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Hadron yield correlation in quark combination models in high-energy AA collisions
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We study the hadron yield correlation in the combination models in high-energy heavy-ion collisions. We
derive the relationship between the average yields of different hadrons produced in the combination of a system
consisting of equal numbers of quarks and antiquarks. We present the results for the directly produced hadrons as
well as those for the final hadrons including the strong and electromagnetic decay contributions. We also study
the net quark influence by considering the case when the number of quarks is larger than that of antiquarks. We
make comparison with the data wherever possible.
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I. INTRODUCTION

Hadron yield correlations, measured by the ratios of
the average yields of different hadrons produced in high-
energy reactions, are one kind of characteristic properties
of hadronization mechanisms. It is usually expected that
these correlations are more or less independent of the par-
ticular model especially when the combination mechanism
is concerned. Such properties were therefore considered as
a good probe for the hadronization mechanism in different
high-energy reactions already in the 1970s to 1990s [1–8].
The study of these correlations has attracted much attention
in heavy-ion collisions recently [9–15] because they are
considered as a probe to test whether the (re-)combination
mechanism is at work. This is interesting because whether the
combination mechanism works might be considered as one of
the signatures for the formation of the bulk color-deconfined
quark matter system before the hadronization takes place.
Experimental results are available from the Relativistic Heavy
Ion Collider (RHIC) [16,17], from relatively low-energy
collisions such as those obtained by NA49, NA61, and CBM
Collaborations at the Super Proton Synchrotron (SPS) [17–20],
and more recently from the very high energy reactions at the
Large Hadron Collider (LHC) [21,22]. These results seem to
suggest a dramatic change for collisions from lower to higher
energies, which is considered as one of the hints for phase
transition [18].

In order to make a judgment whether the combination
mechanism is at work by comparing the theoretical results
with the corresponding experimental data, it is important to
see whether, if so, to what extent, the theoretical results
depend on the particular model used in obtaining these
results. There are many studies that have been made in the
literature [9–13,23]. These studies are usually based on some
particular (re-)combination or coalescence models and/or
some particular assumptions. It is not clear whether the results
obtained depend on the particular assumption(s) made in these
particular models. For this purpose, in this paper, we will make
a systematic study of the average yields of different identified
hadrons and their relationships obtained in the combination
mechanism. We will start the study by considering the case
for the combination of a system of quarks and antiquarks from
the basic ideas of the combination mechanism. We will make

the study as independent of the particular models as possible
but present the assumptions and/or inputs explicitly whenever
necessary.

The rest of the paper is organized as follows. In Sec. II,
we derive the formulas for calculating the average yields of
hadrons and their relationships in the combination of a system
of quarks and antiquarks. We consider a system where the
number of quarks and that of antiquarks are equal and discuss
the net quark influence as well. We compare the results with the
available data in Sec. III. Here, the experimental results from
the LHC [21,22] are taken as an example to test the predictions
for the case where the net quark influence is considered as
negligible, while those from the RHIC and the SPS [18,24–36]
are used to test the net quark influence. A short summary is
presented in Sec. V.

II. HADRON YIELD RATIOS IN THE
COMBINATION MODELS

In this section, we begin with the general formalism of
hadron yields in the combination models based on the basic
ideas. For this purpose, we start with a quark-antiquark
system as general as possible. Then we simplify the results
by using some explicit assumptions, simplifications, and/or
approximations. We present the results for the ratios of the
yields of hadrons directly produced as well as those including
the contributions from the resonance decays.

A. The general formalism

We start with the most general case and consider a system
of Nq quarks and Nq̄ antiquarks. We denote the number of
quarks of flavor qi by Nqi

so that
∑

i Nqi
= Nq and similarly∑

i Nq̄i
= Nq̄ . These quarks and antiquarks combine with each

other to form the color singlet hadrons. The number density of
the directly produced hadrons is given by

fMj

(
pMj

) =
∑
q1q̄2

∫
dp1dp2fq1q̄2

(
p1, p2; Nqi

, Nq̄i

)
×RMj ,q1q̄2

(
pMj

, p1, p2; Nqi
, Nq̄i

)
, (1)
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fBj

(
pBj

) =
∑

q1q2q3

∫
dp1dp2dp3

× fq1q2q3

(
p1, p2, p3; Nqi

, Nq̄i

)
×RBj ,q1q2q3

(
pBj

, p1, p2, p3; Nqi
, Nq̄i

)
, (2)

where fMj
and fBj

are the momentum distributions for
the produced meson Mj and baryon Bj , respectively;
fq1q̄2 (p1, p2; Nqi

, Nq̄i
) and fq1q2q3 (p1, p2, p3; Nqi

, Nq̄i
)

are the two- and three-particle joint momentum
distributions for (q1q̄2) and (q1q2q3), respectively. The
kernel functions RMj ,q1q̄2 (pMj

, p1, p2; Nqi
, Nq̄i

) and
RBj ,q1q2q3 (pBj

, p1, p2, p3; Nqi
, Nq̄i

) stand for the probability
density for q1 and q̄2 with momenta p1 and p2 to combine into
a meson Mj of momentum pMj

and that for q1, q2, and q3 with
momenta p1, p2, and p3 to coalescence into a baryon Bj of
momentum pBj

. Here, in the arguments, we use Nqi
and Nq̄i

to represent the dependence of these functions on the numbers
of the quarks and antiquarks of different flavors, and also on
the total collision energy

√
s of AA reactions. We note in

particular that not only the joint distributions fq1q̄2 and fq1q2q3

but also the probability densities RMj ,q1q̄2 and RBj ,q1q2q3 are in
general dependent on Nqi

and Nq̄i
. This is because, for finite

Nqi
and Nq̄i

, the probability for a given quark q1 to combine
with a specified antiquark q̄2 to form a specified meson Mj

or two other specified quarks q2q3 to form a baryon Bj is in
general dependent on the number Nqi

of existing quarks of
different flavors and the number Nq̄i

of antiquarks.
We note in particular the relationship between the de-

scription presented here and those given in the literature
in different models based on the combination mechanism
such as the coalescence model [9,10], the recombination
model [11,12], and the quark combination model [13,15,37]
developed by different groups. Equations (1) and (2) are
intended to be the general formulas based on the basic
ideas of the combination mechanism. The different models
are examples of the general case that we considered in
these equations. In these models, different method(s) and/or
assumption(s) are usually introduced to construct the precise
form of the kernel functions RMj ,q1q̄2 (pMj

, p1, p2; Nqi
, Nq̄i

)
and RBj ,q1q2q3 (pBj

, p1, p2, p3; Nqi
, Nq̄i

) in order to provide a
good description of different properties of the hadrons, such
as momentum distributions and so on. For example, in the re-
combination model developed by Hwa and collaborators [12],
these kernel functions are just the recombination functions.

The joint distributions fq1q̄2 and fq1q2q3 are the number
densities that satisfy∫

fq1q̄2

(
p1, p2; Nqi

, Nq̄i

)
dp1dp2 = Nq1q̄2 , (3)∫

fq1q2q3

(
p1, p2, p3; Nqi

, Nq̄i

)
dp1dp2dp3 = Nq1q2q3 , (4)

respectively, where Nq1q̄2 = Nq1Nq̄2 , and

Nq1q2q3 =

⎧⎪⎨
⎪⎩

Nq1Nq2Nq3 for q1 �= q2 �= q3,

Nq1

(
Nq1 − 1

)
Nq3 for q1 = q2 �= q3,

Nq1

(
Nq1 − 1

)(
Nq1 − 2

)
for q1 = q2 = q3

(5)

are the numbers of all the possible (qq̄)’s and (qqq)’s in
the bulk quark-antiquark system that we considered. For the
convenience of comparison, we rewrite them as

fq1q̄2

(
p1, p2; Nqi

, Nq̄i

)
= Nq1q̄2f

(n)
q1q̄2

(
p1, p2; Nqi

, Nq̄i

)
, (6)

fq1q2q3

(
p1, p2, p3; Nqi

, Nq̄i

)
= Nq1q2q3f

(n)
q1q2q3

(
p1, p2, p3; Nqi

, Nq̄i

)
, (7)

so that the distributions are normalized to unity where we
denote by using the superscript (n), i.e.,∫

f
(n)
q1q̄2

(
p1, p2; Nqi

, Nq̄i

)
dp1dp2 = 1, (8)∫

f (n)
q1q2q3

(
p1, p2, p3; Nqi

, Nq̄i

)
dp1dp2dp3 = 1. (9)

In terms of these normalized joint distributions, we have

fMj
(pMj

) =
∑
q1q̄2

Nq1q̄2

∫
dp1dp2f

(n)
q1q̄2

(
p1, p2; Nqi

, Nq̄i

)
×RMj

(
pMj

, p1, p2; Nqi
, Nq̄i

)
, (10)

fBj
(pBj

) =
∑

q1q2q3

Nq1q2q3

∫
dp1dp2dp3

× f (n)
q1q2q3

(
p1, p2, p3; Nqi

, Nq̄i

)
×RBj

(
pBj

, p1, p2, p3; Nqi
, Nq̄i

)
. (11)

Integrating over pMj
or pBj

from the momentum distributions,
we obtain the average numbers of the directly produced mesons
Mj and baryons Bj as

NMj

(
Nqi

, Nq̄i

) =
∑
q1q̄2

Nq1q̄2

∫
dpMj

dp1dp2

× f
(n)
q1q̄2

(
p1, p2; Nqi

, Nq̄i

)
×RMj

(
pMj

, p1, p2; Nqi
, Nq̄i

)
, (12)

NBj

(
Nqi

, Nq̄i

) =
∑

q1q2q3

Nq1q2q3

∫
dpBj

dp1dp2dp3

× f (n)
q1q2q3

(
p1, p2, p3; Nqi

, Nq̄i

)
×RBj

(
pBj

, p1, p2, p3; Nqi
, Nq̄i

)
. (13)

For a reaction at a given energy, the average numbers of quarks,
〈Nqi

〉, and those for the antiquarks, 〈Nq̄i
〉, of different flavors

are fixed. The numbers of quarks and antiquarks follow a cer-
tain distribution which we denote by P (Nqi

, Nq̄i
, 〈Nqi

〉, 〈Nq̄i
〉).

The average yields of mesons and baryons are given by〈
NMj

〉
(
√

s) =
∑

Nqi
Nq̄i

P
(
Nqi

, Nq̄i
,
〈
Nqi

〉
,
〈
Nq̄i

〉)
NMj

(
Nqi

, Nq̄i

)
,

〈
NBj

〉
(
√

s) =
∑

Nqi
Nq̄i

P
(
Nqi

, Nq̄i
,
〈
Nqi

〉
,
〈
Nq̄i

〉)
NBj

(
Nqi

, Nq̄i

)
.

These equations are the general formalism for calculating
the average yield of a certain sort of hadrons in high-energy
reactions based on the basic ideas of the combination mecha-
nism. More specific results can be obtained for special cases
when special assumptions are made about the distributions
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and/or the kernel functions. We present such cases step by step
in the following.

B. Factorization of flavor and momentum dependencies

The flavor dependence of the kernel functions RMj ,q1q̄2

and RBj ,q1q2q3 is responsible for flavor conservation in the
combination process and the differences between the combi-
nation probabilities for different flavors of quarks, antiquarks,
and hadrons. In general, the momentum and the flavor
dependencies of these kernel functions are coupled to each
other. In that case, the results for the ratios of the average yields
of different hadrons can be dependent on the way of coupling.
In this paper, we do not consider such coupling effects. In
contrast, in the following, we consider only the simplest case
where the momentum and flavor dependencies of the kernel
functions are decoupled from each other. In other words, we
consider the case where they are factorized, i.e.,

RMj ,q1q̄2

(
pMj

, p1, p2; Nqi
, Nq̄i

)
= R(f )

Mj ,q1q̄2

(
Nqi

, Nq̄i

)
R(p)

M (pM, p1, p2; Nq,Nq̄), (14)

RBj ,q1q2q3

(
pBj

, p1, p2, p3; Nqi
, Nq̄i

)
= R(f )

Bj ,q1q2q3

(
Nqi

, Nq̄i

)
R(p)

B (pB, p1, p2, p3; Nq,Nq̄), (15)

where the flavor-independent parts R(p)
M (pM, p1, p2; Nq,Nq̄)

and R(p)
B (pB, p1, p2, p3; Nq,Nq̄) denote the probability for

a qq̄ with momenta p1 and p2 in a system consisting of
Nq quarks and Nq̄ antiquarks to combine with each other to
form a meson M with momentum pM and that for a qqq

with momenta p1, p2, and p3 in the system to combine
with each other to form a baryon B with momentum pB ,
respectively. The flavor-dependent parts R(f )

Mj ,q1q̄2
(Nqi

, Nq̄i
)

and R(f )
Bj ,q1q2q3

(Nqi
, Nq̄i

) represent the probability for the q1

and q̄2 to combine into the specified meson Mj in the case that
they are known to combine into a meson and that for the q1,
q2, and q3 to combine into the specified baryon Bj in the case
that they are known to combine into a baryon, respectively.
They are taken as satisfying the normalization condition∑

j

R(f )
Mj ,q1q̄2

(
Nqi

, Nq̄i

) = 1, (16)

∑
j

R(f )
Bj ,q1q2q3

(
Nqi

, Nq̄i

) = 1. (17)

We further assume that the normalized joint momentum distri-
butions of the quarks and/or antiquarks are flavor independent,
i.e.,

f
(n)
q1q̄2

(
p1, p2; Nqi

, Nq̄i

) = f
(n)
qq̄ (p1, p2; Nq,Nq̄), (18)

f (n)
q1q2q3

(
p1, p2, p3; Nqi

, Nq̄i

) = f (n)
qqq(p1, p2, p3; Nq,Nq̄ ).

(19)

Under these two assumptions, we have

NMj

(
Nqi

, Nq̄i

) =
∑
q1q̄2

Nq1q̄2R
(f )
Mj ,q1q̄2

(
Nqi

, Nq̄i

)

×
∫

dpMdp1dp2f
(n)
qq̄ (p1, p2; Nq,Nq̄)

×R(p)
M (pM, p1, p2; Nq,Nq̄), (20)

NBj

(
Nqi

, Nq̄i

)
=

∑
q1q2q3

Nq1q2q3R
(f )
Bj ,q1q2q3

(
Nqi

, Nq̄i

)

×
∫

dpBdp1dp2dp3f
(n)
qqq(p1, p2, p3; Nq,Nq̄ )

×R(p)
B (pB, p1, p2, p3; Nq,Nq̄). (21)

We denote

γM (Nq,Nq̄,
√

s) =
∫

dpMdp1dp2f
(n)
qq̄ (p1, p2; Nq,Nq̄ )

×R(p)
M (pM, p1, p2; Nq,Nq̄ ), (22)

γB(Nq,Nq̄,
√

s) =
∫

dpBdp1dp2dp3f
(n)
qqq (p1, p2, p3; Nq,Nq̄)

×R(p)
B (pB, p1, p2, p3; Nq,Nq̄), (23)

and obtain

NMj

(
Nqi

, Nq̄i

) =
∑
q1q̄2

Nq1q̄2R
(f )
Mj ,q1q̄2

γM, (24)

NBj

(
Nqi

, Nq̄i

) =
∑

q1q2q3

Nq1q2q3R
(f )
Bj ,q1q2q3

γB. (25)

Summing over different species of mesons and those of the
baryons, respectively, we obtain the average total numbers of
mesons and baryons produced in the combination of the system
of Nq quarks and Nq̄ antiquarks as

NM (Nq,Nq̄,
√

s) = Nqq̄γM (Nq,Nq̄,
√

s), (26)

NB(Nq,Nq̄,
√

s) = NqqqγB(Nq,Nq̄,
√

s), (27)

where Nqq̄ = NqNq̄ and Nqqq = Nq(Nq − 1)(Nq − 2) are the
total number of qq̄ pairs and that of qqq systems, respectively.
The factors γM (Nq,Nq̄ ;

√
s) and γB(Nq,Nq̄ ;

√
s) represent the

probability for a particular qq̄ from the system consisting of
Nq quarks and Nq̄ antiquarks to combine with each other to
form a meson and that for a qqq to form a baryon, respectively.
We emphasize in particular that Eq. (26) does not mean that
the average yield of mesons is proportional to the product of
the number of quarks and that of antiquarks since the factor
γM can depend strongly on Nq and Nq̄ . This is because, for
a given q, the larger Nq and/or Nq̄ , the more possibilities
for the q to combine with the others to form a hadron, and
thus the smaller the probability for it to combine with the
given q̄ to form the meson. In fact, it can in general be
expected that γM should be more or less inversely proportional
to Nq and/or Nq̄ and the final result for 〈NM〉 should be
roughly proportional to Nq + Nq̄ . A similar conclusion holds
for 〈NB〉.

In terms of the total average numbers of mesons and
baryons, the average number of a specified meson Mj and
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that of a specified baryon Bj are given by

NMj

(
Nqi

, Nq̄i

) =
∑
q1q̄2

Nq1q̄2

Nqq̄

R(f )
Mj ,q1q̄2

(
Nqi

, Nq̄i

)
×NM (Nq,Nq̄,

√
s), (28)

NBj

(
Nqi

, Nq̄i

) =
∑

q1q2q3

Nq1q2q3

Nqqq

R(f )
Bj ,q1q2q3

(
Nqi

, Nq̄i

)
×NB(Nq,Nq̄,

√
s). (29)

The parts describing the flavor dependence of the kernel
functions, R(f )

Mj ,q1q̄2
(Nqi

, Nq̄i
) and R(f )

Bj ,q1q2q3
(Nqi

, Nq̄i
), have

to guarantee flavor conservation in the combination process.
Hence, they contain the Kronecker δ’s and constant factors
CMj

and CBj
. For example, for π+ and p, they are given by

R(f )
π+,q1q̄2

= Cπ+δq1,uδq̄2,d̄ ,

R(f )
p,q1q2q3

= Cp

(
δq1,uδq2,uδq3,d + δq1,uδq2,dδq3,u

+ δq1,dδq2,uδq3,u

)
. (30)

We recall that, in the factorized case considered here, the
flavor-dependent part R(f )

Mj ,q1q̄2
(Nqi

, Nq̄i
) of the kernel function

represents the probability for the specified q1q̄2 with the
specified flavor q1 and q̄2 from the system consisting of Nq

quarks and Nq̄ antiquarks to form the specified meson Mj

under the condition that they are known to form a meson.
Although we cannot prove it, it is very unlikely that this
probability still depends strongly on the environment. We
therefore consider the simplified case where CMj

is taken as
a constant independent of Nq or Nq̄ . The same applies to
R(f )

Bj ,q1q2q3
. In this case, we have

NMj

(
Nqi

, Nq̄i

) = CMj

Nq1q̄2

Nqq̄

NM (Nq,Nq̄,
√

s), (31)

NBj

(
Nqi

, Nq̄i

) = NiterCBj

Nq1q2q3

Nqqq

NB(Nq,Nq̄,
√

s), (32)

where Niter stands for the number of possible iterations of
q1q2q3, which is 1, 3, and 6 for three identical flavor, two
different flavor, and three different flavor cases, respectively.

In the case when only JP = 0− and 1− mesons and JP =
1
2

+
and 3

2
+

baryons are considered, we have, for mesons,

CMj
=

{
1/(1 + RV/P ) for JP = 0− mesons,

RV/P /(1 + RV/P ) for JP = 1− mesons,
(33)

where RV/P represents the ratio of the JP = 1− vector mesons
to the JP = 0− pseudoscalar mesons of the same flavor
composition; and for baryons,

CBj
=

{
RO/D/(1 + RO/D) for JP = (1/2)+ baryons,

1/(1 + RO/D) for JP = (3/2)+ baryons,

(34)

except that C� = C�0 = RO/D/(1 + 2RO/D), C�∗0 =
1/(1 + 2RO/D), and C�++ = C�− = C�− = 1. Here,
RO/D stands for the ratio of the JP = (1/2)+ octet to
the JP = (3/2)+ decuplet baryons of the same flavor

composition. The two parameters RV/P and RO/D can be
determined by using the data from different high-energy
reactions [1,13,38].

C. Modeling P(Nqi , 〈Nqi 〉,
√

s)

We consider three flavors u, d, and s of quarks and
antiquarks. Inside the system of Nq quarks and Nq̄ antiquarks,
we suppose that each quark can take flavor u, d, or s with
given probability pu, pd , or ps independent of the others. In
this case, the numbers of u, d, and s quarks inside the system
at a given Nq obey the multinominal distribution, i.e.,

B
(
Nqi

; Nq

) = Nq!

Nu!Nd !Ns!
pNu

u p
Nd

d pNs

s δNq,Nu+Nd+Ns
, (35)

where pu = pd = 1/(2 + λq), ps = λq/(2 + λq), and λq is the
effective strangeness suppression factor for quarks. Similarly,
for the antiquarks, we have

B
(
Nq̄i

; Nq̄

) = Nq̄!

Nū!Nd̄ !Ns̄!
p

Nū

ū p
Nd̄

d̄
p

Ns̄

s̄ δNq̄ ,Nū+Nd̄+Ns̄
, (36)

where pū = pd̄ = 1/(2 + λ), ps̄ = λ/(2 + λ), and λ is the
strangeness suppression factor for antiquark production.

In general, in high-energy heavy-ion collisions, the system
contains the contributions of the net quarks coming from the
incident nuclei. Hence the effective strangeness suppression
factor λq for the quarks is different from λ for the antiquarks,
which do not have influence from the net quarks. Here, we
keep them as distinguished from each other so that we can
apply the results to different cases. Furthermore, we emphasize
that the system considered corresponds to a quark-antiquark
system produced in an AA collision in a limited kinematic
region. The system is supposed to be a small part of the whole
quark-antiquark system produced in the reaction so that the
influence from the global flavor compensation is considered to
be negligible. The global flavor compensation can have some
influence on the flavor correlation in hadron production. Such
a case was for example discussed in [5] for baryon-antibaryon
flavor correlation in e+e− annihilation where the number of
quarks was of the order of tens and the average yield of baryons
in an event was less than one. It was found that, even in that
case, global flavor compensation does have some effect on the
flavor correlation but the effect is not very large. Hence, for
simplicity and clarity, we neglect them in the discussion here.

At given Nq and Nq̄ , we average over the distribution of
the numbers of quarks and/or antiquarks for different flavors.
It can easily be shown that, for q1 �= q2 �= q3,∑

Nqi

Nq1B
(
Nqi

; Nq

) = Nqpq1 , (37)

∑
Nqi

Nq1Nq2Nq3B
(
Nqi

; Nq

) = Nqqqpq1pq2pq3 , (38)

∑
Nqi

Nq1

(
Nq1 − 1

)
Nq2B

(
Nqi

; Nq

) = Nqqqp
2
q1

pq2 , (39)

and similarly for others, so we obtain

NMj
(Nq,Nq̄,

√
s) = CMj

pq1pq̄2NM (Nq,Nq̄,
√

s), (40)
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NBj
(Nq,Nq̄,

√
s) = NiterCBj

pq1pq2pq3NB(Nq,Nq̄,
√

s).

(41)

For a subsystem of quarks and antiquarks in a given
kinematical region in AA collisions at given energy

√
s, 〈Nq〉

and 〈Nq̄〉 are fixed while Nq and Nq̄ follow the distributions
Pq(Nq ; 〈Nq〉) and Pq̄(Nq̄ ; 〈Nq̄〉), respectively. Hence, we need
to average over these distributions and obtain〈

NMj

〉
(〈Nq〉, 〈Nq̄〉,

√
s) = CMj

pq1pq̄2〈NM〉, (42)〈
NBj

〉
(〈Nq〉, 〈Nq̄〉,

√
s) = NiterCBj

pq1pq2pq3〈NB〉, (43)

where 〈NM〉 and 〈NB〉 are functions of 〈Nq〉, 〈Nq̄〉, and
√

s

and stand for the average total number of the mesons and that
of the baryons produced in the combination process. They are
given by

〈NM〉 =
∑
NqNq̄

Pq(Nq ; 〈Nq〉)Pq̄(Nq̄ ; 〈Nq〉)NM (Nq,Nq̄,
√

s),

〈NB〉 =
∑
NqNq̄

Pq(Nq ; 〈Nq〉)Pq̄(Nq̄ ; 〈Nq〉)NB(Nq,Nq̄,
√

s).

We see that, in this case, for the directly produced hadrons,
the ratios of the yields of different mesons, those of different
baryons, and those of the antibaryons separately are constants
depending on the parameters λ, λq , RV/P , and RO/D . In general
the effective strangeness suppression factor λq for quarks
contains the influence from the net quark contributions and can
be dependent on 〈Nq〉 and 〈Nq̄〉. This leads to a dependence on
〈Nq〉 and 〈Nq̄〉 even for such kinds of hadron yield ratios. In the
case that the net quark contribution is negligible, we have λq =
λ; these kinds of hadron yield ratios become constants indepen-
dent of 〈Nq〉 and 〈Nq̄〉. This should be the case for a subsample
in the central rapidity region of the bulk quark-antiquark
system produced in AA collisions at very high energies such as
those at the LHC. In this case, we have also 〈NB〉 = 〈NB̄〉 and
this, together with pqi

= pq̄i
, leads to 〈NBj

〉 = 〈NB̄j
〉. These

are predictions that can be checked at the LHC.

D. Including the decay contributions

Including the decay contributions, we calculate the yields
of different hadrons in the final state. We denote the decay
contribution from a hadron hi to hj by Br(hi → hj ) and obtain

〈
N

f

hj

〉 = 〈
Nhj

〉 + ∑
i �=j

Br(hi → hj )
〈
Nhi

〉
, (44)

where we use the superscript f to denote the results for
the final hadrons to differentiate them from those for the
directly produced hadrons. Here we consider only the influ-
ence from the decay of the short-lived hadrons but do not
consider the influences from the final-state interactions of the
hadrons.

The value of Br(hi → hj ) can be obtained easily from
the materials given by the Particle Data Group [39]. In the
following, we take the strong and the electromagnetic decays

into account. For most of the hadrons, the results look very
simple. In the case in which only JP = 0− and 1− mesons and
JP = (1/2)+ and (3/2)+ baryons are included, the average
yields of final hadrons, e.g., K+, p, and �, are given as

〈
N

f

K+
〉 = 〈NK+〉 + 2

3 〈NK∗0〉 + 1
3 〈NK∗+〉 + 0.489〈Nφ〉, (45)〈

Nf
p

〉 = 〈Np〉 + 〈N�++〉 + 2
3 〈N�+〉 + 1

3 〈N�0〉, (46)〈
N

f

�

〉 = 〈N�〉 + 〈N�0〉 + 0.883〈N�∗0〉
+ 0.94(〈N�∗+〉 + 〈N�∗−〉). (47)

We consider the case discussed in Sec. II C and substitute
the results for 〈NMj

〉 and those for 〈NBj
〉 given by Eqs. (42)

and (43) into the above equations and obtain

〈
N

f

K+
〉 = pups̄〈NM〉 + 0.489RV/P

1 + RV/P

psps̄〈NM〉, (48)

〈
Nf

p

〉 = 4p3
u〈NB〉, (49)

〈
N

f

�

〉 =
(

5.30 + 12RO/D

2RO/D + 1
+ 5.64

RO/D + 1

)
p2

ups〈NB〉, (50)

where we have taken pu = pd and pū = pd̄ .
Taking RV/P = 3 according to the spin counting, but

RO/D = 2 since decuplet baryon production is observed much
more suppressed [1,13,38], we then have

〈
N

f

K+
〉 = (pups̄ + 0.37psps̄)〈NM〉, (51)〈

N
f

�

〉 = 7.74p2
ups〈NB〉. (52)

In Table I, we show the results obtained for baryons and
antibaryons and those for strange mesons in different cases.
We see that, like for protons, the results for many final baryons
look even simpler than those for the directly produced cases
since the corresponding decuplet baryons decay strongly to
these baryons. This makes the average final yields for these
baryons independent of the ratio RO/D . In Table I, we also
present the results for the simple case without net quarks. The
results obtained if we take RV/P = 3 and RO/D = 2 are also
given.

We do not list the corresponding results for pions in Table I
since the corresponding expressions are quite long. This is
because the pion receives contributions from the decays of
almost all the other mesons, baryons, and antibaryons. For
example, for π+, we have

〈
N

f

π+
〉 = 〈Nπ+〉 + 〈Nρ+〉 + 〈Nρ0〉 + 2

3 (〈NK̄∗0〉 + 〈NK∗+〉)
+ 0.2734〈Nη〉 + 0.9073〈Nω〉 + 0.9274〈Nη′ 〉
+ 0.1568〈Nφ〉 + 0.94(〈N�∗+〉 + 〈N�̄∗+〉)
+ 0.0585(〈N�∗0〉 + 〈N�̄∗0〉) + 2

3 (〈N�∗0〉 + 〈N�̄∗+〉)
+〈N�++〉 + 1

3 (〈N�+〉 + 〈N�̄0〉) + 〈N�̄+〉. (53)
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TABLE I. Average yields of the directly produced hadrons and those including decay contributions. Here, in the second column, we show
the results for the directly produced hadrons. In the third column, we show the results when the strong and the electromagnetic (S & EM) decay
contributions are taken into account. The fourth column shows the results when the net quark influence is negligible. In the last two columns,
we see the results for the case when RV/P = 3 and RO/D = 2.

Hadron Directly produced With S & EM decays Nnet
q = 0 (λq = λ) RV/P = 3, RO/D = 2

N net
q �= 0 N net

q = 0

p
3RO/D

1+RO/D
p3

u〈NB〉 4p3
u〈NB〉 4

(2+λ)3 〈NB〉 4p3
u〈NB〉 4

(2+λ)3 〈NB〉
n

3RO/D

1+RO/D
p3

u〈NB〉 4p3
u〈NB〉 4

(2+λ)3 〈NB〉 4p3
u〈NB〉 4

(2+λ)3 〈NB〉
�0 3RO/D

1+RO/D
pup

2
s 〈NB〉 3pup

2
s 〈NB〉 3λ2

(2+λ)3 〈NB〉 3pup
2
s 〈NB〉 3λ2

(2+λ)3 〈NB〉
�− 3RO/D

1+RO/D
pup

2
s 〈NB〉 3pup

2
s 〈NB〉 3λ2

(2+λ)3 〈NB〉 3pup
2
s 〈NB〉 3λ2

(2+λ)3 〈NB〉
�− p3

s 〈NB〉 p3
s 〈NB〉 λ3

(2+λ)3 〈NB〉 p3
s 〈NB〉 λ3

(2+λ)3 〈NB〉
p̄

3RO/D

1+RO/D
p3

ū〈NB̄〉 4p3
ū〈NB̄〉 4

(2+λ)3 〈NB〉 4p3
ū〈NB̄〉 4

(2+λ)3 〈NB〉
n̄

3RO/D

1+RO/D
p3

ū〈NB̄〉 4p3
ū〈NB̄〉 4

(2+λ)3 〈NB〉 4p3
ū〈NB̄〉 4

(2+λ)3 〈NB〉
�̄0 3RO/D

1+RO/D
pūp

2
s̄ 〈NB̄〉 3pūp

2
s̄ 〈NB̄〉 3λ2

(2+λ)3 〈NB〉 3pūp
2
s̄ 〈NB̄〉 3λ2

(2+λ)3 〈NB〉
�̄+ 3RO/D

1+RO/D
pūp

2
s̄ 〈NB̄〉 3pūp

2
s̄ 〈NB̄〉 3λ2

(2+λ)3 〈NB〉 3pūp
2
s̄ 〈NB̄〉 3λ2

(2+λ)3 〈NB〉
�̄+ p3

s̄ 〈NB̄〉 p3
s̄ 〈NB̄〉 λ3

(2+λ)3 〈NB〉 p3
s̄ 〈NB̄〉 λ3

(2+λ)3 〈NB〉

K+ 1
1+RV/P

pups̄〈NM〉 pups̄

(
1 + 0.49RV/P

1+RV/P
λq

)
〈NM〉 λ

(2+λ)2

(
1 + 0.49RV/P

1+RV/P
λ
)
〈NM〉 pups̄(1 + 0.37λq )〈NM〉 λ+0.37λ2

(2+λ)2 〈NM〉
K− 1

1+RV/P
pūps〈NM〉 pūps

(
1 + 0.49RV/P

1+RV/P
λ
)
〈NM〉 λ

(2+λ)2

(
1 + 0.49RV/P

1+RV/P
λ
)
〈NM〉 pūps(1 + 0.37λ)〈NM〉 λ+0.37λ2

(2+λ)2 〈NM〉
K0 1

1+RV/P
pups̄〈NM〉 pups̄

(
1 + 0.34RV/P

1+RV/P
λq

)
〈NM〉 λ

(2+λ)2

(
1 + 0.34RV/P

1+RV/P
λ
)
〈NM〉 pups̄(1 + 0.26λq )〈NM〉 λ+0.26λ2

(2+λ)2 〈NM〉
K̄0 1

1+RV/P
pūps〈NM〉 pūps

(
1 + 0.34RV/P

1+RV/P
λ
)
〈NM〉 λ

(2+λ)2

(
1 + 0.34RV/P

1+RV/P
λ
)
〈NM〉 pūps(1 + 0.26λ)〈NM〉 λ+0.26λ2

(2+λ)2 〈NM〉

φ
RV/P

1+RV/P
psps̄〈NM〉 RV/P

1+RV/P
psps̄〈NM〉

(
λ

2+λ

)2
RV/P

1+RV/P
〈NM〉 3

4 psps̄〈NM〉 3
4

(
λ

2+λ

)2
〈NM〉

�
6RO/D

1+2RO/D
p2

ups〈NB〉
(

5.30+12RO/D

1+2RO/D
+ 5.64

1+RO/D

)
p2

ups〈NB〉 λ

(2+λ)3

(
5.30+12RO/D

1+2RO/D
+ 5.64

1+RO/D

)
〈NB〉 7.74p2

ups〈NB〉 7.74λ

(2+λ)3 〈NB〉
�+ 3RO/D

1+RO/D
p2

ups〈NB〉
(

0.35
1+2RO/D

+ 0.18+3RO/D

1+RO/D

)
p2

ups〈NB〉 λ

(2+λ)3

(
0.35

1+2RO/D
+ 0.18+3RO/D

1+RO/D

)
〈NB〉 2.13p2

ups〈NB〉 2.13λ

(2+λ)3 〈NB〉
�0 6RO/D

1+2RO/D
p2

ups〈NB〉
(

6RO/D

1+2RO/D
+ 0.36

1+RO/D

)
p2

ups〈NB〉 λ

(2+λ)3

(
6RO/D

1+2RO/D
+ 0.36

1+RO/D

)
〈NB〉 2.52p2

ups〈NB〉 2.52λ

(2+λ)3 〈NB〉
�− 3RO/D

1+RO/D
p2

ups〈NB〉
(

0.35
1+2RO/D

+ 0.18+3RO/D

1+RO/D

)
p2

ups〈NB〉 λ

(2+λ)3

(
0.35

1+2RO/D
+ 0.18+3RO/D

1+RO/D

)
〈NB〉 2.13p2

ups〈NB〉 2.13λ

(2+λ)3 〈NB〉
�̄

6RO/D

1+2RO/D
p2

ūps̄〈NB̄〉
(

5.30+12RO/D

1+2RO/D
+ 5.64

1+RO/D

)
p2

ūps̄〈NB̄〉 λ

(2+λ)3

(
5.30+12RO/D

1+2RO/D
+ 5.64

1+RO/D

)
〈NB〉 7.74p2

ūps̄〈NB̄〉 7.74λ

(2+λ)3 〈NB〉
�̄− 3RO/D

1+RO/D
p2

ūps̄〈NB̄〉
(

0.35
1+2RO/D

+ 0.18+3RO/D

1+RO/D

)
p2

ūps̄〈NB̄〉 λ

(2+λ)3

(
0.35

1+2RO/D
+ 0.18+3RO/D

1+RO/D

)
〈NB〉 2.13p2

ūps̄〈NB̄〉 2.13λ

(2+λ)3 〈NB〉
�̄0 6RO/D

1+2RO/D
p2

ūps̄〈NB̄〉
(

6RO/D

1+2RO/D
+ 0.36

1+RO/D

)
p2

ūps̄〈NB̄〉 λ

(2+λ)3

(
6RO/D

1+2RO/D
+ 0.36

1+RO/D

)
〈NB〉 2.52p2

ūps̄〈NB̄〉 2.52λ

(2+λ)3 〈NB〉
�̄+ 3RO/D

1+RO/D
p2

ūps̄〈NB̄〉
(

0.35
1+2RO/D

+ 0.18+3RO/D

1+RO/D

)
p2

ūps̄〈NB̄〉 λ

(2+λ)3

(
0.35

1+2RO/D
+ 0.18+3RO/D

1+RO/D

)
〈NB〉 2.13p2

ūps̄〈NB̄〉 2.13λ

(2+λ)3 〈NB〉

By inserting the results given by Eqs. (42) and (43), we obtain

〈
N

f

π+
〉 = 1.71 + 2.91RV/P

1 + RV/P

pupū〈NM〉 + 0.49 + 0.16RV/P

1 + RV/P

psps̄〈NM〉 + 2

3

RV/P

1 + RV/P

pūps〈NM〉

+ 2

3

RV/P

1 + RV/P

pups̄〈NM〉 +
(

2.82

1 + RO/D

+ 0.35

1 + 2RO/D

)
p2

ups〈NB〉 +
(

2.82

1 + RO/D

+ 0.35

1 + 2RO/D

)
p2

ūps̄〈NB̄〉

+ 2

1 + RO/D

pup
2
s 〈NB〉 + 2

1 + RO/D

pūp
2
s̄ 〈NB̄〉 + 2 + RO/D

1 + RO/D

p3
u〈NB〉 + 2 + RO/D

1 + RO/D

p3
ū〈NB̄〉. (54)
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For systems without net quarks, we have pu = pū = pd = pd̄ and ps = ps̄ , and thus we obtain〈
N

f

π+
〉 = 1.71 + 2.91RV/P

1 + RV/P

p2
u〈NM〉 + 0.49 + 0.16RV/P

1 + RV/P

p2
s 〈NM〉 + 4

3

RV/P

1 + RV/P

pups〈NM〉

+
(

5.64

1 + RO/D

+ 0.70

1 + 2RO/D

)
p2

ups〈NB〉 + 4

1 + RO/D

pup
2
s 〈NB〉 + 4 + 2RO/D

1 + RO/D

p3
u〈NB〉. (55)

If we take RV/P = 3 and RO/D = 2, we have

〈
N

f

π+
〉 = 2.61p2

u〈NM〉 + pups〈NM〉 + 0.24p2
s 〈NM〉 + 4

3
pup

2
s 〈NB〉 + 2.02p2

ups〈NB〉 + 8

3
p3

u〈NB〉

= 2.61 + λ + 0.24λ2

(2 + λ)2
〈NM〉 + 8/3 + 2.02λ + 4/3λ2

(2 + λ)3
〈NB〉. (56)

From these results, we see clearly that there exist many
simple relationships between the yields of different hadrons.
These are the characteristics for hadron production in the
combination mechanism. We will list some of these simple
relations in the following. Before doing that, we first discuss
the net quark influences in the next section.

E. Influence of the net quarks

In a heavy-ion collision at high energy, the produced quark-
antiquark system consists of the newly produced quarks and
antiquarks and the net quarks from the incident nuclei. For a
subsample of this quark-antiquark system in a given kinematic
region, we have, in general,

〈Nq〉 = 〈Nq̄〉 + 〈
Nnet

q

〉
. (57)

Both the momentum and flavor distributions of these net quarks
are different from those for the newly produced ones, and
this leads to observable effects in the final hadrons produced
in hadronization. We expect that they have influences on the
following aspects:

(i) The difference in momentum distribution leads to
different γM (Nq,Nq̄,

√
s) and γB(Nq,Nq̄,

√
s), as seen

clearly from Eqs. (22) and (23). Furthermore, since
〈Nq〉 > 〈Nq̄〉, the average number of baryons, 〈NB〉,
should be accordingly larger than 〈NB̄〉. The ratio
〈NB〉/〈NM〉 should in general depend on 〈Nnet

q 〉/〈Nq〉.
(ii) The distribution of the number of quarks, Nq , at a given

〈Nq〉 is different from the corresponding distribution
of the antiquarks. The distribution of the number of
the net quarks, Nnet

q , at a given 〈Nnet
q 〉 is different

from those for the newly produced quarks and/or
antiquarks. This leads to a difference between the
quark number distribution Pq(Nq, 〈Nq〉,

√
s) and the

antiquark number distribution Pq̄(Nq̄, 〈Nq̄〉,
√

s).
(iii) The flavor distribution of quarks is different from that

for the antiquarks. The net quarks take only two flavors,
u and d. At a given Nnet

q , the average numbers of
u and d net quarks are determined by the numbers
of protons and neutrons in the incident nuclei. For
a given AA collision, N

net
u :N

net
d = (A + Z):(2A − Z),

where A and Z are the numbers of nucleons and
protons, respectively, in the incident nucleus A. The
numbers Nnet

u and Nnet
d follow a binominal distribution

with pnet
u :pnet

d = (A + Z):(2A − Z). For the newly
produced quarks or antiquarks, at a given Nnew

q or Nq̄ ,
the numbers of them of different flavors follow the
multinominal distribution as given by Eq. (35). Hence,
including the net quark contribution, the distribution
of the numbers (Nu, Nd , and Ns) of the different
flavors (u, d, and s) of quarks at a given number of
quarks (Nq = Nu + Nd + Ns) is also different from the
corresponding distribution for the antiquarks.

The detailed calculations of the influences of these effects
on the hadron yield ratios in the combination mechanism
depend on the particular models. In this paper, we present
a rough estimate of, at least, the qualitative tendency of these
effects by using the following two approximations.

First, we approximate that the flavor distribution of the
number of quarks in the subsample of the system is indepen-
dent of that for the antiquarks. That for the antiquarks is given
by the multinominal given by Eq. (36). For the quarks, we
approximate it by a multinominal distribution in the same form
as that for the antiquarks but with different probabilities of the
different flavors. For the newly produced quarks, the flavor
distribution should be 1:1:λ for u, d, and s quarks, the same
as those for the antiquarks, but for the net quarks, it should be
(A + Z):(2A − Z):0. We take the average and obtain, at given
Nq and Nnet

q ,

pu = 1

2 + λ

(
1 − Nnet

q

Nq

)
+ A + Z

3A

Nnet
q

Nq

, (58)

pd = 1

2 + λ

(
1 − Nnet

q

Nq

)
+ 2A − Z

3A

Nnet
q

Nq

, (59)

ps = λ

2 + λ

(
1 − Nnet

q

Nq

)
. (60)

In the case in which the u and d difference is not very large,
we neglect it and consider the case in which N

net
u :N

net
d = 1:1.

In this case, we have, at given Nq and Nnet
q , pu:pd :ps = 1:1:λq
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and

λq = Ns

Nu

= λ

[
1 +

(
1 + λ

2

)
Nnet

q

Nq − Nnet
q

]−1

. (61)

Under this approximation, we see that Eqs. (40) and (41), the
results we obtained in Sec. II C for directly produced hadrons
in the combination of a quark-antiquark system at given Nq and
Nq̄ , are still valid. We only need to note that the pqi

in this case
is a function of Nq and Nnet

q as given by Eq. (61). The influence
of the isospin violation in net quarks can manifest itself in the
difference between the average yields of hadrons belonging
to the same charge multiplet. This can be studied separately
in experiments. Since our purpose is a rough estimation of
the net quark influence, we consider in the following first the
simplified case where u and d are equal but leave the isospin
difference for future studies.

Second, for a subsample in a given kinematic region of the
bulk system produced in a given AA collision at given energy√

s, the averages 〈Nq〉 and 〈Nq̄〉 are fixed and the numbers
Nq and Nq̄ follow the distribution P (Nq,Nq̄ ; 〈Nq〉, 〈Nq̄〉,√s).
The average numbers of the hadrons produced should be
the average over this distribution. In general such averages
depend on the precise form of P (Nq,Nq̄ ; 〈Nq〉, 〈Nq̄〉,√s). In
the rough estimations we made here, we approximate these
averages by taking the corresponding values of the quantities
at the averages 〈Nq〉 and 〈Nq̄〉, i.e.,

〈
Nhj

(Nq,Nq̄,
√

s)
〉 ≈ Nhj

(〈Nq〉, 〈Nq̄〉,
√

s). (62)

Under these two approximations, all the results presented
in the last four sections where we distinguish between pqi

and
pq̄i

apply and we can use them to make estimates of the effects
of the net quarks.

F. Ratios of the yields of different hadrons

From the results given in Table I, we see that there
are many simple relations between the yields of different
hadrons. In particular, for the directly produced hadrons, such
relationships are very simple. Even for the final hadrons,
although the decay influences are often very large, there still
exists a set of simple relations between them. For example,
independent of the values of RV/P and RO/D , for the final
hadrons where contributions from strong and electromagnetic
decays are taken into account, we have

〈
N

f

�−
〉

〈
N

f
p

〉 =
〈
N

f

�0

〉
〈
N

f
p

〉 = 3

4
λ2

q, (63)

〈
N

f

�−
〉

〈
N

f
p

〉 = 1

4
λ3

q, (64)

〈
N

f

�̄+
〉

〈
N

f
p̄

〉 =
〈
N

f

�̄0

〉
〈
N

f
p̄

〉 = 3

4
λ2, (65)

〈
N

f

�̄+
〉

〈
N

f
p̄

〉 = 1

4
λ3, (66)

〈
N

f
p̄

〉
〈
N

f
p

〉 =
(

2 + λq

2 + λ

)3 〈NB̄〉
〈NB〉 , (67)

〈
N

f

�̄

〉
〈
N

f

�

〉 =
(

2 + λq

2 + λ

)3
λ

λq

〈NB̄〉
〈NB〉 , (68)

〈
N

f

�̄+
〉

〈
N

f

�−
〉 =

(
2 + λq

2 + λ

)3(
λ

λq

)2 〈NB̄〉
〈NB〉 , (69)

〈
N

f

�̄+
〉

〈
N

f

�−
〉 =

(
2 + λq

2 + λ

)3(
λ

λq

)3 〈NB̄〉
〈NB〉 . (70)

In the case in which net quark contribution is negligible,
we have, λq = λ and 〈NB〉 = 〈NB̄〉, so that

〈
N

f

�−
〉

〈
N

f
p

〉 =
〈
N

f

�0

〉
〈
N

f
p

〉 = 3

4
λ2, (71)

〈
N

f

�−
〉

〈
N

f
p

〉 =
〈
N

f

�̄+
〉

〈
N

f
p̄

〉 = 1

4
λ3, (72)

and 〈Nf

B̄j
〉/〈Nf

Bj
〉 = 1 for all the different types of Bj .

In the case in which RV/P = 3 and RO/D = 2, we have
more such simple relations such as〈

N
f

K−
〉

〈
N

f

K+
〉 =

(
λq

λ

)(
1 + 0.37λ

1 + 0.37λq

)
, (73)

〈
N

f

�̄

〉
〈
N

f
p̄

〉 = 1.935λ, (74)

〈
N

f

�

〉
〈
N

f
p

〉 = 1.935λq. (75)

These relations are intrinsic properties of the combination
models in the sense that they do not depend on the details
of particular combination models but are determined mainly
by the basic ideas of the combination mechanism. They can
be used to determine the free parameters and/or to test the
mechanism. We note in particular the following two features.

(i) For a system with equal average numbers of quarks and
antiquarks, i.e., where net quark contributions are negligible,
these ratios are quite simple and can be tested by the data in
extremely high collision energies, e.g., at the LHC.

(ii) With net quark contributions, most of these yield
ratios of different hadrons depend on 〈Nnet

q 〉/〈Nq〉. We see
in particular that the ratios of the yields of hadrons to those
of the corresponding antihadrons deviate from one in general.
They tend to one for reactions at very high energies where
the net quark contribution tends to vanish. This leads to an
energy dependence of such ratios, even for particles such as
�− and �̄+. Such a property for the combination mechanism
is different from what one expects from fragmentation and can
be used as a check to differentiate the different hadronization
mechanisms.

We can also build some combinations of the average yields
of the hadrons and obtain simple results for some more
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sophisticated ratios such as

A ≡ 〈N�̄〉〈NK−〉〈Np〉
〈N�〉〈NK+〉〈Np̄〉 = 1, (76)

B ≡ 〈N�〉〈NK−〉〈N�̄+〉
〈N�̄〉〈NK+〉〈N�−〉 = 1, (77)

d�
� ≡ 〈N�̄〉〈N�̄+〉

〈N�〉〈N�−〉 =
(

2 + λq

2 + λ

)6(
λ

λq

)3( 〈NB̄〉
〈NB〉

)2

, (78)

d
p

� ≡ 〈Np̄〉〈N�̄+〉
〈Np〉〈N�−〉 = d�

� . (79)

We see that they all lead to simple results and these
relations are not influenced by the resonance decays except
φ → K+K−, which slightly changes A and B from unity. For
the case in which Nnet

q = 0, all four ratios are equal to unity.
As a brief summary, we emphasize once more that the

model that we consider in this section is intended to be a
general case based on the basic ideas of the combination
mechanism. The purpose is to concentrate on the hadron yield
correlations in the combination models. No effort is made to
study other properties such as momentum distribution, etc. The
results obtained follow from the basic ideas of the combination
mechanism and a number of assumptions, simplifications,
and/or approximations such as the factorization of flavor and
momentum dependence of the kernel functions, the flavor
independence of the quark-antiquark momentum distribution,
the independent production of different flavors of quarks and
antiquarks, and the approximations made in considering the net
quark influences. These results do not depend on the detailed
form of the momentum dependence of kernel functions and/or
the momentum distributions of the quarks and antiquarks. They
even do not depend on whether quark number conservation
or depletion is imposed in the combination process. Such
a conservation or depletion of quark number influences the
relationship between the average number of mesons (or
baryons or antibaryons) produced and the number of quarks
and/or antiquarks participating in the combination process (see
in particular the discussion in [40]) but does not influence the
hadron yield ratios if the factorization is assumed. These results
should also be valid in the combination models discussed in the
literature wherever these assumptions and/or approximations
are also made (explicitly or implicitly). Some of them should
even be common in these different models [9–13,23]. In fact,
some of the relationships presented above have also been
derived in the literature [9–13,23]. For example, relations
similar to those given in Eqs. (76)–(79) have been obtained
in [9]. These relations can be used to test the validity of the
combination mechanism and the assumptions made. We will
compare them with the data available in the next section.

III. COMPARISON WITH DATA

There are already quite abundant data available from
experiments in a quite broad energy region, from low SPS
energies to RHIC and LHC energies [18,21,22,24–36]. We
compare the results obtained in the last section with these data
in the following.

As mentioned earlier, the study presented in Sec. II is
intended to be a general case for the combination of a quark-
antiquark system consisting of Nq quarks and Nq̄ antiquarks.
No effort is made to ascertain whether the combination
mechanism dominates the production of hadrons in the
given kinematic region in AA collisions. In this section, we
choose the data in the central rapidity regions in different
AA collisions at different energies. The agreement and/or
disagreement of the theoretical results with these data should
give us a signature of whether the combination mechanism
with the above-mentioned assumptions and/or approximations
is applicable. Also, since some of the theoretical results depend
on more inputs and some of them depend on fewer inputs, we
make the comparison at different levels.

A. Comparison with LHC data

At the first level, we consider a subsample of the quark-
antiquark system in the central rapidity region produced in
AA collisions at very high energies. We suppose the energies
are very high and the subsample that we consider is only a
small part of the whole quark-antiquark system produced in
the collision process so that the influence of the net quarks and
that from the global flavor compensation are negligible. In this
limiting case, the results for the ratios of the yields of different
hadrons are divided into three classes.

In the first class, we consider the ratios of the yields of
hadrons to those of the corresponding antihadrons. Such ratios
are unity, independent of any parameter. This can be considered
as a criterion for the validity of this limiting case. Results
from LHC experiments can be considered as an example for
this case. In the first three lines of Table II, we show the
available experimental results for the particle to antiparticle
ratios such as 〈Nf

π−〉/〈Nf

π+〉, 〈Nf

K−〉/〈Nf

K+〉, and 〈Nf
p̄ 〉/〈Nf

p 〉

TABLE II. Hadron yield ratios obtained for Nnet
q = 0 compared

with data from the LHC in Pb + Pb collisions at
√

s = 2.76 TeV.
The data are taken from Refs. [21,22]. The experimental result for
K−/π− is used to determine the strangeness suppression factor λ.

Ratios Data Calculations

π−/π+ 1.000 ± 0.080 1
K−/K+ 0.987 ± 0.076 1
p̄/p 0.995 ± 0.077 1

φ/K+ – 0.278
K0

S/K
+ – 0.959

�/p – 0.832
�−/p – 0.139
�−/p – 0.020

K−/π− 0.155 ± 0.012 0.155
p/π+ 0.045 ± 0.004 0.043
�/π+ – 0.036
�−/π+ 0.005 ± 0.001 0.006
�−/π+ 0.001 ± 0.0002 0.001
p/K+ – 0.275
�/K+ – 0.229
�−/K+ – 0.038
�−/K+ – 0.005
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at mid-rapidity. The data are obtained from Ref. [21]. We see
that they are indeed very close to unity.

In the second class, we consider the ratios of the average
yields of hadrons such as φ/K+, �/p, and so on as shown in
the second part of Table II (from the forth line to the eighth
line). Because in this case we have 〈NB〉 = 〈NB̄〉 and λq = λ,
these ratios depend only on one free parameter, the strangeness
suppression factor λ, and are independent of the particular
models. We can fix λ by using the data for one ratio and make
predictions for other particle ratios. Such results can be used
to check the validity of the combination picture.

In the third class, we consider the ratio of a specified meson
to a specified baryon. To obtain the results for such ratios, we
need the input for 〈NB〉/〈NM〉. This can be slightly different
in different combination models. As an example, in the third
part of Table II (from the ninth line to the end), we show the
results obtained by taking

〈NB〉/〈NM〉 = 1/12. (80)

This is obtained by parametrizing the results for large Nq = Nq̄

of the Monte Carlo generator (SDQCM) based on the com-
bination rule developed by the Shandong group [13,15,37],
which has reproduced the data well. This parametrization is
valid with high accuracy for Nq larger than, say, 100. The
parameter λ is taken as λ = 0.43 by fitting the data of K−/π−.
We see that the theoretical results agree with the LHC data
whenever available.

B. Comparison with RHIC and SPS data

At the second level of comparison, we consider the case
where Nnet

q �= 0. In this case, we need a further input of
〈Nnet

q 〉/〈Nq〉, which describes the strength of the net quark
influence. Clearly, this ratio depends on the type and the energy
of the incident nuclei and also on the kinematic region that we
consider. For example, to make a good comparison with the
data from the RHIC and the SPS [18,24–36], we need to take
such effects into account.

In practice, to carry out the calculations, we first fix λq

and λ by using the data for 〈N�−〉/〈Np〉 to determine λq and
〈N�̄+〉/〈Np̄〉 to determine λ, and we then derive 〈Nnet

q 〉/〈Nq〉
using Eq. (61). In Table III, we show the results obtained by
taking the data for dN/dy at y = 0 (where y denotes the
rapidity of the hadron). These results can be used to calculate
the hadron ratios in the mid-rapidity regions.

From the table, we see that 〈Nnet
q 〉/〈Nq〉 is small at RHIC

energies but quite large at SPS energies and the expected
effects should be large at those energies.

Using the obtained λ and λq values as inputs, we calculate
the hadron yield ratios that are independent of 〈NB〉/〈NM〉.
The results are given in Table IV. The corresponding data are
from Refs. [18,24–35].

We see in particular that the ratio of the yield of hadrons to
that of the corresponding antihadrons is not unity in this case.
We also note that the ratio such as 〈Nf

K−〉/〈Nf

K+〉 = (λq/λ)(1 +
0.37λ)/(1 + 0.37λq ) is a good example to show the change
of the effective strange suppression for quarks. The results
should decrease monotonically with increasing 〈Nnet

q 〉/〈Nq〉.
There are data available for 〈Nf

K−〉/〈Nf

K+〉 at different en-
ergies [18,24,25] and the data show clearly that the ratio
increases with increasing energy. This qualitative tendency
is consistent with the effect of net quark contribution since the
relative influence of the net quarks becomes smaller at higher
energies.

To calculate other ratios, we need 〈NB〉/〈NM〉 and
〈NB̄〉/〈NM〉. For this purpose, we parametrize 〈NB̄〉/〈NM〉 for
the case where Nnet

q �= 0 using SDQCM [13,15,37], and we
obtain

〈NB̄〉
〈NM〉 = 1

12

(
1 −

〈
Nnet

q

〉
〈Nq〉

)2.8

. (81)

We found that this parametrization is a good approximation
to the results obtained from SDQCM for different Nq in the
range of Nq > 100. In this model, quark number conservation
or depletion is imposed in the combination process so that
3〈NB〉 + 〈NM〉 = 〈Nq〉 and 3〈NB̄〉 + 〈NM〉 = 〈Nq〉 − 〈Nnet

q 〉,
and we derive

〈NB〉
〈NM〉 =

(
〈NB̄〉
〈NM〉 + 1

3

〈
Nnet

q

〉
〈Nq〉

)/(
1 −

〈
Nnet

q

〉
〈Nq〉

)
. (82)

With Eqs. (81) and (82), we calculate the ratios of the yields of
different baryons to mesons. The results are shown in Table V.
The data are calculated from dN/dy at y = 0 for different
energies from Refs. [18,24–35].

With the values of λ and λq given in Table III and
〈NB̄〉/〈NB〉 derived from Eqs. (81) and (82), we calculate in
particular the ratios of the antibaryons to the corresponding
baryons at different energies. The results obtained are shown
in Fig. 1 with the open symbols connected by different lines to
guide the eye. The filled symbols with error bars are the exper-
imental data taken from Refs. [24,26–28,36]. From Fig. 1,
we see in particular that 〈Nf

�̄+〉/〈Nf

�−〉 > 〈Nf

�̄+〉/〈Nf

�−〉 >

〈Nf

�̄
〉/〈Nf

�〉 > 〈Nf
p̄ 〉/〈Nf

p 〉. This was first pointed out by the
NA49 Collaboration and was regarded as a distinct hierarchy
of the antibaryon to baryon ratios [27]. The hierarchy can

TABLE III. The fixed λ and λq and the derived 〈Nnet
q 〉/〈Nq〉 at RHIC and SPS energies.

Energy RHIC
√

s (GeV) SPS Ebeam (A GeV)

200 130 62.4 158 80 40 30

λ 0.425 0.412 0.369 0.499 0.567 0.540 0.645
λq 0.397 0.375 0.328 0.255 0.232 0.193 0.192
〈N net

q 〉/〈Nq〉 0.056 0.074 0.095 0.434 0.529 0.587 0.640
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FIG. 1. (Color online) The yield ratios of antibaryons to baryons
at mid-rapidity at different energies. The filled symbols with error
bars are the experimental results taken from Refs. [24,26–28,36].
The corresponding open symbols represent the calculated results
where the lines that connect these symbols are just used to guide the
eyes.

be naturally reproduced by Eqs. (67)–(70) in the simple
quark combination models. We also see that the antibaryon
to baryon ratios increase with increasing energy, indicating
that the net quark influence becomes smaller at higher
energies.

It was considered as a surprise that the net quark also
influences 〈Nf

�̄+〉/〈Nf

�−〉 significantly, as shown in Fig. 1,
although the � hyperon does not consist of u or d quarks.
We see that from the lowest SPS to the highest RHIC energy,
〈Nf

�̄+〉/〈Nf

�−〉 increases from about 0.4 to unity. This cannot be
understood in the fragmentation models but can be naturally
explained in the framework of quark combination models.
Because in the combination models more net quarks imply
more chance for the antistrange-quarks to meet quarks to
form mesons, there will be more antistrange quarks exhausted
to form kaons than strange quarks. The probability for a
strange antiquark to combine with other antiquarks to form an
antibaryon is smaller than that for a strange quark to combine
with other quarks to form a baryon. This leads to fewer �̄’s
than �’s for the same number of strange quarks and antistrange
quarks. This qualitative tendency is consistent with data, and
from the figure we see also the quantitative results agree well
with the data.

TABLE VI. The deduced values of d�
� and d

p

� at RHIC and SPS
energies. Errors shown are total errors. The data are from Refs. [24,
26–28,36].

Energy d�
� d

p

�

200 GeV 0.64 ± 0.07 0.73 ± 0.23
130 GeV 0.59 ± 0.08 0.67 ± 0.15
62.4 GeV 0.34 ± 0.04 0.32 ± 0.14
158A GeV 0.027 ± 0.009 0.029 ± 0.016
40A GeV 0.0013 ± 0.0005 0.0032 ± 0.0023
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FIG. 2. (Color online) The correlation quantities (a) A and (b)
B as functions of the collision energy. The experimental data (filled
circles) with total statistical and systematic errors are from Refs. [18,
24–28,36].

We also compare the experimental results with the predic-
tions shown in Eqs. (76)–(79) for the “more sophisticated”
ratios A = B = 1 and d�

� = d
p

�. From the data available
[24,26–28,36], we calculate these ratios and show the results
in Table VI and Fig. 2 for d�

� and d
p

� and A and B, respectively.
We see that the data are consistent with d�

� = d
p

�. The results
for A and B at RHIC energies are consistent with unity while
the error bars for those at SPS energies are too large to make
a judgment.

IV. SUMMARY

We study the hadron yield correlations in the combination
models. With the basic ideas of the combination mechanism
and a few simplifications and/or assumptions based on symme-
try and general principles, we show that the hadron yield ratios
can be calculated and have a series of regular properties. These
ratios are properties of the combination mechanism under these
assumptions and/or approximations such as the factorization of
flavor and momentum dependence of the kernel function, the
flavor independence of the momentum distributions, and the
approximations made for the net quark contributions. They are
independent of the particular models where usually particular
assumptions are made for the kernel functions. A systematic
study of these ratios should provide good hints as to whether
the combination mechanism is at work. Comparisons with
available data are made and predictions for future experiments
are given.
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