D = 2.0 Å, and  = 0.0481 for carbon dioxide, and
ξ0 = 1.9 Å, q−1

D = 1.83 Å, and  = 0.0541 for ethane. (Note
that light scattering can be used to independently fix the critical
amplitude ξ0 in these materials, but such is not possible with the
matter produced in high-energy heavy ion collisions.) The first
point to notice is that ξ0 ≈ q−1

D for both substances. They are
smaller than the average particle separation of n

−1/3
c = 5.39 Å
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(carbon dioxide) and n
−1/3
c = 6.23 Å (ethane), and comparable

to the physical dimensions of the molecules. We will take
qDξ0 = 1 and assume that the cutoff is qD = πT0 where T0 is
the crossover temperature at zero chemical potential; see the
next section. For the other parameters we choose  = 0.05
and from [24] fσ = 5Pc. Finally, with T0 = 170 MeV (for
example) we get ξ0 = 0.37 fm and ξ̄0 = 0.69 fm.

There are various theoretical approaches for calculating the
background thermal conductivity λb. A calculation in QCD to
lowest order in αs but to all orders in ln αs gives [41]

DB = 0.165

α2
s ln(0.497/αs)

1

T
. (17)

This is for two quark flavors; similar results were obtained for
three flavors. This result requires that αs 
 1 which is valid
only at asymptotically high temperatures. No calculations have
been done with nonzero chemical potentials with this accuracy.
Earlier, Ref. [42] estimated the thermal conductivity with a
chemical potential for two flavors as

λb ≈ 0.08

α2
s ln(1/αs)

(
w

n

)2

(18)

using the relaxation time approximation to the Boltzmann
equation.

The relaxation time approximation is especially useful
for calculating the background thermal conductivity in the
hadronic phase. From [42,43]

λb = 1

3T 2

∑
i

(2si + 1)ebiμ/T

×
∫

d3p

(2π )3
τi(p)

(
p

εi

)2(
εi − bi

w

n

)2

e−εi/T , (19)

where the sum is over all particles i with baryon number bi ,
spin si , and single-particle energy εi =

√
p2 + m2

i . The τi(p)
is the momentum-dependent relaxation time. In the limit that
the baryon chemical potential goes to zero this results in

λb

(
nT

w

)2

= 1

3

∑
i

(2si + 1)b2
i

∫
d3p

(2π )3
τi(p)

(
p

εi

)2

e−εi/T .

(20)

Hence the baryon number fluctuations, as reflected by (1),
remain even when the average baryon density is zero. Note
that in this limit only baryons contribute to the thermal
conductivity. This limit will be a good approximation when
the enthalpy per baryon is much greater than the nucleon mass.

It should be remarked that in some special situations the
number of particles, in particular pions, is held fixed due to
relatively slow particle creation and annihilation reactions. In
these situations the net baryon density is replaced by the total
particle density, for example nπ . See, for example, [43,44]. In
the context of unitarized chiral perturbation theory the thermal
and electrical conductivities, which are related through the
Wiedemann-Franz law, have been calculated in Ref. [45]. In
Ref. [46] the electrical conductivity has been related to the
total photon yield ωdNγ /d3p in the limit pT → 0. However,
due to our higher temperatures—where pion number is not

conserved—we will not follow that path here and consider net
baryon density.

III. EQUATION OF STATE

We need a smooth background equation of state for two
reasons. First, we need the isobaric specific heat in order to
convert the thermal diffusion constant to the thermal conduc-
tivity in the critical region. Second, we need an equation of
state to solve the background hydrodynamic equations to find
the space-time evolution of the independent thermodynamic
variables T and μ.

The isobaric specific heat diverges at the critical point. It
obeys the thermodynamic relation

cP − cV = χBT

n2

(
dP

dT

)2

n

= χBT

[(
∂μ

∂T

)
n

+ s

n

]2

. (21)

The isochoric specific heat has critical exponent α = 0.11
while the susceptibility has critical exponent γ = 1.24. Hence
the critical exponent for the isobaric specific heat is γ and
for the thermal conductivity it is γ − ν = 0.61. This is under
the reasonable assumption that the coefficient of χB in the
expression for cP − cV has a nonzero finite value at the critical
point. It should be noted that use of the equation of state
which includes the critical amplitudes and exponents as given
in Ref. [24] results in the vanishing of cP − cV . In particular,
the function f̄0(t) in that paper is only given to first order in T

but it is needed to second order to compute cP . This just means
that a smooth background equation of state must be used to
calculate the coefficient of χB in Eq. (21).

In Ref. [24] it was assumed that the critical point lies
somewhere along a crossover curve parameterized by

(
T

T0

)2

+
(

μ

μ0

)2

= 1, (22)

with an estimate that T0 ≈ 170 MeV and μ0 ≈ 1200 MeV. The
high energy density equation of state was taken to be of the
form

P = A4T
4 + A2T

2μ2 + A0μ
4 − CT 2 − B. (23)

This equation of state was used to calculate the critical density,
critical entropy density, and so on once Tc was given.

If either P or ε is assumed to be constant along the crossover
curve then one has the following condition on μ0/T0:

A0
μ4

0

T 4
0

− A2
μ2

0

T 2
0

+ A4 = 0. (24)

There is also a condition on C. If P is constant along the
crossover, as argued in Ref. [24], then

C = μ2
0

(
A2 − 2A0

μ2
0

T 2
0

)
. (25)

For definiteness we shall take the coefficients Ai for those
of a noninteracting gas of massless gluons and Nf flavors of
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FIG. 1. The phase diagram showing the crossover curve and the
zero pressure curve.

massless quarks:

A4 = π2

90

(
16 + 21Nf

2

)
, A2 = Nf

18
, A0 = Nf

324π2
.

(26)

Using Nf = 2 and T0 = 170 MeV results in μ0 =
1218.48 MeV. At the critical point

wc

nc

= μ0

(
1 − T 2

c

T 2
0

)−1/2

(27)

and

sc

nc

=
(

μ0

T0

)2
Tc

μc

(28)

for the both this equation of state and for the parametrization
near the critical point constructed in Ref. [24]. Finally, as in
Ref. [24] we take B = 0.8T 2

0 . The phase diagram is illustrated
in Fig. 1.

Using (23) the terms appearing in Eq. (21) are(
∂μ

∂T

)
n

= −2A2T μ

A2T 2 + 6A0μ2
, (29)

s

n
= T

μ

(
2A4T

2 + A2μ
2 − C

A2T 2 + 2A0μ2

)
. (30)

These are smooth in the vicinity of the critical point and
provide a nonvanishing coefficient of χB . Note that if there
were no T 2 term in the pressure, C = 0, then an adiabatic
expansion would imply that T/μ = constant. In that case the
factor [(

∂μ

∂T

)
n

+ s

n

]2

is constant during adiabatic expansion and cooling.
Combining the results from the previous section and this

one, we have found a representation for �λ. In Fig. 2 we plot it
as a function of η for fixed values of t and in a contour plot as a

t

0
0.02

0.04
0.06

0.08
0.1η
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)2 (GeVλΔ

(b)

η
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G
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2.5
(a) t=0

t=0.001

t=0.002

t=0.005

t=0.01

t=0.02

t=0.1

FIG. 2. (Color online) Plots of �λ using the parameters given in
the text.

function of η and t . Note that the energy scale is GeV, not tens
or hundreds of MeV. Therefore one should expect significant
fluctuations if the trajectory of the expanding matter takes it
near the critical point. In the remaining part of this article
we will neglect the background thermal conductivity and use
only �λ. If the magnitudes of the resulting correlations are
observably large, then they would only be greater if λb was
included.

To conclude this section we should point out that one can
add higher derivative terms to the dissipative part of the baryon
current in the Landau-Lifshitz frame of reference. This is
discussed in Appendix A.

IV. FLUCTUATIONS IN BOOST-INVARIANT
HYDRODYNAMICS

In this section we will study the effects of fluctuations
on the expanding and cooling matter produced in heavy
ion collisions if the trajectory in the T -μ plane passes near
the critical point. For this purpose we will use the 1+1
dimensional boost-invariant (Bjorken) hydrodynamic model,
similar to what was done in Ref. [20]. This model is too
idealized to make any sort of direct comparison to experimental
data. In addition, this model assumes highly relativistic beam
energies, probably much higher than is required to achieve the
high baryon densities necessary to probe the critical point.
Nevertheless, it does provide some guidance and intuition
before one attempts to study the problem with much more
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FIG. 3. Evolution of baryon density (a) and entropy density (b)
as a function of time. They fall as 1/τ so that the entropy per baryon
is constant within the hydrodynamic expansion.

sophisticated and numerically intensive 3+1 dimensional
viscous fluid dynamics. Since the method and equations are
so similar to those in Ref. [20] we will leave out some of the
details. The gaps can easily be filled in with a little effort.

The energy-momentum tensor in ideal fluid dynamics is

T μν = wuμuν − Pgμν. (31)

The shear and bulk viscosities are ignored to focus on the
effects of thermal conductivity. In the boost-invariant hydro-
dynamics the flow velocity has the nonvanishing components

u0 = cosh (ξ + ω), u3 = sinh (ξ + ω). (32)

Here ξ is the space-time rapidity (not to be confused with the
correlation length) and ω(ξ, τ ) is a fluctuation that depends on
both ξ and the proper time τ . The baryon current is

Jμ = nuμ + Iμ, (33)

where Iμ is a fluctuation, as described in Ref. [20]. The
smooth, background fluid equations lead to the simple equa-
tions of motion

ds

dτ
+ s

τ
= 0 (34)

and
dn

dτ
+ n

τ
= 0, (35)

independent of the specific equation of state. The solutions are

s(τ ) = siτi/τ (36)

and

n(τ ) = niτi/τ, (37)

where si and ni are the entropy and baryon densities at some
initial time τi . Some representative solutions for s and n for
later use are represented in Fig. 3. The initial temperature
is Ti = 250 MeV, the initial time is τi = 0.5 fm/c, and the
initial chemical potential was chosen to be μi = 420, 620, and
820 MeV for the three cases. The adiabatic trajectories
corresponding to these three cases are also shown in the phase
diagram in Fig. 4. Trajectories I and II represent crossover
transitions while trajectory III passes very close to the critical
end point, which is here chosen to be located at Tc = 160 MeV
and μc = 411.74 MeV. The entropy per baryon at the critical

 (MeV)μ
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0
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300
Graph

I II IIITrajectory

FIG. 4. The phase diagram showing the crossover curve and the
three trajectories used in the computation.

point is 19.96, while for trajectories I, II, and III it is 37.98,
26.08, and 20.06, respectively. The time evolution is stopped
when the zero pressure curve is reached, which is at τf = 3.04,
3.30, and 3.68 fm/c, respectively. In reality, matching to a full
hadronic equation of state should be done, but we do not do it
for this illustrative example.

The full equations are linearized in the fluctuations, such
as δn, and these in turn are linear functionals of Iμ. The
nonvanishing components are

I 0 = s(τ )f (ξ, τ ) sinh ξ, I 3 = s(τ )f (ξ, τ ) cosh ξ, (38)

on account of the condition that uμIμ = 0. Notice that f is
dimensionless as the entropy density has been factorized out
for convenience. The average value of f (ξ, τ ) is zero and the
correlation with itself was given in Eq. (1). The linearized
equations are

τ
∂δε

∂τ
+ δw + w

∂ω

∂ξ
= 0, (39)

τ
∂δn

∂τ
+ δn + n

∂ω

∂ξ
+ s

∂f

∂ξ
= 0, (40)

τ
∂(wω)

∂τ
+ 2wω + ∂δP

∂ξ
= 0. (41)

Here n and w are the smooth background solutions which
depend only on τ . Note that the noise drives the baryon
fluctuations, and if the average baryon density is zero there
is no coupling to ω and so there is only one equation (40) to
solve.

It is useful to identify the independent variables in
Eqs. (39)–(41) as δs, δn, and ω. Then they take the form

τ
∂δs

∂τ
+ δs + s

∂ω

∂ξ
− μs

T

∂f

∂ξ
= 0, (42)

τ
∂δn

∂τ
+ δn + n

∂ω

∂ξ
+ s

∂f

∂ξ
= 0, (43)

τ
∂ω

∂τ
+ (

1 − v2
σ

)
ω + v2

nT

w

∂δs

∂ξ
+ v2

s μ

w

∂δn

∂ξ
= 0. (44)
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Here v2
σ is the physical, adiabatic speed of sound squared,

while v2
n ≡ (∂P/∂ε)n and v2

s ≡ (∂P/∂ε)s . They are related by

v2
σ = T sv2

n + μnv2
s

w
. (45)

See Appendix B. Finally, it is convenient to use dimensionless
independent variables. The linearized equations of motion are
written in terms of δs/s, δn/s, and ω:

τ
∂

∂τ

(
δs

s

)
+ ∂ω

∂ξ
− μ

T

∂f

∂ξ
= 0, (46)

τ
∂

∂τ

(
δn

s

)
+ n

s

∂ω

∂ξ
+ ∂f

∂ξ
= 0, (47)

τ
∂ω

∂τ
+ (

1 − v2
σ

)
ω + v2

nT s

w

∂

∂ξ

(
δs

s

)

+ v2
s μs

w

∂

∂ξ

(
δn

s

)
= 0. (48)

In Fourier space

X̃(k, τ ) =
∫ ∞

−∞
dξe−ikξX(ξ, τ ) (49)

for any variable X. Then Eqs. (46)–(48) can be expressed as a
Langevin equation:

τ
∂ψ̃

∂τ
+ Dψ̃ + f̃ ñ = 0, (50)

where the vector ψ̃ , the drift matrix D, and the stochastic noise
term ñ read

ψ̃ =

⎛
⎜⎜⎜⎝

δs̃

s
δñ

s
ω̃

⎞
⎟⎟⎟⎠ , D =

⎛
⎜⎜⎝

0 0 ik

0 0 ik
n

s

ikv2
n

T s

w
ikv2

s

μs

w
1 − v2

σ

⎞
⎟⎟⎠ ,

(51)

ñ = ik

⎛
⎜⎝

−μ

T
1
0

⎞
⎟⎠ .

The homogeneous equation is solved by the evolution operator
Ũ(k; τ, τ ′) that is calculated as

Ũ(k; τ, τ ′) = T exp

{
−

∫ τ

τ ′

dτ ′′

τ ′′ D(k, τ ′′)
}

, (52)

where T is the time-ordering operator. Once that is known, the
solution to the inhomogeneous equation can be expressed as

ψ̃(k, τ ) = −
∫ τ

τi

dτ ′

τ ′ Ũ(k; τ, τ ′)ñ(k, τ ′)f̃ (k, τ ′), (53)

with the assumption that the solution at the initial time τi is
zero. Up to this point no specific equation of state has been
assumed and the results are completely general (within the
context of the hydrodynamic model).

In general, the solution to the above equations cannot be
written down in closed form. As a consequence, the evolution

operator generally would need to be computed numerically
once an equation of state is specified. The exception is when
the drift matrix is constant in time. That was the situation
studied in Ref. [20], and it would be the situation here too
if the equation of state is given by (23) with C = 0. If the
drift matrix was time independent, D(k, τ ′′) = D(k), then the
solution would be

Ũ(k; τ, τ ′) =
(

τ ′

τ

)D(k)

. (54)

We will approximate Ũ by the above expression with D
evaluated at τ . This should be a very good approximation at
large T and/or μ, and at least semiquantitatively valid in any
case. (The reason for evaluating the drift matrix at τ instead of
τ ′ is discussed more later.) To avoid this approximation would
require taking C = 0, and it is arguable whether it would be a
better approximation to the real physics.

The calculation is further simplified as the drift matrix is
diagonalizable. The eigenvalues are

d0 = 0, (55)

d± = α ± β, (56)

with

α ≡ 1
2

(
1 − v2

σ

)
, β2 ≡ α2 − v2

σ k2. (57)

The evolution operator reads

Ũ(k; τ, τ ′) = Ũ0(k; τ ′) + (τ ′/τ )d−

d+ − d−
Ũ−(k; τ ′)

− (τ ′/τ )d+

d+ − d−
Ũ+(k; τ ′), (58)

where

Ũ0(k; τ ′) = 1

wv2
σ

⎛
⎜⎜⎝

nμv2
s −μsv2

s 0

−T nv2
n T sv2

n 0

0 0 0

⎞
⎟⎟⎠ , (59)

Ũ±(k; τ ′) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

v2
n

v2
σ

T s

w
d∓

v2
s

v2
σ

μs

w
d∓ −ik

v2
n

v2
σ

T n

w
d∓

v2
s

v2
σ

μn

w
d∓ −ik

n

s

−ikv2
n

T s

w
−ikv2

s

μs

w
−d±

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

(60)

The solution to the inhomogeneous Langevin equation gives
the response functions G̃X(k, τ, τ ′). They are calculated from

⎛
⎜⎝

G̃s(k; τ, τ ′)

G̃n(k; τ, τ ′)

G̃ω(k; τ, τ ′)

⎞
⎟⎠ = Ũ(k; τ, τ ′)n(k, τ ′) (61)
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to be

G̃s(k; τ, τ ′) = − ik

v2
σ

μ

T

{
v2

s + (
v2

σ − v2
s

)(τ ′

τ

)α

×
[

α

β
sinh

(
β ln

τ

τ ′

)
+ cosh

(
β ln

τ

τ ′

)]}
,

G̃n(k; τ, τ ′) = ik

v2
σ

{
v2

n + (
v2

σ − v2
n

)(τ ′

τ

)α

(62)

×
[

α

β
sinh

(
β ln

τ

τ ′

)
+ cosh

(
β ln

τ

τ ′

)]}
,

G̃ω(k; τ, τ ′) = k2

β

s

n

(
v2

σ − v2
n

)(τ ′

τ

)α

sinh

(
β ln

τ

τ ′

)
,

where, unless otherwise indicated, the variables on the right-
hand side are functions of τ .

Although δn/s and δs/s were the natural dimensionless
variables to use when solving the equations of motion, it is
very useful to look at the variables

δP

T s
= v2

n

(
δs

s

)
+ v2

s

μ

T

(
δn

s

)
(63)

and

δ

(
1

σ

)
= δ

(
n

s

)
=

(
δn

s

)
− n

s

(
δs

s

)
. (64)

The corresponding response functions are

G̃P (k; τ, τ ′) = ik
μ

T

(
v2

s − v2
n

)(τ ′

τ

)α[
α

β
sinh

(
β ln

τ

τ ′

)

+ cosh

(
β ln

τ

τ ′

)]
(65)

and

G̃σ = ik
w

T s
. (66)

The reason that these are interesting and relevant is that a
change in pressure at constant entropy per baryon corresponds
to a sound wave, while a change in entropy per baryon at
constant pressure corresponds to diffusive heat flow, and so
these are physically orthogonal variables. This should be
apparent mathematically as well. Notice that G̃P contains
only cosh and sinh terms; in the large k limit these become
sinusoidal oscillations. On the other hand G̃σ has no such
terms; in coordinate space it is the derivative of a Dirac delta
function.

Approximating the matrix D as a constant, as in Eq. (54),
can be examined in light of its diagonalized form. The
approximation will be good if |∂ ln v2

σ /∂ ln τ | 
 1. This is
a good approximation because it is only the presence of a
T 2 term in the pressure that causes v2

σ to deviate from its
asymptotic value of 1/3. For a static, uniform system no such
approximation is necessary. See Appendix C.

In the presence of the fluctuating forces, the solution to the
equations of motion for X = δs/s, δn/s, ω, δP/T s, δσ reads:

X̃(k, τ ) = −
∫ τ

τi

dτ ′

τ ′ G̃X(k, τ, τ ′)f̃ (k, τ ′). (67)

The correlation function of the fluctuating force (1) is

〈f (τ1, ξ1)f (τ2, ξ2)〉

= 2λ(τ1)

Aτ1

[
n(τ1)T (τ1)

s(τ1)w(τ1)

]2

δ(τ1 − τ2)δ(ξ1 − ξ2), (68)

with

δ(x1 − x2) = 1

Aτ1
δ(τ1 − τ2)δ(ξ1 − ξ2) (69)

and where A is the transverse area in the Bjorken model. The
Fourier transform is

〈f̃ (k1, τ1)f̃ (k2, τ2)〉

= 4πλ(τ1)

Aτ1

[
n(τ1)T (τ1)

s(τ1)w(τ1)

]2

δ(τ1 − τ2)δ(k1 + k2). (70)

In Fourier space the correlation function of the fluctuating
variables then reads

〈X̃(k1, τ1)Ỹ (k2, τ2)〉

= 4π

A
δ(k1 + k2)

∫ min(τ1,τ2)

τi

dτ

τ 3
λ(τ )

[
n(τ )T (τ )

s(τ )w(τ )

]2

× G̃X(k1; τ1, τ )G̃Y (k2; τ2, τ ). (71)

The equal-time correlator at the final or freeze-out time τf is

C̃XY (k; τf ) = 4π

A

∫ τf

τi

dτ

τ 3
λ(τ )

[
n(τ )T (τ )

s(τ )w(τ )

]2

G̃XY (k; τf , τ ),

(72)

where

G̃XY (k; τf , τ ) = G̃X(k; τf , τ )G̃Y (−k; τf , τ ). (73)

Finally, the correlation function in space-time rapidity is

CXY (ξ1 − ξ2; τf )

= 2

A

∫ τf

τi

dτ

τ 3
λ(τ )

[
n(τ )T (τ )

s(τ )w(τ )

]2

GXY (ξ1 − ξ2; τf , τ ),

(74)

where GXY (ξ1 − ξ2; τf , τ ) is the inverse Fourier transform
of G̃XY (k; τf , τ ). As mentioned earlier, we will ignore the
background thermal conductivity λb in our numerical results.
The final correlations due to thermal conduction would only
be greater if λb was included.

As discussed in some detail in Ref. [20], the response func-
tions generally contain step functions, Dirac delta functions,
and first and second derivatives of Dirac delta functions. These
are due to the fact that signals created by the fluctuating sources
propagate at the speed of sound; the singular parts are located
at the sound horizon in space-time rapidity. The distance a
signal can propagate in space-time rapidity between time τ1

and τ2 is

�ξ =
∫ τ2

τ1

dτ

τ
vσ (τ ). (75)

Two points separated by twice this distance would receive a
signal at the same time if it was sent from a source midway
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FIG. 5. Regular part of the response functions: (a) G
reg
PP , (b) G

reg
Pω,

and (c) Greg
ωω. They represent a wake behind fronts that move at the

speed of sound.

between them. As in Ref. [20], one can subtract the singular
terms to study the regular behavior of this function:

G̃
reg
XY (k; τf , τ ) = G̃XY (k; τf , τ ) − G̃

sing
XY (k; τf , τ ). (76)

We show some examples of G
reg
XY (ξ ; τf , τi) in Fig. 5. These

represent the wake behind the propagating sound front.
The singular expansions of these coefficients are given in
Appendix D. Note that the subtraction of the singular part
is only made for illustration purposes. The final particle
correlation contains the entire G̃XY (k; τf , τ ) function. It is
noteworthy that if we approximate the drift matrix at the time
τ ′ instead of at τ there would be a small singular piece in
G̃PP at the distance given by (75) in addition to at twice that
distance. This is unphysical, and reaffirms the choice of the
time τ rather than τ ′.

It is interesting to observe that there are no sound waves
emitted if vσ = vs = vn, only pure diffusion, as may be seen
from Eq. (62). Such is the case for the simple equation of

state P = v2ε − B where v2 is a constant. Sound waves are
generated only if the pressure responds differently to variations
in energy density depending on whether the entropy density,
the baryon density, or the entropy per baryon is held fixed. It
is immediately apparent that QCD does not have the property
that all three speeds are equal. The equation of state used for
the space-time evolution in this article, given by Eq. (23), has
different speeds because it contains a T 2 term in the pressure.
For very large energy densities it has a decreasing influence,
and all three speeds approach 1/

√
3; see Appendix B.

V. PHENOMENOLOGY

In this section we consider observable consequences of
fluctuations caused by the existence of a critical point in
the QCD phase diagram. Although direct comparison to
experiment is not to be expected, we will find that the effects
are quite significant and definitely worthy of further study.

The analysis follows that described in Ref. [20] very closely.
For this reason, we only give the key steps here. The number
of particles with degeneracy d per phase-space volume is

dN

d3xd3p
= d

(2π )3
f (x, p), (77)

with

f (x, p) = e−(u·p−μ)/T (78)

being the Boltzmann distribution function. The four-velocity
of the fluid cell is

uμ = ( cosh(ξ + ω), u⊥, sinh(ξ + ω)). (79)

The distribution of particles at the freeze-out surface �f is
given by the Cooper-Frye formula

E
dN

d3p
= d

∫
�f

d3σμ

(2π )3
pμf (x, p). (80)

In the hydrodynamic model being used here

d3σμ pμ = τf dξ d2x⊥m⊥ cosh(y − ξ ). (81)

The variable y represents the particle rapidity

pμ = (m⊥ cosh y, p⊥,m⊥ sinh y), (82)

where

m⊥ =
√

m2 + p2
⊥ (83)

is the transverse mass. The number of particles per unit rapidity
is then

dN

dy
= dAτf

(2π )3

∫
dξ cosh(y − ξ )

∫
d2p⊥m⊥

× exp (−{[cosh(y − ξ − ω)m⊥ − μ]/T }), (84)

where the integration over x⊥ gives the transverse area of the
collision A. If we neglect all fluctuations (δT = δμ = ω = 0)
we get the average of dN/dy as〈

dN

dy

〉
= dAτf

(2π )2
eμ/T

∫ ∞

−∞
dξ cosh(y − ξ )

∫
dp⊥p⊥m⊥

× exp {−[cosh(y − ξ )m⊥]/T } . (85)
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In order to perform the integration over p⊥ we use the
following formulas:∫

dp⊥p⊥m⊥e−cm⊥ = 1

c3
e−cm[2 + 2cm + (cm)2]

≡ 1

c3
(3, cm), (86)∫

dp⊥p⊥m2
⊥e−cm⊥ = 1

c4
e−cm[6 + 6cm + 3(cm)2 + (cm)3]

≡ 1

c4
(4, cm). (87)

At the freeze-out time we obtain

dN

dy
= dAτf T 3

f

4π2
eμf /Tf

∫ ∞

−∞

dx

cosh2 x


(
3,

m

Tf

cosh x

)
. (88)

Now we consider fluctuations of dN/dy and eventually its
two-point correlation. To do so, we expand the exponential
term in Eq. (84) to first order in fluctuations around the freeze-
out value:

T = Tf + δT (τf , ξ ), (89)

μ = μf + δμ(τf , ξ ). (90)

The Boltzmann factor becomes

exp (−{[cosh(y − ξ − ω)m⊥ − μ]/T })
→ exp (−{[cosh(y − ξ )m⊥ − μf ]/Tf })

×
{

1 + δT (ξ )

T 2
f

[m⊥ cosh(y − ξ ) − μf ]

+ω(ξ )
m⊥
Tf

sinh(y − ξ ) + δμ(ξ )

Tf

}
, (91)

where the fluctuations are understood to be evaluated at τf .
The fluctuation in the number of particles per unit rapidity is
then

δ

(
dN

dy

)
= dA

(2π )3
τf

∫
dξ cosh(y − ξ )

∫
d2p⊥m⊥

× exp (−{[cosh(y − ξ )m⊥ − μf ]/Tf })

×
{

δT (ξ )

T 2
f

[m⊥ cosh(y − ξ ) − μf ]

+ω(ξ )
m⊥
Tf

sinh(y − ξ ) + δμ(ξ )

Tf

}
. (92)

We need to replace the fluctuations δT and δμ by δs and δn.
We use

δT = χμμ

�
δs − χT μ

�
δn,

(93)
δμ = −χT μ

�
δs + χT T

�
δn,

where χT T = ∂2P (T ,μ)/∂T 2, χT μ = ∂2P (T ,μ)/∂T ∂μ, and
χμμ = ∂2P (T ,μ)/∂μ2, and where

� = χT T χμμ − χ2
T μ. (94)

We now perform the integration over p⊥ with the help of (86)
and (87). The fluctuation of dN/dy reads

δ

(
dN

dy

)
= dAτf T 2

f

4π2
eμf /Tf

∫
dξ

[
δs

s
Fs(y − ξ )

+ωFω(y − ξ ) + δn

s
Fn(y − ξ )

]
. (95)

Here we have introduced the functions

Fs(x) ≡ sχμμ

� cosh2 x


(
4,

m

Tf

cosh x

)

− sχT μ + sχμμμf /Tf

� cosh2 x


(
3,

m

Tf

cosh x

)
, (96)

Fω(x) ≡ Tf tanh x

cosh2 x


(
4,

m

Tf

cosh x

)
, (97)

Fn(x) ≡ − sχT μ

� cosh2 x


(
4,

m

Tf

cosh x

)

+ sχT T + sχT μμf /Tf

� cosh2 x


(
3,

m

Tf

cosh x

)
. (98)

Finally, we construct the rapidity correlator:
〈
δ

(
dN

dy1

)
δ

(
dN

dy2

) 〉

=
(

dAτf T 2
f

4π2

)2

e2μf /Tf

∫
dξ1

∫
dξ2

×
∑
X,Y

FX(y1 − ξ1)FY (y2 − ξ2)CXY (ξ1 − ξ2; τf ), (99)

where the sum runs over δs/s, δn/s, and ω, and where

CXY (ξ1 − ξ2; τf ) = 〈X(ξ1; τf )Y (ξ2; τf )〉. (100)

To simplify calculation of the 2-particle correlation function it
is convenient to use the Fourier transforms:〈

δ

(
dN

dy1

)
δ

(
dN

dy2

) 〉

=
(

dAτf T 2
f

4π2

)2

e2μf /Tf

∫
dk

2π
eik�y

×
∑
X,Y

F̃X(k)F̃Y (−k)C̃XY (k; τf ), (101)

with �y = y1 − y2. The expression for C̃XY is

C̃XY (k) = 4π

A

∫ τf

τi

dτ

τ 3
λ(τ )

(
nT

sw

)2

× G̃X(k; τf , τ )G̃Y (−k; τf , τ ). (102)

To eliminate the transverse area we normalize the correlation
function by the event average of dN/dy to obtain

〈
δ

(
dN

dy1

)
δ

(
dN

dy2

) 〉〈
dN

dy

〉−1

= dτf T 2
f

2π2
eμf /Tf

C(�y)

N (m/Tf )
,

(103)
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FIG. 6. Thermal conductivity as a function of proper time and
trajectory.

where

C(�y) =
∫

dk eik�y
∑
X,Y

F̃X(k)F̃Y (−k)
∫ τf

τi

dτ

τ 3
λ

(
nT

sw

)2

× G̃X(k; τf , τ )G̃Y (−k; τf , τ ) (104)

and

N (m/Tf ) ≡
∫ ∞

−∞

dx

cosh2 x


(
3,

m

Tf

cosh x

)
. (105)

Now we are prepared to study the influence of the hydro-
dynamic fluctuations on the 2-particle correlation functions.
Figure 6 shows the thermal conductivity as a function of
time for the three trajectories chosen earlier. As the trajectory
passes closer to the critical point the enhanced thermal
conductivity is probed ever more closely. The effect of this
on the 2-particle correlation functions is shown in Fig. 7 for
protons (d = 2, mp = 939 MeV). For charged pions (d = 2,
mπ = 138 MeV, zero chemical potential) we show in Fig. 8
the 2-particle correlation function with no chemical potential
fluctuation (δμ = 0) (left panels) and with pion chemical
potential fluctuation equal to that of the protons (right panels).
Which one is closer to reality cannot be determined without
explicitly introducing a conserved electric current on the same
footing as the baryon current. The presence of additional
fluctuations enhances the magnitude of the correlation between
particles. Both pions and protons exhibit the influence of the
thermal conductivity. The shape is approximately the same for
all trajectories. The protons have a maximum at �y = 0 and
a minimum near �y = 0.95; the pions have a maximum at
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FIG. 7. Particle correlation function for protons.
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FIG. 8. Particle correlation function for pions at zero chemical
potential. (a) Nonzero fluctuations of chemical potential. (b) No
fluctuations of chemical potential.

�y = 0 and a minimum near �y = 1.7 (with chemical poten-
tial fluctuations) or near 1.3 (without chemical potential fluc-
tuations). The magnitude of the correlation, on the other hand,
increases dramatically as one goes from trajectory I to II to
III. As mentioned earlier, the boost-invariant hydrodynamical
model is not sufficiently realistic to consider any comparison
to experiment, especially since one needs a large initial baryon
number. Nevertheless, the size of the effect in this model bodes
well for future theoretical studies and experiments.

VI. SUMMARY AND CONCLUSIONS

We applied mode-coupling theory, together with a
parametrization of the equation of state that incorporates the
correct critical exponents and amplitudes, to develop a model
for the thermal conductivity in the vicinity of the critical point.
This contribution to the thermal conductivity incorporates the
correct critical behavior but can be used in the nonasymptotic
region as well. The thermal conductivity quantifies the strength
of particular hydrodynamic fluctuations via the fluctuation-
dissipation theorem. To obtain insight into what effects might
result in heavy ion collisions as a consequence of the critical
point, we studied a simple boost-invariant hydrodynamic
model. We conservatively assumed that the entropy per baryon
created in a heavy ion collision is too large for an adiabat to
enter the mixed phase. The thermal conductivity along the adi-
abatic trajectory is enhanced the closer the trajectory comes to
the critical point. The flyby of the critical point results in fluctu-
ations in the temperature, baryon chemical potential, and local
flow velocity which evolve with time and are not the same as
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fluctuations in the initial conditions. We found that the growth
of the thermal conductivity near the critical point implies the
existence of two-particle correlations over 2 units of rapidity
for protons. The strength of this correlation increases the closer
the expansion trajectory comes to the critical point. In particu-
lar, the magnitude of the correlation is directly proportional to
the time-integrated history of the thermal conductivity, making
the correlation a sensitive probe of the thermal conductivity
and of the presence of a critical point. With the inclusion
of other transport coefficients (shear and bulk viscosities)
this correlation can be further enhanced. We have found
that the fluctuations in the baryon density—in particular the
chemical potential fluctuations—are the most important effect
for the magnitude of correlations compared to the thermal and
velocity fluctuations alone. For this reason, we think that the
usually neglected baryon diffusion coefficient—alternatively,
the thermal conductivity—could be of interest for accessing
the critical behavior by two-particle correlations. However,
their practical use relies on the ability of the heavy ion factories
to produce trajectories that pass close to the critical point.

There are many natural extensions to this study. For exam-
ple, inclusion of the regular part of the thermal conductivity
would increase the magnitude of the fluctuations and hence
correlation functions in the final-state observables. To quantify
fluctuations due to electric charge, pions for example, requires
the introduction of the electric charge current in addition to
the baryon current. Introduction of the strangeness degree of
freedom—the kaon multiplicity is typically larger than proton
multiplicity—would also enhance the correlation function as
one includes additional fluctuations in the strange chemical
potential. Inclusion of the thermal conductivity into the fluid
equations of motion, not only in the fluctuations, should
certainly be done. This could potentially increase correlations
because it couples some of the fluctuations among them in such
a way that the drift matrix does not contain any nonvanishing
element. The effect of this modification for the shear and bulk
viscosities has been studied in Ref. [20] leading to a smoothing
of the singularities appearing at the sound horizon.

An extension to the region of first-order phase transition
would be interesting. Decreasing the initial entropy per
baryon below its value at the critical point would result
in instabilities and phase separation, with probably greater
consequences than a flyby of the critical point as studied here.
The importance of the thermal conductivity in this regard
has already been noted [47]. Ultimately a 3+1 dimensional
calculation for the fireball evolution is necessary to study the
hydrodynamical correlations not only in rapidity but also as a
function of the azimuthal angle, analogous to what was done in
Ref. [48–50] for initial-state fluctuations. Their effects on the
flow harmonics and the angular correlation of particles ought
to be important. Such a study is of course much more difficult
than the one presented here since one must perform extensive
numerical calculations.
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APPENDIX A: BARYON CURRENT IN A
GRADIENT EXPANSION

In the Landau-Lifshitz definition of flow velocity the
baryon current is modified by a term linear in a gradient and
proportional to the thermal conductivity:

Jμ = nuμ + λ

(
nT

w

)2

�μ(βμ), (A1)

where β = 1/T and �μ = ∂μ − uμ(u · ∂). The tensorial
structure is determined by the requirement that the dissipative
term be orthogonal to the flow velocity so that u · J = 0. Going
to second order in a gradient expansion yields

Jμ = nuμ + λ

(
nT

w

)2

�μ [(1 − τBu · ∂)βμ] , (A2)

where τB is a new time constant which is in principle dependent
on T and μ. For baryon diffusion at fixed temperature and in the
local rest frame this results in a modified diffusion equation:

∂δμ

∂t
= DB∇2δμ − τBDB∇2 ∂δμ

∂t
. (A3)

This is a causal equation, unlike the conventional diffusion
equation. It should be mentioned that in the Bjorken hydro-
dynamic model that dissipative term in the baryon current
vanishes identically because �μ is acting on a function of τ

only. The dissipative term would contribute to the linearized
fluctuation equations, but the resulting fluctuations would be
one higher order in λ.

APPENDIX B: SPEED OF SOUND

The adiabatic speed of sound (constant σ = s/n) can be
computed for (23). It is v2

σ = 1
3 − �v2

σ with

�v2
σ = 2

9

CT

d(T ,μ)

σ (A2T
2 + 6A0μ

2) − 2A2μT

σT + μ
, (B1)

where

d(T ,μ) = 2A4A2T
4 + (

12A4A0 − A2
2

)
μ2T 2

+ 2A2A0μ
4 − 1

3C(A2T
2 + 6A0μ

2). (B2)

Notice that �v2
σ is proportional to C and hence vanishes for

a conformally invariant equation of state. Since ds = σdn,
the speed at constant baryon density, v2

n ≡ (∂P/∂ε)n, can be
obtained by taking σ → ∞. The speed at constant entropy
density, v2

s ≡ (∂P/∂ε)s , can be obtained by taking σ → 0. It
is easily verified that

v2
σ = v2

nT s + v2
s μn

w
, (B3)

a relationship that is independent of the specific equation of
state. Of course waves do not physically propagate at constant
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TABLE I. Coefficients of the singular expansion (D1) for the case XY = sn.

j = 0 j = 1 j = 2 j = 3

a1j −AD − CF/2 0 0 0

b1j −BE/2v2
σ 0 0 0

a2j −CF/2 0 0 0

b2j BE/2v2
σ (CE + BF )α2/2v2

σ CFα4/4v2
σ 0

a3j −(CE + BF )/2vσ −CFα2/2vσ 0 0

b3j −(CE + BF )α2/4v3
σ −BEα2/2v3

σ − CFα4/8v3
σ (CE + BF )α4/4v3

σ CFα6/12v3
σ

a4j −CD − AF 0 0 0

b4j 0 (BD + AE)α2/2v2
σ (CD + AF )α4/8v2

σ 0

a5j −(BD + AE)/vσ −(CD + AF )α2/2vσ 0 0

b5j −(BD + AE)α2/2v3
σ −(CD + AF )α4/8v3

σ (BD + AE)α4/8v3
σ (CD + AF )α6/48v3

σ

n or s, only at constant σ , but these definitions are useful
for various intermediate steps in various applications. For
example, a thermodynamic identity is(

∂μ

∂T

)
n

= v2
ncV − s

n
, (B4)

so that

cP − cV = v4
nc

2
V T χB. (B5)

APPENDIX C: PERTURBATIONS OF A STATIC
UNIFORM SYSTEM

It is instructive to be reminded of perturbations of a static,
uniform system at rest. The analog of the boost-invariant
hydrodynamics used as an example in the text is a three-
dimensional system with perturbations dependent on z and
t but independent of x and y. The resulting equations for
the fluctuations are solved straightforwardly since the drift
matrix is time independent. The response functions correspond
directly to those given in Sec. IV with the following replace-
ments: α → 0, cosh → cos, sinh → sin, ln(τ/τ ′) → t − t ′,
and β → vσ k. Also the function ω(ξ, τ ) is replaced by the
velocity perturbation v(z, t) in the z direction:

G̃s = − ik

v2
σ

μ

T

{
v2

s + (
v2

σ − v2
s

)
cos[kvσ (t − t ′)]

}
,

G̃n = ik

v2
σ

{
v2

n + (
v2

σ − v2
n

)
cos[kvσ (t − t ′)]

}
,

G̃v = k

vσ

s

n

(
v2

σ − v2
n

)
sin[kvσ (t − t ′)], (C1)

G̃P = ik
μ

T

(
v2

s − v2
n

)
cos[kvσ (t − t ′)],

G̃σ = ik
w

T s
.

From these it is immediately clear that a pressure disturbance
will travel with the speed of sound vσ while disturbances in
the entropy per baryon are local in coordinate space.

APPENDIX D: SINGULAR PART
OF THE RESPONSE FUNCTIONS

The response functions G̃XY (k; τ, τ ′) contain terms that
produce singularities when the inverse Fourier transform is
performed. The general expansion of the singular part is
obtained by a Laurent expansion in 1/k and retaining the
regular terms at k = 0. For the cases XY = ss, nn, sn, ωω,
the general expansion of the singular part reads

G̃
sing
XY (k; τ, τ ′)

= (a1k
2 + b1) + (a2k

2 + b2) cos(2vσLk)

+ a3k
2 + b3

k
sin(2vσLk) + (a4k

2 + b4) cos(vσLk)

+ a5k
2 + b5

k
sin(vσLk), (D1)

with L ≡ ln(τ/τ ′). The coefficients ai , bi are polynomials in
L,

ai =
∑

j

aijL
j , bi =

∑
j

bijL
j , (D2)

whose coefficients aij and bij depend on some thermodynam-
ical quantities. The expansions of ai and bi are represented in
Tables I and II for the cases XY = sn and XY = ωω. Note that
for the case XY = ss and XY = nn one should use Table I and
make D → A,F → C,E → B and A → D,C → F,B →
E, respectively.

TABLE II. Same as Table I for the case XY = ωω.

j = 0 j = 1 j = 2 j = 3

a1j G2/2v2
σ 0 0 0

b1j G2α2/2v4
σ 0 0 0

a2j −G2/2v2
σ 0 0 0

b2j −G2α2/2v4
σ 0 G2α4/4v4

σ 0

a3j 0 −G2α2/2v3
σ 0 0

b3j 0 −5G2α4/8v5
σ 0 G2α6/12v5

σ
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TABLE III. Coefficients of the singular expansion (D3) for the
case XY = sω.

j = 0 j = 1 j = 2 j = 3

c1j iBG/2v2
σ 0 0 0

c2j −iBG/2v2
σ −iCGα2/2v2

σ 0 0

c3j iCG/2vσ 0 0 0

d3j iCGα2/4v3
σ −iBGα2/2v3

σ −iCGα4/4v3
σ 0

c4j 0 −iAGα2/2v2
σ 0 0

c5j iAG/vσ 0 0 0

d5j iAGα2/2v3
σ 0 −iAGα4/8v3

σ 0

The cases XY = sω, nω follow a different singular expan-
sion. They generically read

G̃
sing
XY (k; τ, τ ′)

= c1k + c2k cos(2vσLk) + (c3k
2 + d3) sin(2vσLk)

+ c4k cos(vσLk) + (c5k
2 + d5) sin(vσLk). (D3)

The functions ci, di admit an expansion in powers of L:

ci =
∑

j

cijL
j , di =

∑
j

dijL
j . (D4)

In Table III we show the coefficients cij , dij for the case XY =
sω. Finally, the case XY = nω uses the same expansion but
with the change B → E,C → F,A → D.

For the ease of simplicity, in this Appendix we have defined
the following quantities:

A = −μ

T

v2
s

v2
σ

, B = α
s

n

v2
σ − v2

n

v2
σ

(
τ ′

τ

)α

,

C = s

n

v2
σ − v2

n

v2
σ

(
τ ′

τ

)α

, D = v2
n

v2
σ

,

E = α
v2

σ − v2
n

v2
σ

(
τ ′

τ

)α

, F = v2
σ − v2

n

v2
σ

(
τ ′

τ

)α

,

G = s

n

(
v2

σ − v2
n

)( τ

τ ′

)α

.
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