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High-pT hadrons produced in hard collisions and detected inclusively bear peculiar features: (i) they originate
from jets whose initial virtuality and energy are of the same order and (ii) such jets are rare and have a very
biased energy sharing among the particles, namely the detected hadron carries the main fraction of the jet energy.
The former feature leads to an extremely intensive gluon radiation and energy dissipation at the early stage of
hadronization, either in vacuum or in a medium. As a result, a leading hadron must be produced on a short
length scale. Evaluation within a model of perturbative fragmentation confirms the shortness of the production
length. This result is at variance with the unjustified assumption of long production length, made within the
popular energy-loss scenario. Thus, we conclude that the main reason of suppression of high-pT hadrons in
heavy-ion collisions is the controlled-by-color-transparency attenuation of a high-pT dipole propagating through
the hot medium. Adjusting a single parameter, the transport coefficient, we describe quite well the data from the
Large Hadron Collider and the Relativistic Heavy Ion Collider for the suppression factor RAA as function of pT ,
collision energy, and centrality. We observe that the complementary effect of the initial-state interaction causes
a flattening and even fall of RAA at large pT . The azimuthal anisotropy of hadron production, calculated with no
further adjustment, also agrees well with data at different energies and centralities.
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I. INTRODUCTION

A colored parton produced with a high momentum in a
hard reaction hadronizes, forming a jet of hadrons. It is natural
to expect that the production time of such a jet, averaged
over jet configurations, rises with the jet energy due to the
effect of Lorentz time dilation. Although the jet is detected at
macroscopic distances from the collision point, its space-time
development at the early stages of hadronization can be probed
with nuclear targets [1].

In this paper we concentrate on the rare type of jets in
which the main fraction of the jet momentum is carried by a
single (leading) hadron. In some cases, like in semi-inclusive
deep-inelastic scattering (SIDIS), such events can be selected
explicitly, because the fractional light-cone momentum zh

of the detected hadron can be measured. In high-pT single-
hadron production processes the fractional hadron momentum
is unobserved, but the convolution of the steeply falling
jet momentum distribution with the fragmentation function
picks up high values of zh (see Sec. II D). Thus, inclusive
high-pT hadron production without observation of the whole
jet implicitly selects an unusual type of jets with a very biased
sharing of energy.

Another generic feature of such jets is an extremely high
initial virtuality, which is of the same order as the jet energy.
This leads to a very intensive gluon radiation and energy
dissipation at the early stage of hadronization. In order to
respect energy conservation in the production of a high-zh

hadron, the radiative dissipation of energy must be stopped
by the production of a colorless hadronic configuration (QCD
dipole or prehadron) on a short time or length (we use both
terms interchangeably) scale. This is considered in detail in
Sec. II, where the rate of radiative energy loss in vacuum is

calculated as a function of time. The production length lp of
a colorless dipole finalizing hadronization is calculated within
a model of perturbative hadronization and found to be rather
short. The important observation is a weak dependence of lp
on pT , which might look counterintuitive, because the Lorentz
factor is expected to stretch lp at higher pT . However, the rate
of energy dissipation increases as well, and this works in the
opposite direction, trying to shorten lp.

Since a colorless dipole is created at a short time scale
inside a dense medium, it has to survive through the medium
in order to be detected. The evolution of the dipole in the
medium and its attenuation is the subject of Sec. III. The
key phenomenon controlling the dipole surviving probability
is color transparency, which corresponds to the enhanced
transparency of the medium for small-size dipoles [2]. We
employ the relation between the dipole cross section and
transport coefficient (broadening) found in Refs. [3–6]. Cor-
respondingly, the observed magnitude of hadron attenuation
can be used as a probe for the transport coefficient, which
characterizes the medium density.

In Sec. IV we compare the calculated suppression factor
RAA with data, as function of pT , collision energy, and
centrality of the collision. This comparison involves only one
fitted parameter, q̂0, which is the maximal transport coefficient
of the medium created in a central collision of given nuclei, at
a given energy. Otherwise, this parameter is universal for all
observables. The shape of the pT dependence of RAA is found
to be in good accord with the data. In particular, the observed
rise of RAA(pT ) at LHC is easily and naturally explained by
the color transparency effect, calculated within the rigorous
quantum-mechanical description known as the path-integral
technique.
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Comparison with data results in the transport coefficient,
which ranges from q̂0 = 1.2 GeV2/fm at

√
s = 62 up to

2 GeV2/fm at
√

s = 2.76 TeV for collisions of heavy nuclei,
gold, and lead. These values of the transport coefficient are
about twice as large as those that were found in Ref. [7]
within a simplified model of dipole evolution. Nevertheless,
they are an order of magnitude smaller than what was found
in the analysis [8], based on the energy-loss scenario (see,
e.g., Ref. [9]), which relies on the unjustified assumption
of a long production length lp. It is worth emphasizing that
our approach, based on perturbative QCD, is irrelevant to
data at pT � 6 GeV, which are apparently dominated by
hydrodynamics.

An additional effect related to initial-state interactions (ISI)
of the colliding nuclei is described in Sec. IV B. The excitation
of higher Fock states by multiple interactions leads to enhanced
nuclear suppression of particle production with large xL and/or
xT [10], where xL ≡ xF = 2pL/

√
s and xT = 2pT /

√
s. This

effect can be seen in the pT dependence of RAA at the
Relativistic Heavy Ion Collider (RHIC) energies

√
s = 200

and 62 GeV. Moreover, Large Hadron Collider (LHC) data
at

√
s = 2.76 TeV indicate a leveling of the RAA behavior

at the maximal measured pT , and we expect even a fall at
pT � 100 GeV.

A complementary test of our approach is provided by
data on azimuthal anisotropy of produced hadrons, as is
described in Sec. IV C. In fact, we explain the measured
difference between RAA for in- and out-of-plane events and the
asymmetry parameter v2(pT ), with no additional adjustment.

II. ENERGY CONSERVATION: HOW LONG DOES
HADRONIZATION LAST?

One should discriminate between the observation of a jet
initiated by a parton produced in a hard reaction [e.g., high-pT

processes or deep-inelastic scattering (DIS)] and the detection
of only a single hadron produced inclusively with a large
fractional light-cone momentum in a hard process at high
energies. The latter process corresponds to a very rare jet
configuration, where the main fraction zh of the jet energy E

is carried by a single hadron, while all other hadrons in the jet
must share the smaller energy (1 − zh)E. The deficit of energy
imposes certain constraints on the space-time development of
such a jet, which differs from an averaged jet. Our definition
of the characteristic time scales is illustrated in Fig. 1.

energy loss
Vacuum + induced Color neutralization

q

q

q
h

p fll

q+ ++
+

FIG. 1. (Color online) Space-time development of hadronization
of a highly virtual quark producing a leading hadron, which carries
the main fraction zh of the initial quark light-cone momentum.

The quark regenerating its color field, which has been
stripped off in a hard reaction, intensively radiates gluons and
dissipates energy, either in vacuum or in a medium. Multiple
interactions in the medium induce additional, usually less
intensive, radiation. The loss of energy ceases at the moment,
call production time tp, when the quark picks up an antiquark
neutralizing its color. The produced colorless dipole (also
called prehadron) does not have either the wave function or
mass of the hadron, but it takes the formation time tf to develop
both. The formation stage is described within the path-integral
method in Sec. III B.

A. String model

The simple example of the consequences of energy conser-
vation is the string (or color flux tube) model [11]. The usual
expectation is that the higher is the energy of the produced
hadron, the longer it takes to be produced, as follows from
Lorentz time dilation. On the contrary, in Ref. [12] it was found
that the production time of a hadron with energy zhE shrinks
down to zero on reaching the kinematic bound of maximal
energy E. Indeed, the quark that initiated a jet is losing its
energy with the rate dE/dt = −κ , where κ ≈ 1 GeV/fm is the
string tension. The energy loss comes from the hadronization,
which is developed as a series of string breaks by q̄q pairs
tunneling from the vacuum [11].

Since the leading quark keeps losing energy, it can produce
a hadron with energy zhE only within a certain time interval,
restricted by energy conservation,

tp � E

κ
(1 − zh). (1)

Such a shrinkage of the production time was explicitly
confirmed in Monte Carlo models [13,14].

The string model is mentioned here only as an example of
the constraints imposed on tp by energy conservation. It should
not be taken literally as a hadronization mechanism for hard
reactions, where a highly virtual parton neutralizes its color
perturbatively on a short time scale [15].

At this point we should specify our terminology in order
to avoid further confusion. Indeed, different time scales are
debated in the literature, including coherence time, formation
time, and production time. What we call production time [in
Eq. (1) and in what follows] is the time of color neutralization
of the leading quark by an antiquark picked up from the string
or generated perturbatively [15]. Notice that this is not yet the
final hadron, which is characterized by both a specific wave
function and mass. What is produced at the time scale tp is a
colorless q̄q dipole, having certain separation, but not mass,
which we call conventionally prehadron. It takes the formation
time to develop the wave function,

tf = 2Eh

m2
h∗ − m2

h

, (2)

where Eh = zhE; mh and mh∗ are the masses of the hadron (we
assume it to be the ground state) and the first radial excitation
h∗. This time scale does not shrink at zh → 1 but keeps
rising. It can be derived in the multichannel representation for
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the diffractive scattering as the inverse minimal value of the
longitudinal momentum transfer in the off-diagonal diffractive
transitions between different states.

Equation (2) can also be understood in terms of the
uncertainty principle. Namely, the produced q̄q dipole has
a certain size and can be projected either to h or to h∗.
According to the uncertainty principle, it takes the proper
time t∗f = 1/(mh∗ − mh) to resolve between these two levels.
Applying the Lorentz boosting factor, we get (2).

Concerning the coherence time scale, this is a more general
term, which means that quantum-mechanical interferences
are important. Depending on the context and the employed
theoretical tools, it might play a role in either the production
time or the formation time.

B. Radiational energy loss

As a result of hard interaction characterized with the scale
Q2, the parton is produced with part of its color field stripped
off, up to transverse frequencies kT ∼< Q. Hadronization of
such a highly virtual quark cannot be described adequately
in terms of the nonperturbative string model. Regeneration of
the quark color field is associated with radiation of gluons,
which take away a part of the quark energy and contribute to
the formation of the jet. In fact, at high virtualities Q2 this
gluon radiation becomes the dominant source of energy loss
in a vacuum.

One should strictly discriminate between vacuum and
medium-induced energy loss. The former includes the lost
energy, which goes into gluon radiation and/or into setting
up the string field, in other words, into jet formation. The
latter corresponds to the additional energy loss caused by
the multiple interactions of the jet in the medium. The
vacuum rate of energy loss usually significantly exceeds the
medium-induced one. Here we concentrate on the study of
the hadronization pattern in vacuum.

The time-dependent radiational energy loss can be calcu-
lated as follows [1,16,17]:

�Erad(t) = E

∫ Q2

λ2
dk2

∫ 1

0
dx x

dng

dx dk2
�

(
t − tgc

)
, (3)

where the coherence time for radiation of a gluon with
fractional light-cone momentum x and transverse momentum
k reads

tgc = 2Ex(1 − x)

k2 + x2 m2
q

. (4)

The step function in Eq. (3) excludes from the integration
those gluons which are still in coherence with the radiation
source and did not materialize on mass shell during the time
interval t . The soft cutoff λ in Eq. (3) is fixed at λ = 0.7 GeV.
This choice is dictated by data (see in Refs. [18,19]), which
indicates a rather large primordial transverse momentum of
gluons.

The spectrum of radiated gluons in Eq. (3) has the form

dng

dx dk2
= 2αs(k2)

3π x

k2[1 + (1 − x)2][
k2 + x2m2

q

]2 , (5)

where αs(k2) is the running QCD coupling.
The time dependence of radiational energy loss in vacuum

exposes a nontrivial behavior [1,17]. During the time interval
t < (2E/Q2)(1 − zh), the energy loss rises linearly with time,

�Erad(t) = t
2αs

3π
(Q2 − �2) . (6)

However, at larger t , the rate of energy loss starts falling,
�Erad(t) is leveling off, and at t > (2E/�2)(1 − zh) the gluon
radiation completely ceases. The quark then loses energy only
via nonperturbative mechanisms (strings).

Similarly to Eq. (1), the production time is restricted by
energy conservation to

�E(tp) ≈ E(1 − zh). (7)

Apparently, the increase of the energy-loss rate in Eq. (1), κ ⇒
κ + |dErad/dt |, caused by gluon radiation, can only shorten
the production time.

C. Peculiar aspects of high-kT jets

The solution of Eq. (7), the production time of a leading
(pre-)hadron, depends on the jet energy and virtuality. In deep-
inelastic scattering (DIS) these are two independent variables
and usually E2 	 Q2.

For a parton produced with high transverse momentum kT

normal to the collision axis in the center-of-mass frame, its
energy is E ≈ kT . The hard scale for such a process is also
imposed by the transverse momentum, i.e., Q2 = k2

T . Thus,
a high-kT jet is in a unique kinematic domain of extremely
high virtuality, Q2 = E2, which cannot be accessed in DIS.
This fact leads to a specific behavior of the production time for
high-pT hadrons, which differs from what is usually measured
in SIDIS.

Indeed, we can trace the dependence of tp on E and Q2

using the approximate relation analogous to Eq. (1),

tp � E

〈|dE/dt |〉 (1 − zh). (8)

If one increases the jet energy, keeping the virtuality Q2 fixed,
so 〈|dE/dt |〉 does not vary, the production time rises linearly
with E and eventually exceeds the time of jet propagation
through the medium. Indeed, the observed magnitude of
nuclear suppression of leading hadrons in SIDIS decreases
with energy and vanishes at jet energies E ∼ 100 GeV [20].
However, at medium and low energies [21,22] the energy-loss
scenario [23], which assumes a long production time, fails to
describe the nuclear suppression observed in SIDIS at large zh

and vice versa if one keeps the energy E fixed, but increases the
virtuality Q2, the mean rate of energy loss in the denominator
of (8) rises, and the production time shrinks.

Therefore, it is not obvious what will happen to tp if both
the energy and virtuality rise simultaneously, as it happens
for high-kT jets. In spite of the rising Lorentz factor, the
jet virtuality Q2 = E2 rises as well and causes a dramatic
enhancement of radiative energy loss, which may result in a
shorter production time.
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Equation (3) describes the time dependence of the energy
radiated by a virtual quark. The total amount of radiational
energy loss is given by the same equation without the �

function,

�Etot = 8αs

3π
E ln

(
E

λ

)
, (9)

where we assumed x � 1 and fixed αs for the sake of
simplicity. Let us inverse the problem of the time dependence
of energy loss [Eq. (3)] and ask: How long does it take for
a highly virtual quark or gluon with Q2 = E2 to radiate a
fraction,

δ(t) = �E(t)

�Etot
, (10)

of the total radiated energy? Solving Eq. (3) one gets [24]

t(δ) =
{

δ 4
E

ln
(

E
λ

)
if δ < 1/ ln

(
E2

λ2

)
2
λe

(
E
λ

)2δ−1
if δ > 1/ ln

(
E2

λ2

) . (11)

From the second line of this equation we conclude that a
high-kT parton radiates half of the total energy loss during
a very short time interval, t(δ = 1/2) = 2/(eλ) ≈ 0.2 fm.
This interval is independent of energy. The δ dependence of
the time interval t(δ) is illustrated in Fig. 2 for several jet
energies.

This confirms that a high-kT parton radiates the main
fraction of the energy vacuum loss at the early stages
of hadronization on very short time intervals. Notice that
inclusion of nonperturbative mechanisms of energy loss should
lead to even faster dissipation of energy. Thus, we conclude
that the fast degradation of energy of a highly virtual parton
makes impossible the production of leading (pre-)hadrons on
a long time scale.

So far we have explored the time dependence of radiation
with no constraints on the radiation process. However, detec-
tion of a hadron carrying a large fraction zh of the initial parton
energy essentially affects the energy-loss pattern due to energy

10
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δ

 t(
δ)
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fm

)
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E =   20 GeV
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FIG. 2. The path length taken by a parton (quark or gluon)
of energy E and virtuality Q2 = E2 to radiate a fraction δ =
�E(t)/�Etot of the total vacuum energy loss. The curves correspond
to different jet energies, E = 10, 20, 50, and 100 GeV.

conservation. The production of leading hadrons in such jets
was studied in Ref. [25], where it was found to have the form

∂Dπ/q(zh,Q
2)

∂tp
∝ (1 − z̃h) S(tp, zh). (12)

Here Q2 = k2
T , and the time-dependent fractional momentum

z̃h(t), reads

z̃h(tp) =
〈zh

x

〉
= zh

[
1 + �E(tp)

E

]
+ O[zh(1 − zh)2] . (13)

The energy loss �E(tp) includes both perturbative and
nonperturbative (strings) sources of energy dissipation. The
former is calculated with Eq. (3), in which an additional
kinematical constraint is introduced: the energy of radiated
gluons, ω = αE + k2/4αE, should not exceed the bound
ω < (1 − zh)E. Such a ban for radiation of part of the gluon
spectrum during the time interval t < tp leads to a suppression
known as Sudakov factor S(tp, zh), introduced in Eq. (12).
It is defined as S(tp, zh) = exp[−〈ng(tp, zh)〉], where the
mean number of gluons 〈ng(tp, zh)〉 which have radiation
time shorter than tp, but cannot be radiated due to energy
conservation, is calculated with the same gluon spectrum
[Eq. (5)]. Examples for the Sudakov factor at different values
of zh are shown in Fig. 3 as functions of the production length
lp = tp and for jet energies E = 10 and 100 GeV.

We see that energy conservation vetoing part of the radiation
spectrum results in the Sudakov suppression factor, which
substantially reduces the production time Eq. (12). Now
we are in a position to perform numerical calculations for
the production time distribution function. Examples for the
differential fragmentation function Eq. (12), at Q2 = E2 =
p2

T /z2
h, are depicted in Fig. 4 as function of lp.

Since the absolute value of the fragmentation function
steeply varies with zh, we renormalized it by adjusting to the
same value at lp = 0, and plot it in arbitrary units. As a test
of the modeled differential fragmentation function Eq. (12),
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zh = 0.6
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zh = 0.8

zh = 0.9

E =   10 GeV
E = 100 GeV

FIG. 3. Sudakov suppression factor caused by the ban for radia-
tion of gluons with fractional energy higher than 1 − zh, during the
time interval t < tp = lp . Calculations are done for jet energies, E =
Q = kT = 10, 100 GeV, and several fractional hadron momenta,
zh = 0.6–0.9.
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FIG. 4. The differential fragmentation function Eq. (12) (in
arbitrary units) at Q2 = E2 as function of lp for quark jets with
energies E = kT = 10, 20, and 100 GeV (from top to bottom) and
zh = 0.7.

we integrated it over tp and compared with data. Our result
reproduces fairly well [25] the phenomenological function
Dπ/q(zh,Q

2) [26] fitted to data at zh � 0.5. Correspondingly,
we consider our calculated tp distribution Eq. (12) to be
accurate within this interval of zh.

Eventually, using the distribution (12) we can calculate the
mean production time,

〈tp(zh, E)〉 = 1

Dπ/q(zh, E2)

∫
dtp tp

∂Dπ/q(zh, E
2)

∂tp
. (14)

The results are presented in Fig. 5. Naturally, the production
length for leading hadrons in jets initiated by gluons is shorter
than for quarks, because the dissipation of energy in gluon jets
is more intensive.

Notice that color neutralization, resulting in the production
of a prehadron, also may be subject to coherence. This
means that the amplitudes with different tp can interfere, so
one cannot identify with certainty the production moment

1

1 10 10
2

E (GeV)

 <
t p>

 (
fm

)

zh = 0.5

zh = 0.5

zh = 0.7

zh = 0.7

zh = 0.9

zh = 0.9

FIG. 5. (Color online) The mean production length as function
of energy for quark (solid curves) and gluon (dashed curves) jets. In
both cases, the curves are calculated at zh = 0.5, 0.7, and 0.9 (from
top to bottom).

tp. One may be even unable to say whether the prehadron
was created inside or outside the medium. Such a quantum-
mechanical uncertainty was explicitly demonstrated in a SIDIS
example [27], where the interference term in the production
cross section was found to be 100% important and negative.
However, in the case of a high-pT jet, the starting virtuality
is so high, and the dissipation of energy so intensive, that
every amplitude is constrained to have a short tp. Therefore,
in what follows, we rely on the probabilistic description of the
space-time development illustrated in Fig. 1.

D. The mean value of zh

As expected, the production time varies with zh, which
unfortunately cannot be measured in the process under
consideration, but one can evaluate its mean value and
then rely on it in further calculations. As was stressed
above, inclusive production of hadrons with large transverse
momentum enhances the large-zh part of the fragmentation
function D(zh,Q

2). This happens due to the steepness of the
kT spectrum of the produced partons, quarks, or gluons, which
has to be convoluted with the fragmentation function. This
convolution defines the mean fractional momentum 〈zh〉.

First, we should check how well we can describe data in pp

collisions. We employ the simple model proposed in Ref. [28],
based on kT factorization,

dσpp

dy d2pT

= K
∑
i,j,k,l

∫
dxidxjd

2kiT d2kjT

×Fi/p(xi, kiT ,Q2) Fj/p(xj , kjT ,Q2)

× dσ

dt̂
(ij → kl)

1

π zh

Dh/k(zh,Q
2). (15)

Here dσ (ij → kl)/dt̂ is the cross section of parton scattering;
the kinematic variables and their relations can be found in
Ref. [28]. Following Ref. [28] we assume a factorized form of
the transverse-momentum distribution,

Fi/p(x, kT ,Q2) = Fi/p(x,Q2) gp(kT ,Q2), (16)

where

gp(kT ,Q2) = 1

π
〈
k2
T (Q2)

〉 e−k2
T /〈k2

T (Q2)〉. (17)

The scale dependence of 〈k2
T (Q2)〉 was parametrized in

Ref. [28] as 〈k2
T 〉N (Q2) = 1.2 GeV2 + 0.2αs(Q2)Q2, with

parameters adjusted to next-to-leading order calculations. We
use the phenomenological parton distribution functions (PDF)
Fi/p(x,Q2) from MSTW08 leading order (LO) [29]. For
the fragmentation function Dh/k(zh,Q

2) we rely on the LO
parametrization given in Ref. [30].

The results of the differential invariant cross-section calcu-
lations Eq. (15) are compared with data at

√
s = 200 GeV

[31] and 7 TeV [32] in Fig. 6. We see that the employed
model reproduces quite well the shape of the measured cross
section up to the maximal available momenta. The absolute
normalization (not important for us) is regularized by the K

factor in (15), which we found to be k ≈ 1–1.5 depending on
the energy.
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FIG. 6. (Color online) pT dependence of pion production in pp

collisions at
√

s = 200 GeV (a) and charged hadron production at
7 TeV (b). The contributions of quark and gluon jets are shown
by dashed and dotted curves, respectively. Data points are from the
PHENIX [31] and CMS [32] experiments.

Note that while at the LHC energy the cross section is
fully dominated by gluon jets, at

√
s = 200 GeV quarks are

important and even dominate towards the upper end of the
available range of pT . Eventually, we can average the fractional
hadron momentum zh weighted with the convolution Eq. (15).
The results are depicted in Fig. 7, separately for quark and
gluon jets (upper and lower solid curves) and at different
energies,

√
s = 200, 2760, and 7000 GeV. We see that the

lower the collision energy, the larger the 〈zh〉, especially at
large pT , because the parton kT distribution gets steeper. In
the energy range of the LHC, the magnitude of 〈zh〉 practically
saturates as function of

√
s and pT .

Such a large value of the fractional jet energy carried by
a single inclusively detected high-pT hadron (without obser-
vation of the whole jet) makes its space-time development
differ markedly from an usual high-pT jet, when the whole
jet is reconstructed. In the latter case, if no special selection
is made, the mean fractional momenta of hadrons are very
small. Correspondingly, energy conservation does not impose
any severe constraints on the hadronization time scale, which
rises with pT and may be long.

III. ATTENUATION OF LEADING HADRONS
IN A DENSE MEDIUM

In previous sections we found that in rare events, in
which the produced hadron carries the main fraction zh of
the initial parton light-cone momentum, the intensive gluon
radiation and energy dissipation in vacuum by a highly virtual
parton produced with high kT does not leave much time for
the hadronization process. Particularly, such rare events are
selected by detecting a hadron with large pT . Figure 7 shows
that the detected hadron carries, on average, more than half
of the jet momentum. In order to respect energy conservation,
the intensive dissipation of energy by the parton should be
stopped promptly by color neutralization, i.e., production of a
colorless prehadron, otherwise the leading parton, which lost
too much energy, will be unable to produce a hadron with large
zh. Other possibilities for reduction of the vacuum energy loss
by nonradiation of gluons are strongly Sudakov suppressed.
As a result, the time scale for production of a colorless dipole
is rather short and does not rise with pT , as is depicted in
Fig. 5.

If this process occurs not in vacuum, but in a dense medium,
multiple interactions of the parton generate more energy loss,
which makes the production time even shorter. The further
interactions of the dipole in the medium are mostly inelastic
color exchange collisions. Indeed, the cross section of inelastic
interactions is proportional to the dipole separation squared,
r2
T , while the elastic scattering cross section is ∝ r4

T , which is
negligibly small. So any inelastic interaction of the colorless
dipole with color exchange will resume the gluon radiation
and dissipation of energy. Of course, color neutralization
may happen again via creation of a new dipole, but such
a reincarnation of the prehadron will result in a substantial
reduction of its momentum.

Thus, we should evaluate the survival probability W , i.e.,
the chance for a dipole to escape from the dense medium
having no inelastic interaction on the way out. Apparently,
this is subject to the effect of color transparency [2], i.e., the
rate of attenuation of small-size dipoles vanishes quadratically

0
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 <
z h>
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FIG. 7. (Color online) The mean fraction 〈zh〉 of the jet energy
carried by a hadron detected with transverse momentum pT . The
calculations are performed as described in the text for collision
energies

√
s = 200, 2760, and 7000 GeV.
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with the dipole transverse separation r ,

dW

dl

∣∣∣∣
rT →0

= −ε(l) r2, (18)

where ε(l) characterizes the medium and varies with coordi-
nates and time.

To avoid terminological confusions, notice that in high-
pT hadron production the momentum �pT is meant to be
transverse to the collision axis. However, the “transverse”
dipole separation is meant to be transverse relative to the vector
�pT .

It was found in Ref. [4] that a parton propagating through
a nuclear medium experiences broadening, whose magnitude
is controlled by the small-r behavior of the dipole-nucleon
cross section. Thus, the broadening and attenuation rates in a
medium turn out to be related as

ε(l) = 1
2 q̂(l). (19)

Here the broadening rate q̂(l) = ∂�q2/∂l is usually called
transport coefficient and used as a characteristic of the medium
[33]. Notice that �q is the transverse momentum of the parton
relative to its initial direction. The transport coefficient is
proportional to the medium density, which is function of
impact parameter and time. In what follows, we rely on
the popular, although poorly justified, model for q̂, which is
assumed to be proportional to the number of participants and
gets diluted with time as ρ(t) = 1/t , due to the longitudinal
expansion of the produced medium. Correspondingly, the
transport coefficient depends on impact parameter and time
(path length l = t) as [34]

q̂(l, �b, �τ ) = q̂0 l0

l

npart(�b, �τ )

npart(0, 0)
�(l − l0), (20)

where �b is the impact parameter of nuclear collision, �τ is the
impact parameter of the hard parton-parton collision relative
to the center of one of the nuclei, npart(�b, �τ ) is the number
of participants, and q̂0 is the rate of broadening of a quark
propagating in the maximal medium density produced at
impact parameter τ = 0 in central collisions (b = 0) at the time
t = t0 = l0 after the collision. The corresponding transport
coefficient for gluons should be 9/4 bigger. The equilibration
time t0 is model dependent. Our results are not very sensitive
to it, and we fix it at t0 = l0 = 0.5 fm.

As far as the process of high-pT hadron production is
considered as a probe for the medium properties, we treat
the transport coefficient q̂(l, �b, �τ ) as an adjustable quantity.
Once the shape of this function is fixed by the model Eq. (20),
the only fitted parameter is the maximal value of the transport
coefficient q̂0, which depends on atomic number A of the
colliding nuclei.

A. Evolution and attenuation of a dipole: Heuristic description

Here we employ a simplified description of the time
evolution, in terms of the mean dipole transverse separation.
The dipole produced with a very small initial size r ∼ 1/kT

starts expanding with a speed given by the uncertainty relation

dr/dt ∝ 1/r [7,35,36]. Correspondingly, the l dependence of
r is described by the following linear differential equation1:

dr

dl
= 1

r(l)Ehα(1 − α)
, (21)

where α and 1 − α are the fractions of the dipole light-cone
momentum carried by the quark and antiquark and Eh = pT

is the energy of the dipole.
The solution of Eq. (21) reads

r2(l) = 2l

α(1 − α)pT

+ r2
0 , (22)

where r0 is the initial dipole size. If it is small, r0 ∼ 1/kT , its
magnitude is quickly “forgotten.” Indeed, the first term in (22)
starts dominating at l 	 1/pT , and the value of the initial size
r0 is unimportant.

The mean value of r2(l) Eq. (22) can be used in Eq. (18) to
evaluate the attenuation of a dipole, initially small and evolving
its size in a medium characterized with a transport coefficient
q̂,

RAB(�b, �τ , pT ) =
∫ 2π

0

dφ

2π
exp

[
− 4

pT

∫ ∞

L

dl l q̂(l, �b, �τ + �l)
]
.

(23)

This is the medium attenuation factor for a dipole produced
in a hard internal NN collision at impact parameter �τ in a
collision of nuclei A and B with impact parameter �b. The
produced hadron is detected at azimuthal angle φ relative to
�b, i.e., �l · �b = lb cos φ. The bottom limit of l integration is
L = max{lp, l0}. The dependence of the transport coefficient
on coordinates is given by Eq. (20). In (23) we fixed α =
1/2, because the dipole distribution amplitude over �r and α

is projected to the hadron (pion) wave function, which has
a maximum at α = 1/2 [37]. Moreover, we rely on Berger’s
approximation [38], which fixes α at this value.

This simplified approach was employed in Ref. [7] and
described quite well the first data from the ALICE experiment
[39] for central collisions. Important observations made in
Ref. [7] are (i) the value of the parameter q̂0 needed to explain
the observed suppression is an order of magnitude smaller than
the results of the data analysis [8], based on the energy-loss
scenario. At the same time, it agrees well with the perturbative
evaluation of q̂0 [33] and with the analysis [35,36] of data on
suppression of J/� produced in central gold-gold collisions
at

√
s = 200 GeV. (ii) The observed rising pT dependence

of RAA(pT ) [39] is naturally explained by the effect of color
transparency [Eq. (18)]. Namely the higher the dipole energy
Eh = pT (in the medium rest frame), the higher the Lorentz
dilation of the dipole size expansion and, therefore, the lower
the absorption. This is why there is a factor 1/pT in the
exponent of Eq. (23).

As was commented above, this simplified heuristic model
allows to easily understand the main features of the underlying
dynamics. It also allows to speed up the calculations. However,
it misses some details which may affect the result. In particular,

1Factor 2 was missed in Ref. [7].
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Eq. (21) describes the expansion of the dipole in vacuum.
However, in a medium, color filtering effects modify the
path-length dependence of the mean dipole separation. Namely
dipoles of large size are strongly absorbed, while small dipoles
attenuate less. Correspondingly, the mean separation in a
dipole propagating in a medium should be smaller than that
given by the differential equation (21) for the dipole expansion
in vacuum. Introducing an absorptive term, we arrive at a
modified evolution equation,

dr2

dl
= 2

Ehα(1 − α)
− r4(l) ε(l), (24)

where ε(l) is related by (19) to the transport coefficient.
Apparently, such a modification results in a reduction of
the mean dipole size, making the medium more transparent.
Correspondingly, we should expect that the analysis of ALICE
data, performed in Ref. [7], should have underestimated the
medium density, i.e., the parameter q̂0. We will return to this
problem in Sec. IV A.

Unfortunately, Eq. (24) has an analytic solution only if ε(l)
is constant, which is not the case here. Then one should solve
the equation numerically, so the simplicity of such a heuristic
model is lost. In these circumstances, it is worth switching to
the rigorous quantum-mechanical description of the evolution
and attenuation of a dipole in an absorptive medium and
employ the path-integral approach [44].

B. Path-integral technique

Evolution and attenuation of a q̄q dipole propagating
through an absorptive medium, starting from the transverse
q̄q separation �r1 at a point with longitudinal coordinate l1 and

evolving its size up to �r2 at the point l2, is given by a sum over
all possible trajectories of q and q̄. The resulting survival
probability amplitude has the form of a light-cone Green
function Gq̄q(l1, �r1; l2, �r2), which satisfies the two-dimensional
Schrödinger equation [18,40–42],[

i
d

dl2
− m2

q − �r2

2 pT α (1 − α)
− Vq̄q(l2, �r2)

]
Gq̄q(l1, �r1; l2, �r2)

= iδ(l2 − l1) δ(�r2 − �r1), (25)

and the boundary conditions

Gq̄q(l1, �r1; l2, �r2)|l1=l2 = δ(�r2 − �r1);

Gq̄q(l1, �r1; l2, �r2)|l1>l2 = 0. (26)

The second term in square brackets in (25) plays role of
the kinetic energy in the Schrödinger equation, while the
imaginary part of the light-cone potential Vq̄q(l2, �r2) in (25)
is responsible for absorption in the medium. According to
Eqs. (18) and (19),

Im Vq̄q(l, �r) = − 1
4 q̂(l) r2. (27)

The real part of the potential describes the nonperturbative
interaction between q and q̄ in the dipole [18,43]. It is ques-
tionable, however, whether such a binding potential should
be considered within a hot, possibly deconfined, medium.
Therefore, we will treat the q̄q as free noninteracting partons,
like in the previous Sec. III A. The real potential should not
affect the dipole evolution much in the initial perturbative stage
of development.

In the case of a constant medium density, q̂(l) = q̂ = const,
Eq. (25) allows an analytic solution [44],

Gq̄q(l1, �r1; l2, �r2) = γ

2πi sin(ω�l)
exp

{
i γ

2 sin(ω�l)

[(
r2

1 + r2
2

)
cos(ω�l) − 2�r1 · �r2

]}
exp

[
− im2

q�l

2pT α(1 − α)

]
(28)

where �l = l2 − l1 and

ω2 = − i

2

q̂

pT α(1 − α)
; γ 2 = − i

2
pT α(1 − α)q̂. (29)

It was demonstrated in Refs. [44,45] that in the general case of arbitrarily varying medium density the Green function still retains
the oscillatory form,

Gq̄q(l1, �r1; l2, �r2) = �(l1, l2)exp

[
− im2

q�l

2pT α(1 − α)

]
exp

{
ϒ1(l1, l2) r2

1 + ϒ2(l1, l2) r2
1 + ϒ3(l1, l2) �r1 · �r2

}
. (30)

All information about the dipole absorption rate varying along its trajectory, q̂(l), is contained in the coefficients � and ϒi .
They are calculated numerically by slicing the medium into layers, which are sufficiently thin to keep q̂, given by (20), constant
within each of them. One then can calculate the coefficients �(l1, l2) and ϒi(l1, l2), employing the recurrence relations between
subsequent layers, derived in Refs. [44,45].

As in the previous section, we rely on the Berger model [38], which assumes equal sharing of the pion light-cone momentum
between q and q̄, i.e., α = 1/2. Since the Green function is projected into the pion light-cone wave function, we have to keep
α = 1/2 for the dipole as well.

Now we are in a position to write a rigorous quantum-mechanical extension of the simplified model (23), for the suppression
factor RAB(�b) of hadrons produced with high pT in a hard process in a collision of nuclei A and B with relative impact
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parameter b,

RAB(�b, pT ) =
∫

d2τ TA(τ )TB(�b − �τ )
∫ 2π

0
dφ

2π

∣∣ ∫ 1
0 dα

∫
d2r1d

2r2 �
†
h(�r2, α)Gq̄q(l1, �r1; l2, �r2)�in(�r1, α)

∣∣2

TAB(b)
∣∣ ∫ 1

0 dα
∫

d2r �
†
h(�r2, α)�in(�r1, α)

∣∣2

= 1

TAB(b)|�h(0)|2
∫

d2τ TA(τ )TB(�b − �τ )
∫ 2π

0
dφ

∣∣∣∣
∫ ∞

0
dr r �h(r) Gq̄q(0, 0; lmax, r)

∣∣∣∣
2

, (31)

where TAB = ∫
d2τ TA(b)TB(�b − �τ ), φ is the azimuthal angle

of the dipole trajectory in impact parameter plane, relative to
the impact vector �b of the collision, and lmax is any distance,
which should be much longer that the extent of the medium. Its
particular length is unimportant, because the Green function
in vacuum is just a phase. Note that all information about
the dipole trajectory, including the φ, �τ , and �b dependencies,
is contained in the Green function. In (31) we fixed r0 = 0,
because, according to the solution of Eq. (22), it does make
a difference whether r0 is as small as 1/kT or zero. It is
also worth noting that we start the evolution of the Green
function Gq̄q(l1, �r1; l2, �r2) at l1 = 0, i.e., at the point of the
hard collision, but assume that the absorptive imaginary part
of the potential of Eq. (25) is zero at l < l0 [compare with
(20)]. Although the dipole does not exist at l < lp, the parton
virtuality is steeply falling, governed by the same equation
(21), and the dipole is produced at l = lp with an enlarged
separation, the same as if it had started evolution at t = 0.
We note that the mean production length 〈lp〉 differs for quark
and gluon jets, as is demonstrated in Fig. 5. Therefore, the
numerator in (31) is calculated separately for quark and gluon
jets and then summed with the weights given by Eq. (15).

During the short path from l = l0 to l = lp (if lp > l0), the
parton experiences multiple interactions, which induce extra
radiation of gluons and additional loss of energy [33],

�E = 3αs

4
�(lp − l0)

∫ lp

l0

dl

∫ l

l0

dl′ q̂(l′). (32)

Although this is a small correction, we included it in the
calculations by making a proper shift of the variable zh in
the fragmentation function.

IV. COMPARISON WITH DATA

Numerous results of new precise measurements at RHIC
and LHC have been released recently. They allow us to perform
stringent tests of the contemporary models of in-medium
hadronization.

A. Quenching of high- pT hadrons

The comparison of RAA(b, pT ) calculated within the simple
model described in Sec. III A, with data from the ALICE
experiment [39] at

√
s = 2.76 TeV, was performed in Ref. [7].

While the absolute value of RAA is adjustable, its rising
pT dependence originates from the reduction of the mean
dipole size with pT , in accordance with Eq. (22), and due to
Lorentz dilation of the dipole size expansion. As a result, the
medium becomes more transparent for more energetic dipoles

in accordance with the effect of color transparency (CT), which
makes the medium more transparent for smaller dipoles. An
analogous rising energy dependence of medium transparency
was predicted and observed for virtual photoproduction of
vector mesons on nuclei [46]. So it was concluded in Ref. [7]
that CT is the source of the rising pT dependence of RAA

observed in the ALICE experiment [39].
Encouraged by the success of the simple model, we perform

here full calculations employing the path integral method,
Eq. (31). The results for central (0–5%) lead-lead collisions at√

s = 2.76 TeV are shown by the dashed curve in Fig. 8,
compared with new data from the ALICE [47] and CMS
[48,49] experiments, extended to higher values of pT than
those in Ref. [39].

The only free parameter, the maximal transport coefficient
defined in Eq. (20), was adjusted to the data and fixed at q̂0 =
2 GeV2/fm for all further calculations for lead-lead collisions
at this energy. Notice that this value of q̂0 is about twice as large
as that found in Ref. [7] within the simple model described
above in Sec. III A. As we commented, this should be expected,
since Eq. (21) is lacking the color filtering effect added in (24)
or inherited from the Green function equation (25).

While our calculations describe well the data at high
pT � 6 GeV, the region of smaller pT is apparently dominated
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FIG. 8. (Color online) The suppression factor RAA for central
(0–5%) lead-lead collisions at

√
s = 2.76 TeV. The dashed line is

calculated within the path-integral approach [Eq. (31)] with the space-
and time-dependent transport coefficient Eq. (20), where the adjusted
parameter q̂0 = 2 GeV2/fm. The solid curve also includes the effects
of initial state interactions in nuclear collisions [10,51], as is described
in Sec. IV B. Data for RAA are from the ALICE [47] and CMS [48,49]
experiments.
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FIG. 9. (Color online) Centrality dependence of the suppression
factor RAA(pT , b) measured in the ALICE experiment [47]. The
intervals of centrality are indicated in the plot. The meaning of the
curves is the same as in Fig. 8.

by a thermal mechanisms of hadron production. We expect
a sharp transition between the Hydro and pQCD regimes,
as usually happens when the two regimes are characterized
by exponential pT dependencies with significantly different
slopes. If the pT dependence for produced hadrons parametrize
as exp(−BpT ), then the Hydro regime has slope B = 1/T ,
where the temperature T = 0.3 GeV was fitted to ALICE
data. In the pQCD regime the pT slope is B ≈ 1 GeV−1

at pT ∼ 6 GeV. Thus, the Hydro-to-pQCD ratio varies as
exp(−�BpT ). The transition region corresponds to the interval
�pT ∼ 1/�B = 0.4 GeV. Notice that the blast-wave model
for the high-pT tail of the Hydro regime gives a somewhat
smaller slope, B = 2.2 GeV−1 [50]. In this case, �pT ∼
0.8 GeV. We see that the transition region of pT , where the
two mechanisms are of the same order, is quite narrow. At
smaller or larger pT , one of the mechanisms is exponentially
suppressed. The behavior of v2 confirms this (see below):
While Hydro predicts it monotonically rising with pT , it
abruptly falls down within the transition region of pT .

The variation of the suppression factor RAA(pT , b) with
impact parameter of collision was also calculated with the
Eq. (31). The results plotted by dashed curves are compared
with data taken at different centralities of collision by the
ALICE experiment [47] in Fig. 9 and by the CMS experiment
[48,49] in Fig. 10. In all cases we observe good agreement.

B. Towards large xT : New constraints from energy conservation

It was stressed in Refs. [10,51] that energy conservation
may become an issue on approaching the kinematic bound
of either large Feynman xL ≡ xF = 2pL/

√
s or transverse

fractional momentum xT = 2pT /
√

s. Apparently, in such a
kinematic domain, any initial state interactions (ISI) leading
to energy dissipation should result in a suppressed production
rate of particles with large xL,T . Indeed, as it was stressed
in Ref. [10], every reaction experimentally studied so far,
with any particle (hadrons, Drell-Yan dileptons, charmonium,
etc.) produced with large xL, exhibits nuclear suppression.
Observation of such a suppression in high xT processes is
more difficult, because the cross sections steeply fall with pT ,
and available statistics may not be sufficient (see, however,
Fig. 11). As in Ref. [51], we apply to high-pT production
exactly the same model developed in Refs. [10,52] for large
xL, and with the same parameters.

Since initial-state multiple collisions suppress the pro-
duction rate of leading particles, we assume that every
collision brings in a suppression factor U (ξ ) [10], where
ξ =

√
x2

L + x2
T . This factor U (ξ ) should cause a strong (for

heavy nuclei) suppression at ξ → 1, although at the same
time some enhancement at small ξ due to the feed down from
higher ξ . This is because energy conservation does not lead
to disappearance (absorption) of particles but only to their
redistribution in ξ .

Since at ξ → 1 the kinematics of an inelastic collision
corresponds to no particle production within the rapidity
interval �y ∼ − ln(1 − ξ ), the suppression factor U (ξ ) can
also be treated as survival probability of a large rapidity gap,
which is Sudakov suppressed. The mean number 〈ng(�y)〉
of gluons radiated in the rapidity interval �y is related to
the height of the plateau in the gluon spectrum, 〈ng(�y)〉 =
�y dng/dy. The Sudakov factor then reads

U (ξ ) = (1 − ξ )dng/dy. (33)
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FIG. 10. (Color online) The same as in Fig. 9, with data from the
CMS experiment [48,49].
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FIG. 11. (Color online) Nuclear attenuation factor RdAu(pT ) as
function of pT of π 0 mesons produced in central (0–20%) d-Au
collisions at

√
s = 200 GeV and η = 0. The solid and dashed curves

represent the model predictions calculated with and without the ISI
corrections. Isotopic effect is included. The data are from the PHENIX
experiment [56].

The height of the gluon plateau was estimated in Ref. [53] as

dng

dy
= 3αs

π
ln

(
m2

ρ

�2
QCD

)
. (34)

The value of αs was fitted in Ref. [53] at αs = 0.45, using data
on pion multiplicity in e+e− annihilation. This leads with a
good accuracy to dng/dy ≈ 1, i.e., the Sudakov factor,

U (ξ ) = 1 − ξ. (35)

Although QCD factorization is expected to be broken by
ISI in pA collisions at large ξ , we will rely on the effec-
tive factorization formula, Eq. (15), where we replace the
proton parton distribution function by a nuclear modified
one, Fi/p(xi,Q

2) ⇒ F
(A)
i/p (xi,Q

2, b). In the case of nuclear
collisions we do this modification for the bound nucleons in
both nuclei. Relying on the suppression factor Eq. (35), and
applying the AGK cutting rules [54] with the Glauber weight
factors, one arrives at the ISI-modified parton distribution
function of the proton in a pA collision at impact parameter b,

F
(A)
i/p (xi,Q

2, b) = C Fi/p(xi,Q
2)

× [e−ξσeffTA(b) − e−σeffTA(b)]

(1 − ξ )[1 − e−σeffTA(b)]
. (36)

Here σeff is the effective hadronic cross section controlling
multiple interactions. It is reduced by Gribov inelastic shadow-
ing, which makes the nuclear medium much more transparent.
The effective cross section was evaluated in Refs. [10,55] at
about σeff ≈ 20 mb. The normalization factor C in Eq. (36) is
fixed by the Gottfried sum rule, because the number of valence
quarks, dominating at large ξ , should be unchanged.

With the parton distribution functions Eq. (36) modified by
ISI one achieves a good parameter-free description of available
data at large xL [10,51]. Moreover, these corrections may be
important at large pT , in particular in the RHIC energy range,
where xT reaches values of 0.2–0.3. Notice that the real values
of xT , essential for energy conservation, are significantly
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FIG. 12. (Color online) Nuclear attenuation factor RAA(pT ) for
neutral pions produced in central gold-gold collisions at

√
s =

200 GeV. The solid and dashed line are calculated with or without ISI
corrections. PHENIX data are from Refs. [57] (triangles) and [60]
(squares).

higher, x̃T = xT /zh, so it reaches values of 0.3–0.5 at RHIC
and about 0.4 at LHC (pT = 200 GeV).

Comparison with PHENIX data [56] for neutral pion
production in central d-Au collisions is presented in Fig. 11.
There is a firm indication in data that the predicted strong
nuclear suppression at large xT is indeed observed. Still, the
statistical evidence of the effect needs to be enhanced.

In nuclear collisions the ISI effects are calculated similarly,
using the modified parton distribution functions Eq. (36)
for nucleons in both colliding nuclei. The resulting comple-
mentary suppression reduces RAA(pT ) at large xT . This is
demonstrated in Fig. 12.

If we just repeated the same calculations as done above
for the LHC, we would get RAA steeply rising with pT , as is
depicted by the dashed curve. Only the transport coefficient
was readjusted to a smaller value q̂0 = 1.6 GeV2/fm at this
energy, compared with

√
s = 2.76 TeV. However the ISI

effects and energy conservation impose a sizable additional
suppression, as is shown by the solid curve. Apparently this
improves the agreement with data.

Keeping q̂0 fixed, we can calculate other observables for
gold-gold collisions at

√
s = 200 GeV. Figure 13 presents our

results for the suppression of neutral pions at different collision
centralities, in comparison with PHENIX data [57].

One can access even larger values of xT = 2pT /
√

s, by
either increasing pT or going down in energy. In both cases
the effects of ISI should be stronger. Indeed, data for RAA(pT )
in gold-gold collisions at

√
s = 62 GeV plotted in Fig. 14

show a falling, rather than rising, pT dependence.
Our calculations using Eq. (31) again demonstrate good

agreement. Of course, the hot medium properties changed, so
we had to readjust the parameter q̂0 = 1.2 GeV2/fm.

C. Azimuthal anisotropy

Experimental observation of a suppression of high-pT

hadrons escaping from the dense medium means that not the
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FIG. 13. (Color online) Centrality dependence of the suppression
factor RAA(pT , b) measured in the PHENIX experiment [57] in gold-
gold collisions at

√
s = 200 GeV. The intervals of centrality are

indicated in the plot.

whole volume of the medium contributes. Independently of the
suppression mechanism (except for the contribution of ISI),
this means that the longer the path length of propagation in the
medium (in two-dimensional transverse plane), the stronger
the suppression. Thus, one can conclude that the direction of
propagation normally to the medium surface is preferable. For
a noncentral collision with an almond shape of the intersection
area this should lead to an azimuthal asymmetry of high-pT

hadron production. Although this conclusion should be valid
for any mechanism of suppression, the magnitude of the
asymmetry is, of course, model dependent.

Our main result for high-pT hadron suppression, Eq. (31),
can be tested by comparison of the predicted azimuthal
angle dependence with data. Following data [58], we split
the integration over φ in (31) into two intervals: (i) |φ| >

3π/4 plus |φ| < π/4 and (ii) π/4 < |φ| < 3π/4. These two
contributions are called in- and out-of-plane, respectively. As
expected, in-plane events are less suppressed compared with
out-of-plane, as is depicted by the upper and lower curves
in Fig. 15. Our results agree well with ALICE data [58] at
pT > 6 GeV and at all measured centralities.
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R
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FIG. 14. (Color online) The same as in Fig. 13 but at
√

s =
62 GeV. Data are from Ref. [61].
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FIG. 15. (Color online) Nuclear factor RAA(pT ) for charge
hadrons in lead-lead collisions at

√
s = 2.76 TeV at different cen-

tralities indicated on the figure. ALICE data [58] and our calculations
with Eq. (31) are divided into two classes: in-plane (3π/4 < |φ| < π

and |φ| < π/4) and out-of-plane (π/4 < |φ| < 3π/4).

Similar measurements of RAA were performed in the
PHENIX experiment for the in- and out-of the-scattering-plane
events [57]. The results for centrality 20–30% are plotted in
Fig. 16 in comparison with our calculations. Notice that both
Figs. 15 and 16 show that the transition from the hydrodynamic
to perturbative regimes occur for in-plane events with a delay
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FIG. 16. (Color online) RAA(pT ) for charge hadrons in gold-gold
collisions at

√
s = 200 GeV at centralities 0–20%. PHENIX data [57]

and our calculations with Eq. (31) are divided into two classes of
events: in-plane (11π/12 < |φ| < π and |φ| < π/12) and out-of-
plane (5π/12 < |φ| < 7π/12).
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FIG. 17. (Color online) ALICE data [58] for azimuthal
anisotropy, v2, vs pT for charge hadron production in lead-lead col-
lisions at midrapidity at

√
s = 2.76 TeV and at different centralities

indicated in the figure. The curves present the results of calculation
with Eq. (37).

at higher pT . This is natural, since the hydrodynamic flow
is much stronger, and, correspondingly, the cross section is
larger.

Usually data on azimuthal asymmetry of particle production
are presented in terms of the second moment of the φ

distribution, v2 ≡ 〈cos(2φ)〉. We can calculate it with a slight
modification of Eq. (31),

v2(pT , b)

=
∫

d2τTA(τ )TB(�b − �τ )
∫ 2π

0 dφ cos(2φ)|J (�b, �τ , φ)|2∫
d2τTA(τ )TB(�b − �τ )

∫ 2π

0 dφ|J (�b, �τ , φ)|2
,

(37)

where

J (�b, �τ , φ) =
∫ ∞

0
dr r �h(r) Gq̄q(0, 0; lmax, r). (38)

We note that the Green function implicitly depends on the
impact parameters �b and �τ , and on the trajectory of the dipole
in the hot matter, and that these dependencies are contained in
the functions �(l1, l2) and ϒi(l1, l2) in Eq. (30).

In order to compare with data on v2(pT ), one should
integrate the numerator and denominator in (37) over the
intervals of impact parameter from bmin to bmax, which
correspond to the measured intervals of centrality. Our results
are compared with ALICE data [58] and with CMS data [59]
in Figs. 17 and 18, respectively. In all cases we observe good
agreement.

Naturally, as with data on RAA, our pQCD calculations for
v2(pT ) grossly underestimate data at small pT � 6 GeV. Re-
markably, the transition to the pQCD regime occurs for v2(pT )
at the same pT as for RAA(pT ). This confirms the presence of
two different mechanisms: (i) the hydrodynamic mechanism
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FIG. 18. (Color online) The same as in Fig. 17 but displaying
data from the CMS experiment [59].

of elliptic flow, providing a large and rising with pT anisotropy
v2(pT ); (ii) the regime of pQCD, having a much smaller
azimuthal anisotropy. So it is not accidental that both RAA(pT )
and v2(pT ) swiftly change their behavior at the same value
of pT .

We also compare our results for the azimuthal anisotropy
with RHIC data. Although we included the effects of ISI
suppressing RAA at large pT , these corrections mostly cancel
in the ratio [Eq. (37)]. Our calculations agree well with
PHENIX data for the azimuthal asymmetry for π0 production
at

√
s = 200 GeV and at midrapidity, as is demonstrated in

Fig. 19.
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FIG. 19. (Color online) The same as in Fig. 17 but displaying
data from the PHENIX experiment [62].
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V. SUMMARY AND PROSPECTIVES

This paper attempts a quantitative understanding of ex-
perimentally observed strong attenuation of hadrons inclu-
sively produced with large transverse momenta in heavy-ion
collisions, based on contemporary models for space-time
development of hadronization. The improved quality of data
from RHIC and new high-statistics data from LHC make
the test of models more challenging and also more decisive.
In particular, the popular energy-loss scenario, based on the
unjustified assumption of long production length, experiences
difficulties explaining the new data. It also fails to explain the
data from the HERMES experiment at the Hadron-Electron
Ring Accelerator for leading hadron production in semi-
inclusive DIS, which provides a sensitive testing ground for
in-medium hadronization models.

Here we presented an alternative mechanism of suppres-
sion of high-pT hadrons inclusively produced in heavy-ion
collisions. First, we investigated the space-time development
of gluon radiation and energy dissipation by a highly virtual
parton produced in a high-pT process. The key point of this
consideration is an uniquely high initial virtuality of such a
parton, which is of the order of its energy. Thus, increasing
the jet energy one simultaneously enhances the hardness of
the process, intensifying the dissipation of the energy. For this
reason, energy conservation imposes tough constraints on the
production length of leading hadrons, which does not rise with
pT but remains short, as is demonstrated in Fig. 5.

It is worth emphasizing that the shortness of the production
length is a specific feature of inclusive hadron production.
However, formation of a high-pT jet is characterized by a much
longer time scale. Indeed, the convolution Eq. (15) of steeply
falling cross section of parton-parton scattering with parton
distribution and fragmentation functions strongly enhances the
contribution of large zh, as is demonstrated in Fig. 7. In this
case, energy conservation is an important issue and restricts
the production length. As for fully reconstructed high-pT

jets, they are characterized by a very different space-time
development, and the medium-induced energy loss may be
indeed an important source of the observed jet suppression.

With the production of a colorless hadronic state (dipole)
the gluon radiation and energy loss cease, and the main
reason for suppression of the production rate becomes
the survival probability of the prehadron propagating through
the dense matter. Apparently, at larger pT , the expansion of
the initially small initial size of the dipole slows down due to
Lorentz time dilation. Here the effect of color transparency
is at work, and the medium becomes more transparent for
more energetic dipoles. A rising nuclear suppression factor
RAA(pT ) is indeed observed at LHC, in good accord with the
effect of color transparency.

In this paper we performed calculations based on the
most strict quantum-mechanical description of space-time
development and attenuation of color dipoles propagating
through a medium, the path-integral method. We calculated
and compared with data the suppression factor RAA(b) for
different centralities and energies of collision, ranging from√

s = 62 GeV to 2.67 TeV. Additional suppression arising
from initial-state multiple interactions, important at large xT

or xL, was also included. The related corrections are found
to be important at xT � 0.1, where they slow down the rise
of RAA and even turn it into a falling pT dependence. We
also calculated the azimuthal anisotropy of hadron production,
which reflects the asymmetric shape of the overlap area of the
colliding nuclei.

In all cases we reached good agreement with available data
from RHIC and LHC at high pT . The only adjusted parameter,
the maximal value of the transport coefficient, Eq. (20), was
found to be q̂0 = 2 GeV2/fm, 1.6 GeV2/fm and 1.2 GeV2/fm
at

√
s = 2.76 TeV, 200 GeV, and 62 GeV, respectively, for

heavy nuclei, lead, and gold.
Our results reproduce quite well the data at pT � 6 GeV.

However, the observed RAA(pT ) and v2(pT ) expose quite
a different behavior towards smaller pT , steeply rising and
forming a bump. We relate this to an interplay of two
mechanisms of hadron production: (i) evaporation of hadrons
from the created hot medium controlled by hydrodynamics
and (ii) perturbative QCD mechanism of high-pT production
of hadrons, which propagate and attenuate in the hot medium.
The abrupt transition between the two mechanisms causes
distinct minima in RAA(pT ) and in v2(pT ), both observed at
the same values of pT . We plan to work on combining the
two mechanisms, aiming to describe data in the full range
of pT .
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MŠMT 6840770039 and No. LA 08015 (Ministry of Education
of the Czech Republic).

[1] B. Z. Kopeliovich, J. Nemchik, E. Predazzi, and A. Hayashigaki,
Nucl. Phys. A 740, 211 (2004).

[2] B. Z. Kopeliovich, L. I. Lapidus, and A. B. Zamolodchikov,
JETP Lett. 33, 595 (1981) [Pisma Zh. Eksp. Teor. Fiz. 33, 612
(1981)].
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