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Projectile deformation effects on single-nucleon removal reactions
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We discuss intermediate-energy single-nucleon removal reactions from deformed projectile nuclei. The
removed nucleon is assumed to originate from a given Nilsson model single-particle state and the inclusive
cross sections, to all rotational states of the residual nucleus, are calculated. We investigate the sensitivity of
both the stripping cross sections and their momentum distributions to the assumed size of the model space in the
Nilsson model calculations and to the shape of the projectile and residue. We show that the cross sections for
small deformations follow the decomposition of the Nilsson state in a spherical basis. In the case of large and
prolate projectile deformations the removal cross sections from prolate-like Nilsson states, having large values
for the asymptotic quantum number nz, are reduced. For oblate-like Nilsson states, with small nz, the removal
cross sections are increased. Whatever the deformation, the residue momentum distributions are found to remain
robustly characteristic of the orbital angular momentum decomposition of the initial state of the nucleon in the
projectile.
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I. INTRODUCTION

Radioactive beam facilities are giving access to a wealth of
highly exotic isotopes, many produced for the first time using
fast reactions induced by low-intensity intermediate-energy
secondary beams. Significant deviations from the pattern of
shell structure found in stable isotopes have been observed,
with growing evidence for the quenching of shell gaps and of
the breakdown of the conventional neutron magic numbers in
very neutron-rich nuclei. Intense experimental effort has been
focused on the island of inversion, originally identified in mass
measurements of the neutron-rich sodium isotopes [1], where
the quenching of the N = 20 shell gap near 31Na leads to strong
fp-shell intruder configurations in the ground-state wave
functions. Studies of N = 28 isotones also show progressively
decreasing first 2+-state energies, evidence of configuration
coexistence in 44S [2,3], and gap quenching in 42Si [4]. Density
functional calculations also predict alternating prolate and
oblate ground states along the N = 28 isotone chain [5].
There is also evidence that the N = 40 subshell closure
is quenched near 64Cr, deduced from the systematics of
intermediate-energy inelastic scattering cross sections [6],
two-proton removal reactions [7], and ground-state to first
2+-state B(E2) values in 62–66Fe [8,9].

An effective tool for studying the near-Fermi-surface
structure of exotic nuclei is to use fast nucleon removal
reactions [10], where one or two nucleons are removed
from an exotic projectile in an intermediate energy (typically
>80 MeV/nucleon) surface-grazing collision with a beryllium
or carbon target. To date the experimental observations made
were largely inclusive with respect to the final states of the
target and the removed nucleons and so are limited to the
properties of the heavy reaction residues. Specifically, data
observe (a) the possible decay γ rays from excited residue final
states, (b) absolute cross sections, and (c) the distribution of the
cross sections with the (usually beam-directional) momenta

of the reaction residues. Depending on the beam intensity,
the reaction, the final-state populations, and the detection
capabilities, (b) and/or (c) may be inclusive or exclusive in
the populated final states of the residual nuclei.

The high experimental efficiency of the intermediate energy
knockout technique has facilitated studies on some of the
most exotic nuclei, produced as low-intensity secondary
fragmentation beams. Access to nuclei far from the valley
of β stability has helped identify regions of rapidly changing
nuclear structure. Early studies using single-nucleon removal
focused on halo nuclei, where narrow residue momentum
distributions were observed, the result of very weak nucleon
binding in states with low orbital angular momentum. These
results were successfully interpreted using models where the
target was assumed to act as a black, absorptive disk [11,12].
In general, the widths of measured residue momentum distri-
butions are characteristic of the orbital angular momentum,
�, of the spherical single-particle orbital occupied by the
removed nucleon, with larger � leading to wider distributions.
The removal cross sections decrease with increasing nucleon
binding energy and �, reflecting the reduced spatial extension
of the nucleon’s wave function relative to the projectile core
owing to its greater binding and its increased centrifugal
barrier, respectively.

For single-nucleon removal, under the assumption that
the residual nucleus behaves as a spectator whose state is
not coupled to the dynamics of the collision, the theoretical
cross sections factor into structural and reaction dynamical
terms. The nuclear structure input comes in the form of the
single-nucleon overlap function and its normalization, the
spectroscopic factor. The reaction dynamics information is
encapsulated in the single-particle cross section, depending
sensitively on the relative sizes of the projectile core and the
single-nucleon wave function, with the latter influenced, as
stated above, by the nucleon separation energy and its � value.
Experimental studies are becoming more sophisticated with
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measurements of the final states of the removed nucleons
also now possible for both one- and two-nucleon removal
[13,14]. While not yet routinely possible, such more-exclusive
analyses have provided essential tests of the assumed reaction
mechanisms and their contributions to the removal cross
sections.

A body of experimental data on the removal of nucleons of
a deficient species from highly asymmetric nuclei, that is, the
removal of nucleons whose Fermi-surface is now well bound,
has revealed knockout cross sections to be suppressed com-
pared to the eikonal plus shell-model removal reaction pre-
dictions. These suppressions are conveniently characterized
as having small values of the ratio Rs = σexp/σth, where
the theoretical cross sections σth incorporate the collision
dynamics and structure input from spherical, truncated-basis
shell-model form factors and their spectroscopic factors
[15,16]. These suppressions, in part owing to the short and
longer-ranged nucleon correlations identified in stable nuclei
and quantified using (e, e′p) proton-removal systematics (e.g.,
Ref. [17]), may be supplemented by effects owing to the
proximity and coupling of nucleons of the excess species
to the continuum [18]. However, there is also evidence for
deformation in many of these asymmetric sd-shell systems.
These ground-state deformations are not known in the most
exotic cases but for 34Ar(−1n), where Rs = 0.41 ± 0.07 was
found, the deformation derived from the ground-state to first
2+-state B(E2) value is β(34Ar) = 0.44 ± 0.07 [19]. The
effects of deformation are thus of importance.

The Nilsson model has been used extensively to study
single-particle degrees of freedom in deformed nuclei [20].
In its simplest form the Nilsson model generates nonspherical
single-particle states of a deformed harmonic oscillator poten-
tial, supplemented by spin-orbit and angular momentum terms
in its Hamiltonian. For nonzero deformation the nucleon states
no longer have good j but are an admixture of the contributing
spherical basis states (n�j ), an admixture that evolves with
the deformation δ. Single-nucleon transfer reactions have
often been used to identify the fingerprints of deformation
and the associated Nilsson states in nuclei, the relative cross
sections to different final states of a given rotational band
being characteristic of their components in a spherical-basis
structure [21], allowing the assignment of rotational bands to
particular Nilsson configurations.

The currently used (eikonal) theoretical reaction models for
nucleon removal reactions are rooted in optical interactions
and structure amplitudes from truncated-basis (shell) models
with spherical bases. In many cases this may be a poor
assumption. The effects of deformation will impact both the
structural and the reaction dynamical aspects. The sampling
of the single-nucleon overlap by the target is determined by
the sizes of the target and projectile core. With a deformed
projectile the orientation of the projectile intrinsic symmetry
axis with respect to the target will alter the geometry
and the volume probed with possible effects on both the
magnitudes of cross sections and the residue momentum
distributions arising from nucleon removal. Total reaction
cross sections for deformed projectiles are expected to show a
significant sensitivity to the orientation of the projectile [22],
originating from the orientation dependence of the highly

absorptive projectile-target interaction [23]. Recent systematic
studies have emphasized the role of deformation in enhancing
reaction cross sections, with implications for the underlying
single-particle structure near the island of inversion [24,25].
Furthermore, new tests of deformed structure models are
desirable.

Very few attempts have been made to incorporate
deformation into nucleon removal reactions. Sakharuk and
Zelevinsky [26] also studied the single-nucleon stripping term
in a strong coupling model, using Nilsson states coupled to
a deformed core. Two models were presented, one using
Glauber-type deformed potential S matrices [27], and thus
incorporating dynamic excitations of the residue during its
interaction with the target, and a simpler geometric model
based on the absorptive radius (black-disk) approximation.
Their results suggested that early data for 25Al(−1p) [28],
whose momentum distribution showed a hint of having shoul-
ders, could be explained as resulting from dynamic excitations
of different states of the residue. A weak dependence of the
magnitudes of the stripping cross sections on the degree of
deformation was found. The residue momentum distributions
were found to be indicative of the orbital angular momentum
content of the Nilsson state. Deformation effects on elastic
breakup, of importance for weakly bound deformed-core
systems, were also considered, in a weak-coupling model
[29], assuming spherical single-particle states coupled to a
deformed core. The calculated stripping cross sections were
once again found to be weakly dependent on the assumed core
deformation.

In this paper we present a further more systematic assess-
ment of the sensitivities of nucleon removal cross sections
and momentum distributions to deformation. We adopt the
strong-coupling limit, applicable to the removal of well-bound
nucleons, and assume the removed nucleon to originate from
a Nilsson state ν with angular momentum projection m on the
projectile intrinsic symmetry axis, �̂. We assume also that the
highly absorptive interaction of the projectile core (the residual
nucleus), treated as a quadrupole-deformed spheroid, with the
spherical target, and their associated elastic S matrix, may be
approximated using a sharp-cutoff, strong absorption model.
These two approximations, namely (a) the use of harmonic
oscillator-based (Nilsson) wave functions, having the wrong
radial asymptotic form, and (b) the use of the absorptive-disk
model, are thus two inherent limitations of the model used.
We quantify their expected effects on the magnitudes of the
calculated absolute cross sections; however, these limitations
have no consequences for the conclusions we draw as to the
fractional changes in cross sections and the qualitative trends of
the effects of deformation. Here we study systematically these
sensitivities of cross sections and momentum distributions,
for Nilsson states from the N = 2 (sd-) shell, making clear
the observed phenomena in terms of underlying changes to
the Nilsson states. In Sec. II we outline the notation used
for the single-particle orbitals in deformed nuclei using the
Nilsson model, highlighting those aspects relevant to nucleon
removal reactions. In Sec. III we then describe the nucleon
removal model used and in Sec. IV present a systematic study
of nucleon removal outcomes, using mass A = 28 as a generic
sd-shell example.
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II. DEFORMED SINGLE-PARTICLE STATES:
THE NILSSON MODEL

The Nilsson model, which gives the single-particle en-
ergies of nucleons moving in a deformed modified har-
monic oscillator potential [20], has been highly successful in
(a) explaining the general features of deformed nuclei and
(b) identifying single-particle structures and their correspond-
ing rotational bands, including in light nuclei [30–34]. Single-
nucleon transfer reaction studies have often provided the probe
of such deformed single-particle and Nilsson model wave
functions, where cross sections to the states of a rotational
band follow patterns that are characteristic of an underlying
Nilsson model configuration [21]. We review very briefly
the Nilsson model, particularly those aspects pertinent to the
present discussions.

The Nilsson model Hamiltonian uses a deformed oscillator
potential with added spin-orbit and centrifugal terms,

H = − h̄2

2M
∇2 + M

2

[
ω2

⊥(x2 + y2) + ω2
zz

2
]

− 2h̄ω̊0κ �� · �s − h̄ω̊0μκ[�2 − 〈�2〉N ], (1)

where M is the nucleon mass. In the final term 〈�2〉N is the
average of �2 for a given oscillator shell N and its presence
maintains the appropriate spacing of h̄ω0 between major shells.
The deformation of the oscillator potential can be defined in
terms of the parameter δ, related to the oscillator frequencies
by

ω2
⊥ = ω0(δ)2(1 + 2

3δ
)
, ω2

z = ω0(δ)2
(
1 − 4

3δ
)
, (2)

where volume conservation of the deformed oscillator implies
a dependence of ω0(δ) on the deformation, that is,

ω0(δ) = ω̊0
(
1 − 4

3δ2 − 16
27δ3

)−1/6
. (3)

Tables of the single-particle solutions of this Nilsson Hamil-
tonian can be found in the literature (e.g., Refs. [20,35,36]).
The shape of the quadrupole-deformed equipotential surface
is often parametrized using

R(θ, φ) = Rc[1 + βY20(θ, φ)], (4)

where (θ, φ) refer to the nuclear symmetry axis �̂. To first
order, the two deformation parameters δ and β are related by

β ≈ 2

3

√
4π

5
δ = 1.057δ. (5)

Solutions of the Nilsson model often utilize stretched
coordinates, denoted by a deformation parameter ε [20],
in which a coordinate transformation is made that, for a
pure quadrupole deformation, eliminates exactly the couplings
between different major shells. This reduces very significantly
the computational effort in the matrix diagonalization. The
disadvantage of this approach for the present discussion
is that the coordinate transformation is different in the z

and the perpendicular directions. Because we require the
single-nucleon wave functions in the laboratory (unstretched)
coordinates, the use of stretched coordinates in the Nilsson cal-
culation necessitates a subsequent expansion in the unstretched
coordinates, and that reintroduces the couplings.

Instead, we perform the Nilsson calculations in the
unstretched coordinates, parametrized by deformation δ, and
take account of the couplings between different major shells
(see also Ref. [37]). This no longer presents a significant
computational challenge. In principle, the resulting wave
functions are independent of the coordinates used, provided the
potential is the same. However, there is no definite prescription
for generalizing the spin-orbit and angular momentum terms
in the Hamiltonian when making the coordinate change [38];
the stretched coordinates refer only to the deformed oscillator
itself. Turning off the �� · �s and �2 terms allowed us to verify that
the large-basis diagonalization and wave-function stretching
procedure give consistent results.

The Nilsson states themselves have good projection, m, of
angular momentum on the intrinsic symmetry axis �̂ and, for
the potentials with axial-symmetry considered here, are doubly
degenerate (±m). For large values of the deformation the states
of the Nilsson potential tend to pure cylindrical oscillator states
and are then often labeled by the asymptotic quantum number
set [Nnzλ]m, but in general have neither good cylindrical nor
spherical (n�j ) quantum number sets.

Our primary emphasis here will be of nucleon removal
from sd-shell isotopes. The appropriate Nilsson model levels
diagram for N = 2 is shown in Fig. 1. The spherical quantum
numbers of the states are indicated at zero deformation and
the asymptotic labels [Nnzλ]m are shown on the right-hand
side of the plot. For prolate deformations the states with large
values of the cylindrical oscillator number nz, the number of
z-directional quanta, decrease in energy and conversely for the
states with smaller nz. In general, for a given δ, each Nilsson
orbit is a mixture of the spherical states with different total
j and orbital � angular momenta, with the degree of mixing
dependent on δ and the state’s projection m. One can expand

 3
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FIG. 1. (Color online) Nilsson model calculations for nucleons in
the sd shell assuming a pure N = 2 model space and the parameters
κ = 0.05 and μ = 0.0 of Ref. [35]. The plot shows states with m =
1/2 (solid lines), 3/2 (dashed lines), and 5/2 (dotted lines), colored
by the originating spherical state for zero deformation (red, 0d5/2;
blue, 0d3/2; green, 1s1/2). The asymptotic quantum numbers [Nnzλ]
for each state are indicated on the right-hand edge of the plot.
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the Nilsson states νm in either a spherical basis (n�j ) as

|νm〉 =
∑
n�j

an�j
νm |n�jm〉 , (6)

or in a cylindrically symmetric oscillator (asymptotic) basis,
as

|νm〉 =
∑
nznsλ

anznsλ
νm |nznsλ〉 . (7)

The quantum numbers of the cylindrical oscillator states are
such that N = nz + 2ns + λ.

With N = 2, the sd shell, only Nilsson states with m = 1/2
can mix s- and d-state components. Those with m = 3/2 and
5/2 mix only the d-wave components, while the [202]5/2 state
remains purely 0d5/2, independent of the deformation. Figure 2
shows these squared spherical component amplitudes [an�j

νm ]2

as a function of the assumed deformation for the three m = 1/2
Nilsson states within a pure N = 2 model space. Because
the residue momentum distributions of removal reactions
from spherical nuclei have widths that are characteristic of
the orbital angular momentum of the removed nucleon, we
anticipate sensitivity in this observable to these changes in the �

composition of the Nilsson states as a function of deformation.
Mixing of the N = 2 states with orbitals in higher and lower

major shells, that is, with |�N | = 2, will also mix different
� components into all of the states, regardless of m, though
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FIG. 2. (Color online) Squared amplitudes [an�j
νm ]2 for the ex-

pansion of the Nilsson state (ν1/2) in a spherical basis n�j . The
panels show the results for states with asymptotic quantum numbers
(a) [200]1/2, (b) [211]1/2, and (c) [220]1/2 and decrease in energy
from top to bottom. The lines show the amplitudes of the 0d5/2

(red solid lines, open squares), 0d3/2 (green long-dashed lines, solid
circles), and 1s1/2 (blue short-dashed lines, open triangles) spherical
components in each case.

these components will be considerably smaller than those
from the mixing within the N = 2 shell. Below we assess the
significance of these smaller �N = ±2 contributions to wave
functions and to the knockout cross sections by using different
numbers of oscillator shells in the Nilsson model calculations.
This is described and quantified in the next section.

III. ABSORPTIVE-DISK MODEL
FOR NUCLEON REMOVAL

At intermediate energies the nucleus-nucleus optical inter-
actions between the beryllium (or carbon) target nuclei and
the sd-shell projectile core nuclei are very highly absorptive.
This strong absorption is reflected in the vanishing of the
core-target elastic S matrix, |Sc(bc)|2 = 0, for smaller than
surface-grazing impact parameters, bc, of the pair. This strong
absorption essentially determines those bc values for which the
core nucleus may survive the collision and so contribute to the
nucleon-removal reaction yield. The additional requirement
that a (well-bound) valence nucleon near the Fermi surface of
the projectile is both present and also interacts strongly (and
inelastically) with the target nucleus then severely restricts
the projectile-target impact parameters for which the nucleon
removal takes place. Typically, the eikonal approximation is
used to construct the core- and nucleon-target S matrices
from their optical potentials; that is, these fast fragments
are assumed to follow straight-line paths during their short
interaction times and small strong interaction distances with
the (light) target nuclei. We exploit these ideas for single-
nucleon removal from deformed nuclei.

We assume the projectile consists of a single particle in
a given Nilsson state, νm, bound to an axially symmetric
deformed core. A schematic of the direct reaction mechanism
is shown in Fig. 3. In each collision the spherical target will
probe a cylindrical volume bored through the single-particle
wave function, sampling its Nilsson state. The core of the
projectile is assumed to be a uniform solid spheroid and its
impact parameters bc must be sufficiently distant from the
target that the pair do not overlap at any point on their passing
trajectories along the z direction, or else |Sc(bc)|2 = 0. Their
minimum impact parameter, bmin, is therefore dependent on the

FIG. 3. (Color online) Schematic of the deformed projectile (left)
incident on the absorptive target (right). The target nucleus samples
a volume of the projectile near the surface. The interaction of the
projectile and target and the volume of the projectile probed will
depend on the orientation of the projectile relative to the laboratory z

axis, denoted by �̂ ≡ (θ�, φ�), and its deformation δ.
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degree of deformation δ and the orientation �̂ of the projectile
core with respect to the beam direction, ẑ. Thus, how the
valence nucleon wave function is sampled depends on both its
state and its orientation. The cross sections calculated below
are inclusive with respect to states of the rotational band of the
deformed core.

The added complexity, when extending the methods to
deformed nuclei, is thus primarily computational, because
the cross section for each projectile orientation must now
be computed and averaged over. Our approach here is
(a) to expand the intrinsic state wave function in a cylin-
drical oscillator basis of the laboratory system, and (b) to
use a simplifying (absorptive-disk) approximation for the
core-target interaction. These formal manipulations of the
valence nucleon wave function are described in the next
section and allow all beam-directional integrals to be evaluated
analytically. Conventional models for nucleon removal from
spherical projectiles use folding models and the nuclear
densities to compute the projectile-constituent-target elastic
S matrices. We use a hybrid approach and assume the
nucleus-nucleus, core-target S matrix is well described using
a sharp-cutoff S matrix. For the nucleon-target interaction,
which is responsible for the nucleon removal and describes the
degree of inelasticity in the nucleon-target system, we retain
the single-folding model approach based on an assumed target
density.

Based on calculations for spherical nuclei the absorptive-
disk model is expected to calculate absolute nucleon removal
cross sections with an accuracy of order 30%, producing
smaller cross sections. These are sufficient to understand the
essential features of deformation. Further, our calculations
account for only the stripping mechanism; however, because
we are interested in well-bound (strongly coupled) deformed
systems, the elastic breakup terms are less important. For
spherical nuclei and separation energies such as used here,
typically 20–30% of nucleon removal events involve diffrac-
tive (elastic) breakup. Our main aim here is to investigate
the sensitivity of cross sections and their distribution with the
residue momenta to deformation.

In the following sections we discuss the inputs into the
model, beginning with a discussion of the shapes of the
projectile core (the residue), the Nilsson model wave functions
used, and the calculation of the cross section itself. We then
discuss the limit of small deformations and general qualitative
expectations of the model. A specific application of the model
to mass A = 28 projectiles is then presented in Sec. IV,
accompanied by comparative spherical model calculations.

A. Wave functions

We first discuss the Nilsson single-nucleon wave functions
and their practical use in the knockout calculations. Denoting
the Nilsson wave function of the valence nucleon νm then in
the projectile intrinsic frame we first expand it in a spherical
basis denoted by the quantum numbers (n�j )

�νm(�r, �̂) =
∑
n�j

an�j
νm �n�jm(�r, �̂), (8)

with coefficients a
n�j
νm , obtained from the Nilsson model

calculations. We have included explicitly the notation �̂ to
denote the dependence on the symmetry axis of the projectile,
the axis for which the projection of the angular momentum
is m. The polar angles of �̂ define the orientation of the
symmetry axis relative to the laboratory ẑ axis. In principle, the
wave function is free to mix contributions from different major
oscillator shells N , though the degree to which this occurs is
deformation dependent.

We now use the rotational properties of the spherical wave-
function components to express the Nilsson wave function in
the spherical basis with projections m′ on the laboratory z axis;
that is,

�νm(�r, �̂) =
∑
n�j

an�j
νm

∑
m′

Dj

m′m(�̂)�n�jm′(�r, ẑ). (9)

The spherical wave functions are, in conventional notation,

�n�jm(�r, ẑ) =
∑
λσ

(�λsσ |jm)ψn�λ(�r, ẑ)χsσ , (10)

where the spherical oscillator model wave functions are

ψn�λ(�r, ẑ) = un�(r)Y�λ(r̂), (11)

with the usual forms for the radial parts un�(r). The phases
were chosen such that the un�(r) were positive near the origin
and no i� factors were present. These radial oscillator wave
functions do not depend on j .

Finally, for reasons of computational efficiency within the
eikonal reaction model, with its beam-direction cylindrical
symmetry, it is useful to expand these spherical oscillator states
ψn�λ(�r, ẑ) in terms of a cylindrically symmetric oscillator basis
set, ψnznsλ(�r, ẑ), using

ψn�λ(�r, ẑ) =
∑
nz

Cn�
nznsλ

ψnznsλ(�r, ẑ). (12)

Here the sum runs over all nz allowed by the constraint
2n + � = nz + 2ns + λ imposed by the number of available
oscillator quanta. This cylindrical representation allows an
analytical evaluation of certain beam-directional integrals.
These cylindrical oscillator wave function, with �r ≡ (�s, z) ≡
(s, ϕ, z), is given by

ψnznsλ(�r, ẑ) = gnznsλ e−α2(z2+s2)/2Hnz
(αz)hnsλ(α�s). (13)

Here

hnsλ(α�s) = (−1)ns eiλϕ

(|λ| + ns)!
(αs)|λ|L|λ|

ns
(α2s2), (14)

Hnz
(αz) is the Hermite polynomial, given by

Hnz
(αz) = nz!


nz/2�∑
q=0

(−1)q
1

q!(nz − 2q)!
(2αz)nz−2q, (15)

the wave-function normalization constant gnznsλ is

gnznsλ = (−1)ns α3/2

[
ns!(ns + |λ|)!

2nznz!π
3
2

]1/2

, (16)

and

α =
√

Mω0(δ)

h̄
. (17)
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The coefficients Cn�
nznsλ

in the cylindrical expansion were
obtained using the generating functions of the harmonic
oscillator [39]. They are shown to be

Cn�
nznsλ

= gnznsλ

cn�

n!nz!

√
2� + 1

4π
(� + λ)!(� − λ)!

×
[ ∑

p

(−1)p

22p−λp!(p − λ)!(� + λ − 2p)!

× 1

(ns + λ − p)!(n + p − ns − λ)!

]
(18)

and satisfy the symmetry relation

Cn�
nzns−λ = (−1)λCn�

nznsλ
, (19)

where

cn� = (−1)nα3/2

√
n!(2� + 2n + 1)!!

π5/22�+n+2
. (20)

Our use of oscillator wave functions for the removed
nucleons, which do not have the correct (Hankel function,
for neutrons) asymptotic form, is expected to lead to slightly
smaller nucleon removal cross sections than if using, for
example, a bound eigenstate of a Woods-Saxon potential.
The model is, however, reasonably accurate and applicable
to cases where the removed nucleon is initially well bound, in
which cases the reaction is sensitive to the wave function near
its surface maximum and not to the asymptotic form of the
bound state. Our (unavoidable) use of oscillator asymptotics
is not expected to significantly affect the systematics of
the sensitivities of reaction yields or the resulting residue
momentum distributions to deformation. We comment on this
sensitivity in Sec. IV B.

B. Cross sections

Single-nucleon removal reactions have been extensively
used to both populate the states of and study the structure
of light exotic nuclei with A < 40. Most often these reactions
have been treated using reaction models that assume (a) the
valence nucleons are removed suddenly in fast interactions
with the target, such that the reaction residue acts as a spectator
and proceeds undisturbed, and (b) eikonal reaction dynamics,
where the projectile is assumed to follow a straight-line path as
it passes the target. In the vast majority of cases, the projectile
has been assumed to be spherical.

The eikonal model expression for the stripping (inelastic
breakup) cross section—that part of the projectile-target
absorption cross section in which A nucleons are transmitted
and a nucleon excites the target—is expressed in terms of the
projectile ground-state wave function, �IM , by, for example,
Eq. (2) of Ref. [40]

σstr = 1

2I + 1

∫
d �b

∑
M

〈�IM ||SA({�bA})|2A(bv)|�IM〉 .

(21)

Here SA represents the S matrix for the interactions of A

nucleons with the target, involving a set of impact parameters

{�bA}, and an integral is carried out over all target-projectile
center-of-mass impact parameters �b. The factor A(bv),

A(bv) = [1 − |Sv(bv)|2] (22)

is the (valence) nucleon absorption probability on the spherical
target. Having made the spectator-core approximation, the
stripping cross section for nucleon removal from a spherical
state, n�j , the single-particle stripping cross section, is then
[10,40]

σ
n�j
str = 1

2j + 1

∫
d �bc |Sc(bc)|2

∑
m

〈�n�jm|A(bv)|�n�jm〉 ,

(23)

where the impact parameter integration variable has been
changed to �bc. Sc(bc) is now the S matrix for the core
nucleus and 〈· · ·〉 indicates integration over the nucleon-
core relative coordinate �r and nucleon spin coordinates. In
writing Eqs. (21) and (23) the (fast) adiabatic approximation
was assumed, that the nucleon’s position vector �r in the
projectile rest frame is assumed to be frozen for the short
duration of the surface-grazing collisions with the target. The
absolute value of the stripping single-particle cross section
depends primarily on the radial extent of the single-nucleon
wave function relative to the projectile core, as is largely
determined by (a) the nucleon separation energy, (b) its orbital
angular momentum �, and (c) the number of nodes in the
radial wave function, n = (N − �)/2. Weaker binding leads
to a more extended nucleon wave function driving larger
nucleon removal cross sections. The reaction residue parallel
momentum distributions, dσstr/dkc, where kc is the momentum
of the residue in the beam direction, are then characteristic of
the orbital angular momentum of the removed nucleon [41].

We generalize this discussion for nucleon removal from
an axially symmetric deformed projectile. We use the strong
coupling limit, in which the nucleon wave function is taken
to be a Nilsson state νm for which ±m is the good quantum
number. We assume the incident projectile ground state has
spin 0+ and is thus an unweighted average of the deformed
intrinsic system over all �̂. Application of the adiabatic
approximation now assumes that both �r and the deformation
degree of freedom �̂ are frozen during the collision. This step
now connects the deformation of the core-target S matrix,
S(�bc, �̂), with that entering the projectile ground state. So,
the spherical single-particle state is replaced with the Nilsson
eigenstate �νm for a fixed orientation �̂, the cross section is
calculated for each orientation, and then the results must be
averaged over all orientations (see also Eq. (2) of Ref. [29]).
The stripping cross section now reads

σ νm
str = 1

4π

∫
d�̂

∫
d �bc |Sc(�bc, �̂)|2 〈�νm|A(bv)|�νm〉 .

(24)

The factor |Sc(�bc, �̂)|2A(bv) in Eq. (24) has a simple intuitive
interpretation, as the joint probability for elastic core-target
scattering and an inelastic valence nucleon-target interaction
at fixed �r , �bc, and �̂, which must then be weighted by
the nucleon’s position probability, summed over all impact
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FIG. 4. (Color online) Impact parameter plane schematic show-
ing the reaction coordinates. The allowed impact parameters for
the spheroidal core is determined from that for all points on the
surface �R(θ, φ), where θ and φ are the polar angles of the surface
point in the intrinsic system. The target radius is Rt . The maximum
value of b gives the minimum allowed impact parameter, bmin for a
given projectile orientation. Note that the minimum allowable impact
parameter does not necessarily occur where �Rt is antiparallel to R.

parameters �bc, and averaged over all projectile/residue orien-
tations �̂. The cross sections for states with ±m are, of course,
equal.

We now make the absorbing-disk approximation for the
projectile core-target elastic S matrix [11,12]. That is, any
overlap of the pair during the reaction is assumed to lead to
violent inelastic collisions that remove the residue from the
one-nucleon removal channel. The target transit then selects a
volume, grazing the core surface, in which the single-nucleon
wave function is sampled. This is illustrated in Fig. 4. The
core S matrix is written as a step function, having a minimum
impact parameter bmin for transmission, as

|Sc(�bc, �̂)|2 ≡
{

0 if bc < bmin(�̂)

1 if bc � bmin(�̂).
(25)

For the deformed nuclei of interest here, the minimum
impact parameter bmin(�̂) naturally depends on the degree
of deformation δ and, critically, on the orientation �̂ relative
to the laboratory z axis.

The shape of the spheroidal core, like the deformed
oscillator potential, is chosen such that its volume is conserved
as the deformation changes. The surface coordinates (x, y, z)
of the spheroid are defined by

d0(δ)2
(
1 + 2

3δ
)
(x2 + y2) + d0(δ)2

(
1 − 4

3δ
)
z2 = R2

c , (26)

where d0(δ) has the same deformation dependence as ω0(δ),
namely

d0(δ) = (
1 − 4

3δ2 − 16
27δ3

)−1/6
. (27)

Though the volume of the solid spheroid is independent of

deformation, its root-mean-squared (rms) radius, 〈r2〉 1
2
c , is not

and, to second order, the mean-squared radius of the spheroidal
core is

〈r2〉c,δ = 〈r2〉c,δ=0

(
1 + 4

9δ2 + 32
81δ3 + · · · ). (28)

Over the range of deformations considered here (up to

δ = 0.4), 〈r2〉
1
2
c,δ of the core increases by ≈5%.

For the nucleon-target S matrix, where the diffuse surface
of the target is important for determining the magnitude of
the nucleon removal cross section, we use the single-folding
model, a finite-ranged effective nucleon-nucleon interaction,
and the target density. The range of impact parameters bv

over which the nucleon S-matrix transitions from being
small to of order unity, which determine A(bv), is larger
for the valence nucleon than for the core, as fractions of
the most important surface-grazing impact parameters. The
calculated stripping cross sections are poorly described if
one assumes a sharp-cutoff, absorptive-disk description of
the nucleon-target interaction. The interaction of the valence
nucleon and spherical target depends only on their relative
positions and not the projectile orientation. In the core-target
system we use a target size Rt , consistent with the folding
model S matrix for the nucleon-target interaction. We assume
the target has a point nucleon density of Gaussian form.
The finite-range nucleon-nucleon effective interaction is also
assumed to have a Gaussian form-factor; thus, the evaluation of
the nucleon-target S matrix is, in fact, analytic and numerical
folding is not required.

Making explicit the z and transverse coordinate integrals
over the nucleon’s coordinate and applying the absorptive-disk
approximation for the core-target S matrix, the removal cross
section from Nilsson model state νm is therefore

σ νm
bd = 1

4π

∫
d�̂

∫ ∞

bmin(�̂)
d �bc

∫
d�s A(bv)

×
∫

dz〈|�νm(�r, �̂)|2〉sp, (29)

where 〈· · ·〉sp now indicates integration over the spin coordi-
nate of the nucleon. The distribution of the cross section with
respect to the beam-directional residue momentum kc is found
by taking the z-directional Fourier transform of the nucleon
wave function; that is,

dσ νm
bd

dkc

= 1

4π

∫
d�̂

∫ ∞

bmin(�̂)
d �bc

∫
d�s A(bv)

×
〈∣∣∣∣ 1√

2π

∫
dz eikcz �νm(�r, �̂)

∣∣∣∣
2〉

sp

. (30)

Upon inserting the wave function [Eq. (9)] into this expression,
we obtain

dσ νm
bd

dkc

= 1

4π

∫
d�̂

∫ ∞

bmin(�̂)
d �bc

∫
d�s A(bv)

×〈|�νm(�s, kc, �̂)|2〉sp, (31)

where the z-directional Fourier transform has been evaluated
analytically, to give

�νm(�s, kc, �̂) ≡ 1√
2π

∫
dz eikcz �νm(�r, �̂)

=
∑
n�j

an�j
νm

∑
m′

Dj

m′m(�̂)
∑
λσ

(�λsσ |jm′)χsσ

×
∑
nzns

Cn�
nznsλ

gnznsλ exp(−α2s2/2)hnsλ(α�s)

×Hnz
(kc/α)inz exp

(−k2
c

/
2α2

)
/α. (32)
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This form allows the momentum distributions to be calculated
efficiently.

Our model is similar in some respects to the geometric
model of Ref. [26], except that we use (a) a deformed core-
target S matrix derived from an assumed quadrupole-deformed
intrinsic shape, (b) a conventional density-based folding model
for the nucleon-target S matrix, and (c) Nilsson model
calculations in an unstretched basis. In principle, the latter
point should make little difference, because, once transformed
from a stretched to an un-stretched basis, the Nilsson state wave
functions will be identical save for minor differences arising
from the added spin-orbit and angular momentum terms in the
Nilsson Hamiltonian.

C. Limit of small deformations

We first discuss the zero-deformation limit of the model
described above. Now the Nilsson potential is simply a
spherical modified oscillator, the eigenstates of which are
pure (n�jm) spherical states. The core is spherical and within
the absorptive-disk model the minimum impact parameter is
independent of orientation and given simply by the sum of
the core and target radii bmin = Rt + Rc. In the calculation of
the cross section, the only dependence on the orientation of the
projectile symmetry axis is then in the rotation matrices of
the rotated wave function in Eq. (9). The quantity of interest
is the square modulus of the single-nucleon wave function
averaged over the symmetry axis orientations �̂ that can now
be evaluated analytically, using [42]∫

dα

∫
sin βdβ Dj ∗

m′m(α, β, 0)Dk
n′n(α, β, 0)

= 4π

2j + 1
δjkδmnδm′n′ . (33)

Here (α, β) are two of the Euler angles, the third of which is
redundant when axial symmetry is assumed. In the limit of zero
deformation each Nilsson state νm has a single contributing
(n�j ) and thus,

1

4π

∫
d�̂|�νm(�r, �̂)|2

= 1

4π

∫
d�̂

∣∣∣∣∣
∑
m′

Dj

m′m(�̂)�n�jm′(�r, ẑ)

∣∣∣∣∣
2

. (34)

Expanding the square modulus and averaging over orientations
then gives

1

4π

∫
d�̂|�νm(�r, �̂)|2 = 1

2j + 1

∑
m′

|�n�jm′(�r, ẑ)|2. (35)

The result, the average over the projections of a single spherical
component (n�jm′), is identical to the conventional spherical
model [see Eq. (23)]. For zero deformation our model gives
the correct spherical limit. Similarly, averaging the single
projection m on the orientation axis over all orientations,
we should obtain the spherical model cross sections and
residue momentum distributions.

An intuitive expectation for small deformations will also
prove useful. For small deformations it is reasonable to

assume that the shape of the core, for S-matrix purposes,
is approximately spherical, allowing us to perform the same
average over orientation angles as above. It is also expected that
the mixing of states in the Nilsson wave functions be confined
to a single major shell. Carrying out the same averaging
procedure as before, the δjj ′ Kronecker δ that enters also
implies δnn′ and δ��′ , because within a single major shell each
j value has unique n and � attributes. Once again we obtain an
average over the projections m′, as for the spherical symmetry
case,

1

4π

∫
d�̂|�νm(�r, �̂)|2 = 1

2j + 1

∑
n�jm′

[
an�j

νm

]2|�n�jm′(�r, ẑ)|2,

(36)

though now there are (incoherent) contributions from the
contributing spherical components with weights given by the
Nilsson wave-function amplitudes. One could, additionally,
sum the above expression over all N = 2 shell Nilsson
states νm in which case the normalization of the coefficients∑

νm[an�j
νm ]2 then removes any dependence of the total removal

cross section on the deformation δ, save for small changes
in the oscillator frequency owing to volume conservation.
The total removal cross section is thus expected to be
approximately constant for small deformations.

In this small deformations limit, changes to the cross
sections and momentum distribution can be seen to be the
result of the evolving spherical-basis structure of the Nilsson
states. Consequently, wave functions that mix orbital angular
momenta will exhibit the largest changes. In the sd shell we
expect therefore that changes to the m = 1/2 Nilsson states
will be largest. For small deformations the cross sections
and momentum distributions for removal from m = 3/2
and m = 5/2 states, which are both purely d wave, are
expected to remain approximately constant and very similar
to the spherical d-wave results. We emphasize that these
simple expectations are relevant to cross sections that are
inclusive to the full rotational band. Individual final states
might still exhibit characteristic momentum distributions, but
such features are beyond the calculations of the present
paper.

IV. APPLICATION TO THE sd SHELL: A = 28 SYSTEMS

We discuss in some detail the results obtained using the
absorptive-disk model described above. In particular, we
consider the sensitivity of cross sections and momentum
distributions to (a) varying the projectile deformation, (b)
including major shell mixing in the Nilsson model calcula-
tions, and (c) the orientation dependence of the core-target
S matrix.

Deformation has long been known to be prevalent in the
middle of the sd shell, and was more recently identified
in exotic sd-pf shell isotopes near the island of inversion.
Given the limitations of the oscillator basis as regards the
single-particle wave-function asymptotics and the absence of
explicit separation energies, we consider generic calculations
applicable to nuclei in this region, nominally for the A = 28
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systems. The even-even A = 28 isobars have deformations
estimated from their ground-state to first 2+-state B(E2)
values; for example, 28Ne β = 0.36 ± 0.03 [43], 28Mg β =
0.491 ± 0.035 [19], and 28Si β = 0.407 ± 0.007 [19]. To
first order, these β correspond to δ = 0.34, 0.46, and 0.39,
respectively. The measured quadrupole moments of 28Al and
28Na are also indicative of sizable deformation [44].

For completeness we calculate removal cross sections for
all N = 2 Nilsson states, that is, the [220]1/2, [211]3/2,
[202]5/2, [211]1/2, [200]1/2, and [202]3/2 configurations,
though not all will be active in any given physical example.
We reiterate that our results, following integration over
orientations, are inclusive with respect to the final states
of the residual nuclei for the Nilsson state in question.
Comparisons with experiment should thus be restricted to such
data.

A. Calculation parameters

The input parameters to the model are as follows. The
Nilsson model Hamiltonian uses a spin-orbit parameter κ =
0.05 and for the centrifugal term the values μ = 0 for N � 2
and μ = 0.45 for N > 2. These are similar to the values
used by Ref. [35]. The sensitivity to these parameters is
touched upon in Sec. V. Our calculations use major oscillator
shells up to N = 8, and we present results for both a pure
sd-shell (N = 2) model space and when mixing the N = 0–4
and N = 0–8 major shells. The radial wave functions use
the oscillator frequency parametrization of Ref. [45], giving
h̄ω0(δ = 0) = 12.108 MeV for A = 28, and a corresponding

〈r2〉 1
2 = 3.46 fm for N = 2. Spherical Hartree-Fock calcula-

tions using the Skyrme SkX interaction [46] generate 0d5/2,
0d3/2, and 1s1/2 orbital rms radii of 3.330, 3.546, and 3.454 fm,
respectively, in good agreement with our oscillator value.
Volume conservation of the deformed oscillator makes h̄ω0

weakly deformation-dependent and consequently there is a

systematic decrease in the 〈r2〉 1
2 of the Nilsson state as

deformation increases, superimposed on the changes that arise
from mixing between different major shells.

For the nucleon-target interaction we have used a single-
folding of the nucleon with the point-nucleon density of the
9Be target. This density was assumed to be of Gaussian form
with an rms radius of 2.36 fm. A Gaussian finite-ranged
effective nucleon-nucleon interaction with range 0.5 fm was
assumed in the folding with strength determined by the free
nucleon-nucleon cross sections, taken from the parametriza-
tion of Ref. [47]. The resulting nucleon-target reaction cross
section at 65 MeV per nucleon is 284 mb, in reasonable
agreement with available experimental values (for the proton-
9Be system [48]). We note that this folded nucleon-target
interaction and its derived S matrix are the only explicitly
projectile energy-dependent inputs to the calculations that
follow. As the nucleon-target reaction cross section falls
only slowly (and smoothly) with the incident energy the
results we present, at 65 MeV per nucleon, will be rather
energy-independent, other than a gradual overall reduction
common to all of the calculated nucleon removal cross
sections.

For the core-target interaction, we have chosen core Rc

and target Rt radii to reproduce the estimated nucleon-
target and core-target reaction cross sections, appropriate for
65 MeV/nucleon. The effective target radius Rt is chosen to
be 3.00 fm, giving a neutron-9Be reaction cross section of
283 mb, consistent with that of the folding-model interaction
used for the eikonal nucleon-target S matrix. To determine
the core radius Rc we first used the empirical nucleus-nucleus
reaction cross section parametrization of Kox et al. [49] to
estimate a σR = 1344 mb for the 27Al-9Be system. From
this we deduce a minimum (spherical) impact parameter
bmin = Rt + Rc = 6.54 fm and thus a spherical core radius
Rc = 3.54 fm. The root-mean-squared radius of a sharp-cutoff

core is then 〈r2〉 1
2
c = √

3/5Rc = 2.74 fm, whereas spherical
Hartree-Fock calculations using the SkX interaction [46] give

〈r2〉 1
2
c = 2.95 fm for 27Al. However, if we use this Hartree-

Fock A = 27 density distribution and a double-folding model
calculation for the 27Al-9Be interaction, then we calculate a
reaction cross section of 1387 mb, within 4% of the empirical
estimate of the the sharp-cutoff approximation used here.
We conclude that the values Rc = 3.54 fm and Rt = 3.0
fm provide parameters for the 27Al-9Be system that describe
realistically the core and target sizes and their reaction cross
sections and that are also consistent with the neutron-9Be S

matrix used.

B. Spherical calculations

To assess the accuracy of the black-disk approximation,
we first make comparative spherical model calculations for
our mass 28 example, 28X(−1n), using the folding-model
approach for the S matrices, using the methodology and
Hartree-Fock densities described above. We use the same
harmonic oscillator wave functions as used for the deformed
model results, with h̄ω = 12.108 MeV [45]. With this pre-
scription we obtain 1s- and 0d-state stripping cross sections
of 14.43 and 12.25 mb, respectively. We will not calculate
the diffraction cross section—nucleon removal owing to
elastic breakup—in the absorptive-disk calculations, but these
spherical folding-model calculations give σdiff = 4.36 and
3.26 mb for the 1s and 0d states, respectively.

Assuming the sharp, absorptive-disk approximation to the
(spherical) core-target S matrix the resulting stripping cross
sections are smaller, giving 1s- and 0d-state σstr = 11.81 and
9.38 mb, reductions of 18% and 23% on the folding-model
approach. This feature of absorptive-disk cross sections was
known [10], so our calculations will systematically under-
estimate cross sections by ≈20–30%. This does not impact
our discussions of the qualitative trends in cross sections and
parallel momentum distributions with changes in deformation
for which the absorptive-disk model is applicable and contains
the essential physical inputs.

The oscillator wave functions have incorrect asymptotics.
For comparison we calculate s- and d-wave radial wave
functions using a Woods Saxon potential. The radius and depth
parameters are fit to reproduce the 28Al neutron separation

energy, Sn = 7.725 MeV, and the same 〈r2〉 1
2 of the oscillator
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FIG. 5. Neutron removal cross sections calculated (i) for 0d-state

oscillator wave function with different 〈r2〉 1
2 (dashed) assuming a

fixed spherical core with Rc = 3.54 fm and (ii) for different Rc and

a fixed orbital 〈r2〉 1
2 = 3.46 fm (solid). From right to left the squares

indicate 〈r2〉 1
2 sizes corresponding to δ = 0, 0.1, 0.2, 0.3, and 0.4,

derived from Eq. (3). Similarly, but from left to right, the circles

indicate the core sizes, derived from Rc = √
5/3 〈r2〉 1

2
c and Eq. (28),

for δ = 0, 0.1, 0.2, 0.3, and 0.4.

wave functions, with a diffuseness a = 0.6 fm. Again using
the black-disk approximation, the resulting cross sections are
12.33 and 10.07 for s and d, respectively, such that our use of
oscillator wave functions underestimates the cross sections by
a modest 5%–7%.

Because the reaction samples the nucleon wave function
near to and at the projectile surface, it is sensitive to both

(a) the 〈r2〉 1
2 of the nucleon’s radial wave function and (b) the

shape and 〈r2〉 1
2
c of the core. Because deformation will change

both of these essential sizes, the former in a state-dependent
manner, we first consider their sensitivities within the spherical
limit. For a fixed core size, nucleon removal cross sections
are known to essentially scale linearly with the rms radius of
the nucleon wave function (see, e.g., Fig. 2 of Ref. [16]).
We obtain the same result when using the absorptive-disk
approximation described above, as is shown in Fig. 5. A similar
(linear) Rc sensitivity is found if one considers a fixed orbital

〈r2〉 1
2 and target size Rt but varies Rc; now the cross section

falls essentially linearly with Rc. Thus, in a spherical model,
the reduction in the rms radius of the N = 2 neutron states
over the range of deformations considered leads to an ≈10%
reduction in the 0d-state removal cross section, from 9.38 to
8.40 mb.

The momentum distributions obtained using the absorptive-
disk approximation (and δ = 0) are compared to those calcu-
lated [50] using the folding-model-derived S matrices in Fig. 6.
Excellent agreement is found for both the 1s- and the 0d-
state distributions. Thus, the absorptive-disk approximation
to the core-target S matrix is also applicable for study of
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FIG. 6. (Color online) Calculations for 1s- (black solid line,
circles) and 0d-state (red dashed line, squares) nucleon removal
using a folding model S-matrix for the projectile core (solid lines)
and the absorptive-disk approximation (open symbols). The 1s (0d)
absorptive-disk calculations are marginally wider (narrower) than
those using the folding-model core-target S matrix, but the overall
agreement is excellent.

the systematic, deformation-induced changes to momentum
distributions.

C. Deformed model results

We now discuss the effects arising from deformation with
the model assumptions and parameters detailed above. There
are several effects. Cross sections are given for (i) spherical
and spheroidal core shapes and (ii) for Nilsson model spaces
spanning N = 2, N = 0–4, and N = 0–8. We discuss their
effects on neutron removal from each N = 2 Nilsson state
according to their asymptotic quantum numbers. For each we
show the absorptive-disk cross sections σbd, and the properties
of the state as a function of the assumed deformation δ.

As mentioned above, previous (spherical) studies showed
that the single-particle cross sections scale approximately

linearly with the rms radius, 〈r2〉 1
2 , of the nucleon’s wave func-

tion, larger radii extending the nucleon’s position probability
beyond the absorptive core radius and increasing its probability
of interactions with the target. In the presence of deformation

this simple picture becomes more complex. Though 〈r2〉 1
2 of

the bound states will change with deformation, so will the
shapes of the absorptive spheroidal core and the nucleon wave

functions relative to the core. Consequently, the larger 〈r2〉 1
2 ,

owing to an increased deformation, do not necessarily make
the nucleon more accessible to collisions with the target.

To allow a qualitative interpretation of the calculated cross

sections, we plot both 〈r2〉 1
2 of the nucleon wave function and

the average orbital angular momentum content of the state,
〈�〉, computed as

〈�〉νm =
∑
n�j

[
an�j

νm

]2 · �. (37)
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FIG. 7. (Color online) Calculations for the [220]1/2 Nilsson
state. (a) Cross sections σbd as a function of deformation δ, with a
spherical (dashed lines) and a spheroidal core (solid lines). Results are
for N = 2 (black lines), N = 0–4 (red lines, circles), and N = 0–8
(blue lines, squares) Nilsson model spaces. (b) The wave-function
rms radius, (c) the average � value of the state, (d) 〈ns − nz〉, for the
model spaces defined in (a).

For prolate deformations we also expect the cross sections for
Nilsson states that are spatially extended along the symmetry
axis to be smaller and those that extend in the perpendicular
directions to be larger. It is therefore also useful to show the
quantity

〈ns − nz〉νm =
∑
nznsλ

[
anznsλ

νm

]2 · (ns − nz) (38)

that for pure N = 2 Nilsson states take asymptotic values −2,
−1, 0, and 1. Negative values indicate prolate-like states, well
aligned with the core shape, and the larger values indicate
oblate-like states.

1. [220]1/2

The cross sections σbd and wave-function properties of the
[220]1/2 Nilsson state are shown in Fig. 7 as a function of
deformation δ. As previously discussed, the spherical core
σbd scale with the rms radius of the wave function and
are further enhanced by the moderate decreases in 〈�〉. The
σbd sensitivity for the spheroidal core calculations is more
complex. For small δ, the σbd for the different Nilsson model
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FIG. 8. (Color online) Cross section as a function of the angle θ�

of the core symmetry axis, for the [220]1/2 Nilsson state. The lines
show the results for deformations δ = 0 (solid black line), 0.1 (red
line, circles), 0.2 (green line, squares), 0.3 (blue line, triangles), and
0.4 (dashed black line).

spaces are differentiated by their respective 〈r2〉 1
2 . At larger

deformations cross sections for the prolate-type state, with
nz = 2 asymptotically, decrease, as the valence nucleon wave
function is masked by the core. The masking is more effective
for the larger model spaces, the cross sections for which get
progressively closer to that for the pure N = 2 space.

This progressive decrease in the cross sections using the
spheroidal core can be understood as an increased similarity
of the core and nucleon wave-function shapes. Figure 8 shows
the differential cross section dσbd(δ)/dθ� as a function of the
angle θ� of the symmetry axis from the z direction. At zero
deformation, the cross section is small for small θ� and large
for large θ�, owing to the prolate (〈ns − nz〉 = −1) nature of
the δ = 0 state, which is a mixture of λ = 0 and 1 components.
The sudden changes in the cross sections for small δ reflect a
rapidly changing shape of the nucleon wave function relative
to the core [as shown by Fig. 7(d)]. The relative constancy
of this quantity for δ > 0.2 leads to a reduction of the cross
section for large θ� as increasing core deformation masks the
nucleon further.

The momentum distributions for removal from the [220]1/2
state are shown in Fig. 9. The width of the distribution follows
closely the changes in 〈�〉 [Fig. 7(c)], which drops from 2 at
δ = 0 to ≈1.5 at δ = 0.2, after which it is almost constant.
This causes the width of the distribution to decrease rapidly on
δ = 0–0.2, after which the width changes are small. A similar
qualitative trend was also seen in the calculations of Ref. [26]
(e.g., Fig. 9 of that reference) though the changes in shape are
significantly smaller in our calculations.

2. [211]3/2

The cross sections σbd and wave-function properties of the
[211]3/2 state are shown in Fig. 10 as a function of δ. The

spherical core calculations now follow the trends of 〈r2〉 1
2
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FIG. 9. (Color online) Residue momentum distributions follow-
ing nucleon removal from the [220]1/2 state. The results correspond
to deformations δ = 0 (black solid line), 0.1 (red solid line, circles),
0.2 (green solid line, squares), 0.3 (blue solid line, triangles), and 0.4
(black dashed line).

closely owing to the negligible changes in 〈�〉, the result
of there being no N = 2 in-shell mixing of orbital angular
momenta. For the same reason the changes in 〈ns − nz〉
are also modest, but the prolate trend with increasing δ

means the cross section gently falls with deformation for

the reasons discussed above, despite the increasing 〈r2〉 1
2

values. The momentum distributions for removal from the
[211]3/2 state are shown in Fig. 11 for the spheroidal core
and N = 0–8 model space. This state is dominated by the
0d, N = 2 configurations for all deformations, reflected in
the δ-independent momentum distribution shape. Very small
changes in the [211]3/2 momentum distribution were also
reported in Ref. [26], in qualitative agreement with the present
results.

3. [202]5/2

The [202]5/2 state has a pure 0d5/2 configuration within

the sd shell. Changes to 〈r2〉 1
2 , 〈�〉 and 〈ns − nz〉 are thus very

small in comparison to the other states, resulting only from
mixing between major shells. The [202]5/2 state cross sections
and wave-function properties are shown in Fig. 12. Again the

spherical core calculations track the modest 〈r2〉 1
2 changes

(≈2%), with the spheroidal core cross sections increasing
with δ, because the state has 〈ns − nz〉 ≈ 0. This increase
in the cross section, owing to the oblate nature of the state,
can be understood with reference to dσbd(δ)/dθ�, shown in
Fig. 13. In contrast to the prolate [220]1/2 state case of
Fig. 8, the cross section is now strongest for small θ�, when
the symmetry axis is aligned with the laboratory z axis (the
beam direction). As δ increases, more of the nucleon wave
function is exposed to the target, enhancing the cross section
at all orientations, but in particular for small θ�. The purity
of the N = 2 configuration leads to an essentially constant
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FIG. 10. (Color online) As for Fig. 7, but for the [211]3/2 Nilsson
state.

〈�〉 = 2 value and to a deformation-independent momentum
distribution, essentially indistinguishable from that shown in
Fig. 11.

In spherical nucleon removal models the residue mo-
mentum distributions depend strongly on the projections m

-300 -200 -100 0 100 200 300
kc (MeV/c)

0

0.2

0.4

0.6

0.8

1

dσ
bd

/d
k c (

ar
b.

 u
ni

ts
)

FIG. 11. (Color online) As for Fig. 9 but for the [211]3/2 Nilsson
state. The momentum distributions are essentially independent of
deformation.
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FIG. 12. (Color online) As Fig. 7 but for the [202]5/2 Nilsson
state.

of the valence nucleon total angular momentum j of the
orbital [51]. Because the symmetry axis averaging process
of the present model corresponds to an averaging over angular
momentum projections in the spherical case, we would expect
the calculated residue momentum distributions to depend
strongly on θ�. Figure 14 shows the calculated [202]5/2
state residue momentum distributions for fixed values of the
symmetry axis θ� orientation, revealing this dependence. After
averaging over orientations, the result is very similar to the
pure spherical 0d-state calculation of Fig. 11. In principle,
momentum distributions observed from a secondary beam of
deformed nuclei could be altered if the secondary beam itself is
produced with some degree of alignment, giving a nonisotropic
�̂ distribution (see, e.g., Ref. [52]).

4. [211]1/2

In Fig. 15 the [211]1/2 state σbd and wave-function
properties are shown in as a function of δ. This state, which
originates in the spherical 1s1/2 state, quickly transitions from
pure s state to strongly d state as deformation increases, as
asymptotically the state has λ = 1. Consequently, the cross
section falls very rapidly for small δ, as 〈�〉 rapidly increases.

The increasing 〈r2〉 1
2 then enhances the cross sections of the

spherical core calculations. With the spheroidal core the σbd
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FIG. 13. (Color online) Cross section as a function of the angle
θ� of the core symmetry axis for the [202]5/2 Nilsson state. The lines
show the results for δ = 0 (solid black line) and 0.4 (dashed black
line) for N = 2, and δ = 0.4 for the N = 0–4 (dashed red line, circles)
and N = 0–8 (dashed blue line, squares) model spaces. The state is
dominated by the spherical 0d5/2 component for all deformations.
As deformation increases, the oblate nature of the state enhances
cross sections for smaller angles θ�, when the projectile symmetry
axis is aligned with the beam direction. The larger model spaces act
to moderate this trend, though the dependence on θ� is essentially
unchanged.

continues to fall owing to the increasingly negative 〈ns − nz〉,
in a very similar fashion to the [211]3/2 state that shares
the same asymptotic quantum numbers (cf. Fig. 10). The
associated momentum distributions are shown in Fig. 16. Here
there are dramatic changes in the widths of the distributions as
δ increases. The 〈�〉 changes evolve the narrow distribution
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FIG. 14. (Color online) Momentum distributions for the [202]5/2
state with δ = 0.4, for fixed values of the symmetry axis θ�. The θ� =
0◦ (red dashed line, circles), θ� = 45◦ (green dashed line, squares),
and θ� = 90◦ (blue dashed line, triangles) results are shown. The
inclusive curve (black solid line) is the result when the correct angular
average is performed.
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FIG. 15. (Color online) As for Fig. 7 but for the [211]1/2 Nilsson
state.

at small deformation toward a broad distribution as the
state evolves from an s-state to a d-state character. The
qualitative trends agree with Ref. [26] (see Fig. 5 of that
reference). The figure also shows the results obtained by
weighting the spherical 1s- and 0d-state momentum distribu-
tion calculations by the appropriate Nilsson model weights
[an�j

νm ]2. The good agreement with the more sophisticated
calculations, which incorporate the spheroidally deformed
core S matrix and a much larger Nilsson model space, indicates
that that these momentum distribution shapes are largely the
result of the contributions of the orbital angular momen-
tum components present in the lowest order (N = 2) wave
functions.

5. [200]1/2

The results for the [200]1/2 asymptotic state are shown
in Fig. 17. This state originates in the spherical 0d3/2,
rapidly mixes with the spherical 1s1/2 state, enhancing the
cross section at small deformations. The changes in 〈�〉
are then small for δ > 0.2, where the spherical core cross
section then falls owing to the declining rms radius. This
is the only ns = 1 state in the N = 2 shell, and as a
result the deformed core cross section increases markedly
with deformation. The momentum distributions are shown in
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FIG. 16. (Color online) As for Fig. 9 but for the [211]1/2 Nilsson
state. Additionally, the distributions obtained by adding the spherical
1s-state and 0d-state distributions, weighted by the N = 2 model
space Nilsson [an�j

νm ]2 coefficients appropriate for δ = 0.2 (dotted
line, crosses) and δ = 0.4 (dotted line, plus signs) are shown. The
agreement with the full calculations, the green squares and black
dashed line, respectively, is good, indicating that the driver of the
momentum distribution shapes is still the orbital angular momentum
�, with relatively little impact from either couplings to higher
oscillator shells or the use of a spheroidal core.

Fig. 18. The 〈�〉 for the state decreases from 2 to ≈0.8 for
the deformations shown and thus the momentum distribution
decreases in width. The figure also compares the full N =
0–8 model space results with the distributions obtained by
weighting the � = 0 and 2 spherical distributions with the
Nilsson amplitudes [an�j

νm ]2 obtained from the pure N = 2
model calculation. The agreement with the full calculation
is reasonable, indicating that the effects of the altered wave-
function content and sampling induced by the larger model
space and the spheroidal core, respectively, are relatively
minor.

6. [202]3/2

The results for the [202]3/2 asymptotic states are shown
in Fig. 19. Similar to the [211]3/2 and [202]5/2 state
results, the weak mixing to other oscillator shells induces
only small changes in 〈�〉 with δ, such that the spherical
core approximation tracks the changes in the rms radius.
Indeed, because the the [202]3/2 and [202]5/2 states both
originate in pure 0d states and share the same asymptotic
quantum numbers, the trends in σbd are very similar. With
the spheroidal core, the small increase in 〈ns − nz〉 with δ,
and its asymptotic value of 0, drive slowly increasing cross
sections. For all deformations the state is dominated by N = 2,
� = 2 components, such that this momentum distribution is
insensitive to the deformation. The associated momentum
distributions are essentially indistinguishable to those shown
in Fig. 11 and hence are not shown.
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FIG. 17. (Color online) As for Fig. 7 but for the [200]1/2 Nilsson
state.

7. Summary

To conclude this section we recap the results when using
the N = 0–8 model space and the spheroidal deformed core,
collected in Fig. 20. Here the systematic trends are evident.
(i) The changes in the cross section at small deformations
largely reflect the changes in the orbital angular momentum
composition of the Nilsson wave functions. Specifically, the
cross sections have inverse trends to those of the 〈�〉, shown
in panel (c). (ii) As deformation increases, the wave functions
rapidly evolve toward their asymptotic forms, with relatively
constant 〈ns − nz〉 for δ > 0.2. At this deformation, the cross
section trends with increasing deformation are determined by
〈ns − nz〉, with larger values (oblate-like states) leading to
increased cross sections and the smaller values (prolate-like
states) leading to reduced cross sections. The bunching of
the asymptotic states into the 〈ns − nz〉 values of −2, −1,
0, and 1 is reflected in the cross sections at the largest
deformations. Perhaps most striking is the lack of a correlation
between the cross section and the rms radii of the associated
Nilsson orbits. This radius is key in the spherical calculations,
determining the extent of the nucleon wave functions with
respect to the residue surface. This is not the case when the
projectile is deformed. Indeed, the state with the largest rms
radius at large deformations, [220]1/2, has the smallest cross
section. The state is strongly prolate in shape, giving it a large
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FIG. 18. (Color online) As for Fig. 9 but for the [200]1/2 Nilsson
state. We also show the results obtained by weighting the spherical
1s- and 0d-state momentum distributions by their N = 2 model space
Nilsson amplitudes for δ = 0.2 (black line, crosses), to be compared
to the green squares. The agreement is less good than for the [211]1/2
state, shown in Fig. 16), but indicates relatively minor effects owing
to the larger model space and use of the spheroidal core S matrix.

〈r2〉 1
2 , but with a shape that hides it more effectively within

the projectile core. In essence, this is a binding energy effect.
The states with the largest nz fall in energy (Fig. 1) precisely
because their shape is well aligned with that of the deformed
potential. This increases their rms radius, increases their spatial
overlap with the core, but reduces their probabilities to be
found near and beyond the nuclear surface, which determines
the removal cross sections.

V. DISCUSSION

We have shown that the trends in cross sections can be
understood in terms of the angular momentum compositions
and the shapes of the nucleon wave functions from the
Nilsson model. For prolate projectile deformations, δ > 0, the
cross sections for prolate-like states are reduced and those
for oblate-like states are increased. One can use 〈ns − nz〉
as a proxy for the shape of the given Nilsson state. Small
admixtures generated in the larger model spaces are reflected
in the calculated rms radii, but the induced changes in 〈�〉
and 〈ns − nz〉 are significantly smaller. The summed cross
section for removal from all N = 2 shell Nilsson states is ap-
proximately constant, to ≈5%, over the range of deformations
studied (from the N = 0–8 model space plus spheroidal core
calculations). Over this same range the rms radius of the core
increases by ≈5% while the average rms radius of the Nilsson
states increases by ≈1%.

The use of a deformed core-target S-matrix description
is critical to the changes in cross section with increases in
deformation. For all states there was a marked disagreement
with the N = 0–8 space calculations that assumed a spherical
core. The couplings to other major shells have an important
effect on the position probability distributions of the nucleon
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FIG. 19. (Color online) As for Fig. 7 but for the [202]3/2 Nilsson
state.

wave functions relative to the projectile core, despite the

relatively small changes in the 〈r2〉 1
2 , 〈�〉, and 〈ns − nz〉.

Because, in the present calculations, δ = 0 corresponds to
the conventional spherical model, the [220]1/2, [211]3/2,
[202]5/2, [200]1/2, and [202]3/2 states all reproduce the
0d-state cross section and momentum distribution for zero
deformation. The [211]1/2 state originates from the 1s1/2

spherical state. Its zero deformation cross section and momen-
tum distribution, which are larger and narrower, respectively,
agree with the spherical 1s-state results.

From the extended basis calculations, the momentum distri-
butions have widths characteristic of the decomposition of the
Nilsson state in a spherical basis, regardless of the deformation.
For the m = 1/2 states dominated by N = 2 configurations,
the momentum distributions reflect the admixture of � values,
and these can be reasonably approximated by weighting the
spherical 1s and 0d distributions by the appropriate Nilsson
weights [an�j

νm ]2. For states which do not mix orbital angular
momenta, the deformation dependence of the momentum
distribution is very weak.

Beyond these deformation-induced changes in �-
composition, deformation changes in detail the target sampling
of the nucleon wave function, owing to the core-target S

matrix. That the calculated momentum distributions show
little sensitivity to details of this sampling is not unexpected,
because the observable is known to be relatively insensitive
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FIG. 20. (Color online) Summary of results for all N = 2 Nilsson
states calculated using a spheroidal core and the N = 0–8 model
space. The panels show (a) the cross sections, (b) the rms radii of
the nucleon states, (c) 〈�〉, and (d) 〈ns − nz〉. The lines are for the
[220]1/2 (black solid lines, open circles), [211]3/2 (red solid lines,
solid squares), [202]5/2 (blue solid lines, open triangles), [211]1/2
(black dashed lines, solid circles), [200]1/2 (black dotted lines, open
circles), and [202]3/2 (red dashed lines, open squares) states. For
small δ the cross sections follow an inverse trend to 〈�〉. For larger δ the
states split according to their asymptotic quantum numbers [Nnzλ]
shown on the right of the plot, the value of 〈ns − nz〉 determining the
changes of the cross section with deformation.

to the projectile impact parameter over the ranges of interest
here [11,12].

We find qualitative agreement of the momentum distri-
butions with those of Ref. [26], but there is disagreement
in the detail. Whereas our zero-deformation calculations
coincide with those for the appropriate spherical limit, the
zero-deformation calculations presented in Ref. [26], for the
[220]1/2, [211]3/2, and [202]5/2 states, which all originate
from the 0d5/2 state, are different (see Figs. 5 and 7–9 of
Ref. [26]). We note also that in none of our calculations
do we observe the development of structure (shoulders) to
the residue momentum distributions, present in the results
of Ref. [26], where dynamic core excitation was included.
To our knowledge, such a feature has not been observed in
other nucleon removal data sets on nuclei that are expected
to be reasonably well deformed (e.g., Refs. [53,54]). So, it
remains unclear whether such shoulders are a general feature of
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nucleon removal with deformed nuclei or are particular to the
25Al(−1p) reaction considered there. Further theoretical work
and experiments will be required to investigate this further.

The gross changes in the spherical-basis composition of the
Nilsson states should be broadly independent of the details of
the model Hamiltonian parameters, κ and μ in Eq. (1), because
the states must evolve toward the asymptotic states. How
rapidly this transition occurs could, in principle, be sensitive to
the chosen κ and μ values. The closer the spherical (n�j ) states
are in energy at zero deformation (i.e., the smaller the values
of κ and μ), the faster the changes in the (n�j ) composition of
the Nilsson states owing to the in-shell mixing will occur.

VI. SUMMARY

We have investigated the sensitivity of fast nucleon removal
cross sections and their momentum distributions to deforma-
tion of the projectile, using a strong-coupling model and using
Nilsson model eigenstates for the initial bound states of the
valence nucleon. We studied nucleon removal from a mass
A = 28 system, a mass region known to exhibit deformation,
as a generic example from which to understand the systematics
expected. The trends observed are expected to be very
generally applicable to other deformed sd-shell systems.

We found that for small deformations the cross sections
follow trends determined by the mixture of orbital angular
momenta contributing to the specific Nilsson state. Thus,
within the sd shell, states with m = 1/2 show the strongest
changes. For larger (prolate) deformations the cross sections
for removal of prolate-like nucleon configurations, charac-
terized by negative values of 〈ns − nz〉, are suppressed. The
cross sections to oblate-like configurations are enhanced. The
changes in cross section over the range δ = 0–0.4 are as much
as 20%. A realistic treatment of deformation in the core-target
interaction and S matrix was found to be essential, as was
including coupling to major shells other than N = 2.

It was found, as for spherical models, that the residue
momentum distributions reflect the orbital angular momentum
content of the initial state. Despite the changes in the shape
of the states, and the changes in their sampling as the
core deformation changes, as reflected in the absolute cross
sections, the residue longitudinal momentum distributions
were found to be robustly characteristic of the orbital angular
momentum decomposition of each Nilsson state. The observed
effects were, naturally, largest when mixing occurs within
the chosen major oscillator shell; for the sd-shell states
of the present calculations, these are the m = 1/2 states.
The m = 3/2 and 5/2 states, dominated by 0d components,
have momentum distributions that changed very little with
deformation.

More sophisticated models are required to make more
accurate predictions of the absolute nucleon removal cross
sections, including the calculation of residue final-state ex-
clusive observables. The present calculations are limited by
the sharp-cutoff approximation for the core-target S matrix,
estimated to reduce the calculated cross sections by 20–30%.
Future calculations could utilize density folding S matrices
[22] to overcome this shortcoming. The use of oscillator wave
functions with incorrect asymptotic form leads to a further
reduction of the cross section, estimated to be 5–7%. Further,
we have not considered elastic breakup of the projectile; for
cases where the removed nucleon is well bound, this channel is
expected to contribute to the total cross sections at the 20–25%
level. However, none of these factors are expected to alter
the trends observed and the present analysis demonstrates that
significant sensitivity to deformation is expected, providing the
motivation for these formal and computational developments.
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