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Effect of nondiagonal lowest order constrained variational effective two-body matrix elements
on the binding energy of closed shell nuclei
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The binding energies of the light, the moderate and the heavy closed shell nuclei, that is, 4He, 12C, 16O, 28Si,
32S, 40Ca, 56Ni, 48Ca, 90Zr, 120Sn, and 208Pb are calculated, using all of the channels-dependent effective two-body
interactions (CDEI) matrix elements, which are generated through our lowest order constrained variational
(LOCV) nuclear matter calculations with the Av18 (Jmax = 2 and 5) phenomenological nucleon-nucleon potential.
The J -coupling scheme is applied to construct the interaction Hamiltonian matrix elements in the spherical
harmonics oscillator shell model basis. In the channels with J > Jmax, the CDEI are replaced by the average
effective two-body interactions. It is shown that the nondiagonal matrix elements with the Av18,Jmax=2 interaction
increase the binding energies of nuclei; that is, the maximum magnitude of them is about 1.49 MeV for the 56Ni
nucleus. However, for the similar calculations with the Av18,Jmax=5 potential, they increase the binding energies of
the symmetric nuclei more than the asymmetric ones; that is, the maximum magnitude of them is about 2.74 MeV
for the 56Ni nucleus. Owing to the huge computational time that is obviously needed for the calculation of the
matrix elements of the heavy closed shell nuclei, their binding energies are evaluated only at their saturation
points, which are available from our previous works.
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I. INTRODUCTION

Recently, in a series of papers based on the local density
Brueckner G matrix idea [1,2], the binding energies and
the rms radii of the light, moderate, and heavy closed shell
nuclei, that is, 4He, 12C, 16O, 28Si, 32S, 40Ca, 56Ni, 48Ca,
90Zr, 120Sn, and 208Pb [3–6], were calculated. The channel
and the density-dependent effective two-body interactions
(CDEIs) were generated through the lowest order constrained
variational (LOCV) asymmetrical nuclear matter method code
[7–19], at different densities, with the channel-dependent Reid
types [20–22] (the Reid68, the �-Reid68, and the Reid68Day
potentials) and the operator dependent structures [23] (the
Argonne Av18 potential), and bare nucleon-nucleon (NN)
interactions. Then, these dependents were converted to the
local one by using the local density approximation (LDA)
in the harmonic oscillator shell model structure. The results,
which are given in Tables I, II, and VII of Ref. [6], indicate that
the LDA works quite well, and they are encouraging, both with
respect to the available experimental data [24] and the different
model-dependent theoretical techniques [1,25–49]. However,
it was concluded that, on the average, the most of the methods
give the root mean square (rms) radii roughly similar to each
other and close to the experimental predictions. This was not
true in the case of the binding energies, however, which shows
the discrepancies between −5 and −9 MeV per nucleon, less
binding. However, only the properties of nuclei with the atomic
number A � 12 can be well described with good accuracy by
the Green’s function Monte Carlo (GFMC), the variational
and the cluster Monte Carlo (VMC and CMC, respectively),
the no-core shell model (NCSM), the correlated hyperspher-
ical harmonics expansion (CHHE), and the coupled-cluster
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(CCM) methods by using the realistic-phenomenological NN
and three nucleon (NNN) interactions [37–51]. Obviously,
for the A � 12 nuclei, beside (i) the complication and the
importance of the nuclear forces (the two- and three-body, etc.,
interactions), (ii) the dispersion effect (the NN intermediate
states), (iii) the mean-field potential of the other nucleons
on the probe nucleon (especially in the heavy nuclei), (iv)
the finite size effects, as well as (v) the higher cluster
terms [2,22,52], the main problem is the huge computational
time. However, a few of the above complications are not
necessary in the case of the infinite asymmetrical nuclear
matter, that is, finite size effect, the higher cluster, etc. In
several of our previous works, it has been shown that the
application of the LOCV method [7–19] to nuclear matter by
using the different realistic phenomenological NN potentials
[2,20–23,52], gives substantially too much binding and the
large saturation density with respect to the empirical one.
During the last three decades, the situations have been the
same for the other techniques [2,53–60] and the potentials
[2,20–23,52]. However, the inclusion of the three-body force
(3BF) and the � isobar degrees of freedom (�-Reid68)
[2,7,8,53,54] have improved the behavior of the Coester line in
the right direction [2,53,54]. In Refs. [61] and [62], by using the
Urbana parameterized and density-dependent 3BF [63] and the
cutoff-dependent N3LO 2BF and N2LO 3BF from the chiral
perturbation field theory [64], respectively, the authors have
tried to obtain the results close to the nuclear matter empirical
saturation energy and density. However, beside the existence
of parameters A and U [63] and the cutoffs � and �3BF [64],
their results are not much different, for example, from our
LOCV calculation with the inclusion of isobar-box-diagram
[3,4,8], that is, the �-Reid68 realistic potential, which fits NN
phase shifts. So if the uncertainties in the applications of the
many-body techniques are ignored, still one can conclude that
there are discrepancies between the microscopic calculations
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TABLE I. The dimensions of J matrices of some closed shell symmetric and asymmetric nuclei and the values of their related J ’s (see
the text).

Nucleus 4He 12C 16O 28Si 32S 40Ca 56Ni

J 0 0–3 0–3 0–5 0–5 0–5 0–7
N × N 1 × 1 4 × 4 9 × 9 16 × 16 25 × 25 36 × 36 49 × 49

Nucleus 48Ca 90Zr 120Sn 208Pb
J 0–7 0–9 0–9 0–13
N × N 49 × 49 121 × 121 225 × 225 484 × 484

and the empirical values of the saturation density and energy
of nuclear matter at least because of the treatments of
3BF; that is, it is model dependent. However, in our future
works we hope we could evaluate the effect of the 3BF
directly.

For the convergence of the LOCV formalism [18,19] and
the comparison of our result for nuclear matter with the other
many-body techniques, see the Tables I and II of our works
in Refs. [65–67]. In our recent report [68] a detail comparison
has been made between the LOCV and the FHNC formalisms.

So, regarding the above discussions, it is not clear yet that
the overbinding in the case of the nuclear matter and the
underbinding in the case of the finite nuclei is attributable to
the available phenomenological nucleon-nucleon potentials,
or the application of different many-body model-dependent
techniques, in which one should make several approximations
(even in Refs. [3,4], the inclusion of the � isobar degree of
freedom, which is the part of 3BF, has made the result worse).

To speed up the numerical calculations, in our pervious
works on finite nuclei [3–6], an approximation was made and
only the diagonal matrix elements of the LOCV-CDEI were

calculated. In the present report, it is intended to calculate the
whole Hamiltonian diagonal and nondiagonal matrix elements
in the assumed shell model structure and perform an exact
diagonalization procedure to find the true binding energy of
the above nuclei in the framework of LDA. Then it is possible
to find out the origin of above discrepancies in our previous
reports [3–6]. It is worth mentioning that the digonalization of
the nuclear many body Hamiltonian for various nuclei (A �
56) has been also preformed by using other methods such as:
the similarity renormalization group (SRG) [69], the Faddeev
random-phase approximation (FRPA) [70], the unitary model
operator (UMOA) [71], and the coupled cluster (CC) [72–75]
approaches. In Ref. [75] the effect of higher relative partial
waves on the binding energy of 40Ca was investigated, and it
is analyzed in this work.

So the paper is structured as follows. In Sec. II, the shell
model structure for each nucleus, the method that is applied to
calculate the matrix elements of specific nucleus Hamiltonian,
and the corresponding diagonalization procedure, are briefly
explained. Finally, the results, discussion, and conclusion are
presented in the Sec. III.

II. THE CALCULATION OF NONDIAGONAL MATRIX ELEMENTS OF THE NUCLEUS HAMILTONIAN

As before [3–6], the harmonic oscillator shell model basis is chosen and the nucleon configurations of the different symmetric
light and moderate closed shell nuclei are assumed as

4He :
[(

0s 1
2

)4]
, 12C :

[4
He + (

0p 3
2

)8]
, 16O :

[12
C + (

0p 1
2

)4]
, 28Si :

[16
O + (

0d 5
2

)12]
, (1)

and (note that in this work, the principle quantum numbers ni are started from zero rather one)

32S :
[28

Si + (
1s 1

2

)4]
, 40Ca :

[32
S + (

0d 3
2

)8]
, 56Ni :

[40
Ca + (

0f 7
2

)16]
, (2)

respectively. Also, for the asymmetric heavy closed shell nuclei, the following shell model configurations are used [4,6]:

48Ca : 40Ca + [(
0f 7

2

)8]
n
,90 Zr : 40Ca + [(0f )28(1p)12] + [(

0g 9
2

)10]
n
,

120Sn : 40Ca + [
(0f )28(1p)12

(
0g 9

2

)20] + [(
0g 7

2

)8
(1d)10(2s)2

]
n
, (3)

208Pb : 40Ca + [
(0f )28(1p)12(0g)36(1d)20(2s)4

(
0h 11

2

)24] + [(
0h 9

2

)10
(1f )14(2p)6

(
0i 13

2

)14]
n
.

As was already mentioned [3–6], the single nucleon states, φi , are defined in terms of the harmonic oscillator (HOS) wave

functions, and the oscillator parameter γ =
√

h̄ω
M

is assumed as the variational parameter to fix the rms radius of specific nucleus,
where h̄ω is the familiar quantum energy of our HOS basis. Assuming the origin of our coordinate to be fixed at each nucleus
center of mass, then the intrinsic Hamiltonian is given by

H0 = {H} − P2

M , (4)

054324-2



EFFECT OF NONDIAGONAL LOWEST ORDER . . . PHYSICAL REVIEW C 86, 054324 (2012)

TABLE II. The matrix elements of T2 and V2 for 208Pb nucleus by using all of the CDEI, for the Av18 interaction with Jmax = 2, in terms
of J .

J T = 0, MT = 0 T = 1, MT = −1 T = 1, MT = 0 T = 1, MT = 1
T2
A

V2
A

T2
A

V2
A

T2
A

V2
A

T2
A

V2
A

0 0.193 −0.314 0.181 −0.428 0.135 −0.391 0.124 −0.326
1 2.051 −3.061 0.490 −0.967 0.381 −0.820 0.301 −0.642
2 1.756 −4.319 0.604 −2.078 0.469 −1.762 0.154 −0.584
3 1.853 −4.794 0.656 −2.282 0.477 −1.828 0.369 −1.370
4 1.786 −4.688 0.627 −2.257 0.432 −1.703 0.105 −0.526
5 1.549 −4.180 0.339 −1.164 0.367 −1.471 0.095 −0.319
6 1.294 −3.527 0.433 −1.576 0.280 −1.137 0.149 −0.493
7 0.142 −0.403 0.191 −0.624 0.175 −0.637 0.136 −0.546
8 0.269 −0.699 0.064 −0.228 0.124 −0.571 0.080 −0.341
9 0.366 −1.067 0.050 −0.148 0.080 −0.360 0.042 −0.167
10 0.302 −0.893 0.021 −0.059 0.042 −0.175 0.005 −0.015
11 0.151 −0.452 0.047 −0.181 0.005 −0.016 — —
12 0.084 −0.250 0.006 −0.014 0.000 −0.001 — —
13 0.000 −0.000 0.000 −0.000 0.000 −0.000 — —

where P = ∑
i pi and M = AM are the nucleus total linear

momentum and its mass, respectively. Thus, the total ground-
state binding energy of a nucleus can be obtained through the
expectation value of the above Hamiltonian (H0):

EBE
Total = 〈H0〉 =

{[∑
i

〈i, γ | p2

2M
|i, γ 〉

]

+
[

1

4

∑
ijkl

〈ij, γ |Veff(12, ρ) |kl, γ 〉a
]}

− T A
c.m., (5)

in the HOS basis, where the Dirac ket |i; γ 〉 stands for
|ni, li , si , τi, mτ i ; γ 〉, that is, the principle quantum number,
the angular momentum, the spin, the isospin, and the isospin
projection parts of the single particle states, respectively. It is
well known that in the nuclei, li + si should be replaced by
the good operator ji because of the spin-orbit interactions.
The kinetic energy related to each nucleus center-of-mass
motion is

T A
c.m. =

〈
P2

M

〉
= 3

4
h̄ω.

The matrix elements of one-body, that is, p2

2M
, kinetic energy

per nucleon has the familiar form of

T1 = 1

A

A∑
i

〈i, γ | p2

2M
|i, γ 〉 = 1

2A

A∑
i=1

(
2ni + li + 3

2

)
h̄ω,

(6)

and it is diagonal in the HO basis. The nonlocal two-body
effective interaction operator, Veff(1, 2), has the following
form [53]:

Veff(1, 2) = {T2} + {V2} =
{−h̄2

2m

[
F (1, 2),

[∇2
12, F (1, 2)

]]}
+ {F (1, 2)V (12)F (1, 2)} , (7)

where F (1, 2) and V (12) are the two-body correlation func-
tions and the phenomenological NN potentials, respectively.
We should diagonal the matrix with elements

[
1
4 〈ij, γ |Veff(12, ρ) |kl, γ 〉a

]
, (8)

where i, j , k, and l run over the model space defined in
Eqs. (1), (2), and (3) for each nucleus with the atomic number
A. By the term

[Veff] =
[

1

4

∑
ijkl

〈ij, γ |Veff(12, ρ) |kl, γ 〉a
]

(9)

in Eq. (5), we mean the sum of diagonal elements of two-body
effective interaction matrix (8), after diagonalization (see
below for definition of its matrix elements). We choose the
modern phenomenological Argonne Av18 interaction as the
bare NN potential [23]. To take into account the nondiagonal
contributions of the two-body effective interactions to the
binding energies of the closed shell nuclei, unlike our previous
works [3–6], the related matrices should be constructed by
using the following interaction elements:

ξJ T
I (η1η2, η

′
1η

′
2) = 〈η′

1η
′
2;J T |Veff(1, 2)|η1η2;J T 〉 (10)

for the symmetric nuclei and

ξ
J T MT

I (η1η2, η
′
1η

′
2) = 〈η′

1η
′
2;J T MT |Veff(1, 2)|η1η2;J T MT 〉

(11)

for the asymmetric nuclei. In the above equations J , T , and
MT are the total angular momentum,

−→J = −→
j1 + −→

j2 , the total
isospin and the total isospin projection of the two nucleons,
respectively, and the quantum number ηi stands for the single
nucleon quantum numbers ni , li , and ji . Now, in theJ -coupled
scheme, the foregoing interaction matrix elements can be
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written as follows [76,77]:

ξ
J T MT

I (η1η2, η
′
1η

′
2)

=
∑

nLNL,λ

∑
n′L′N ′L′,λ′

∑
JSmτ1 mτ2

√
[j1][j2][j ′

1][j ′
2][J ][J ][S][λ][λ′](−1)λ+λ′

[1 − (−1)L+S+T ]
(
τ1, τ2,mτ1 ,mτ2

∣∣T MT

)

×〈n1l1n2l2; λ|nLNL; λ〉〈n′
1l

′
1n

′
2l

′
2; λ′|n′L′N ′L′; λ′〉

{L L J

S J λ

}
6j

{L′ L′ J

S J λ′

}
6j

⎧⎪⎨
⎪⎩

l1
1
2 j1

l2
1
2 j2

λ S J

⎫⎪⎬
⎪⎭

9j

⎧⎪⎨
⎪⎩

l′1
1
2 j ′

1

l′2
1
2 j ′

2

λ′ S J

⎫⎪⎬
⎪⎭

9j

×〈n′L′JST ,MT ,N ′L′|VLJST MT

eff (|−→r 12|, ρ(|−→R 12|))|nLJST ,MT ,NL〉, (12)

where [j1] = 2j1 + 1, etc., 〈n1l1n2l2; λ|nLNL; λ〉, etc., are
the Brody-Moshinsky brackets [78] and −→r 12 = −→r 1 − −→r 2 and
−→
R 12 = −→r 1+−→r 2

2 . The parameters and the quantum numbers in
the above equations are similar to those given in Refs. [3–6].
Here, again, the LDA approach [3–6] is used for ρ(|−→R 12|).
For the symmetric nuclei, it is possible to remove the Clebsch-
Gordon coefficients (τ1, τ2,mτ1 ,mτ2 |T MT ) in the above equa-
tion and replace it with [T ]. It should be pointed out that, in
general, VLSJT MT

eff (−→r 12, ρ(|−→R 12|)) depend on the asymmetric
parameter, � = ρp

ρn
, where ρp(n) is the single-particle density

of protons (neutrons) [4,6]. To construct the interaction matrix
by using the interaction matrix elements ξ

J T MT

I , it should be
mentioned that there are two J block matrices corresponding
to T = 0 (one block) and T = 1 (one block which contains
three sub-blocks for different MT values). So, four J block
matrices could be constructed by means of ξ

J T MT

I elements,
corresponding to T = 0,MT = 0 and T = 1,MT = −1, 0, 1.
Now, for a symmetric (asymmetric) nucleus, a N × N J
matrices can be built by the elements of ξ

J T (MT )
I . To write

a computing program, it is useful to arrange the matrix
elements as the nucleons occupy the energy levels in the
corresponding shell configurations. In this view, the quantum
numbers are sorted to get the row (column) indices, i(j ), as
follows:

i = n1(ml1mj 1mn2ml2mj 2) + l1(mj 1mn2ml2mj 2)

+ j1(mn2ml2mj 2) + n2(ml2mj 2) + l2(mj 2) + j2 + 1
2 .

(13)

The numbers mη are the maximum possible values that can be
taken by η, and as before, η implies ni, li , ji which corresponds
to each occupied energy level in the shell model. Because ji

has a half-odd magnitude, it is useful to add 1
2 in the above

equation. To clarify, consider the 40Ca nucleus as an example.
In this nucleus, the values of {ni}, {li}, and {ji} are {0, 1},
{0, 1, 2}, and { 1

2 , 3
2 , 5

2 }, respectively. Thus, from Eq. (13),
mn = 2, ml = 3, and mj = 3. In this way, one can trace the
related matrix elements without confusing. Now, the J -matrix
elements can be constructed as

ξJ T
11 = 〈

0s 1
2
, 0s 1

2

∣∣ξJ T
I

∣∣0s 1
2
, 0s 1

2

〉
,

ξJ T
12 = 〈

0s 1
2
, 0s 1

2

∣∣ξJ T
I

∣∣0s 1
2
, 0p 3

2

〉
, (14)

. . . , ξJ T
1,36 = 〈

0s 1
2
, 0s 1

2

∣∣ξJ T
I

∣∣0d 3
2
, 0d 3

2

〉
,

ξJ T
21 = 〈

0s 1
2
, 0p 3

2

∣∣ξJ T
I

∣∣0s 1
2
, 0s 1

2

〉
,

ξJ T
22 = 〈

0s 1
2
, 0p 3

2

∣∣ξJ T
I

∣∣0s 1
2
, 0p 3

2

〉
, (15)

. . . , ξJ T
2,36 = 〈

0s 1
2
, 0p 3

2

∣∣ξJ T
I

∣∣0d 3
2
, 0d 3

2

〉
,

etc., and finally,

ξJ T
36,1 = 〈

0d 3
2
, 0d 3

2

∣∣ξJ T
I

∣∣0s 1
2
, 0s 1

2

〉
,

ξJ T
36,2 = 〈

0d 3
2
, 0d 3

2

∣∣ξJ T
I

∣∣0s 1
2
, 0p 3

2

〉
, (16)

. . . , ξJ T
36,36 = 〈

0d 3
2
, 0d 3

2

∣∣ξJ T
I

∣∣0d 3
2
, 0d 3

2

〉
.

There are six J matrices according to the different values
of J for 40Ca; that is, J = 0–5. Therefore, there exits
totally 12 J matrices with 36 × 36 dimension. Table I, shows
the matrix dimensions of the above-mentioned closed shell
symmetric and asymmetric nuclei as well as the values of
their corresponding J ’s. Of course, Table I just shows the
maximum dimensions of J matrices of asymmetric nuclei.
After constructing theJ matrices, they should be diagonalized
by using an appropriate diagonalization code. In this work
the EISPACK [79] code (which was available for us) is used
for this purpose. Thus, the contributions of the two-body
interactions in the ground state of the closed shell nuclei can
be obtained from the sum of these interaction J matrices
eigenvalues. The calculations are performed by using the
Av18,Jmax=2 and Av18,Jmax=5 interactions, with inclusion of the
Coulomb potential, for the symmetric and the asymmetric
nuclei. Note that, because we are working in the J -coupled
basis in which the coupled angular momentum has a definite
value, it is more beneficial to use J scheme rather than M
scheme, to construct the interaction matrices. Although M
scheme consumes less computing time than J scheme, it is
not suitable for the matrix elements which are formulated in
the present formalism.

However, because, especially, the dimensions ofJ matrices
of the heavy closed nuclei are very large, the huge computing
times are needed. For example, the calculation of 484 × 484
elements of J matrix of 208Pb, with J � 7, takes approxi-
mately about 600 h of CPU time by means of a PC (Pentium
4; 2.8 GHz; 1-MB cache; 2 GB RAM) with LINUX operating
system (CENTOS 5.1). Of course, this time reduces to about
100 h for J matrices of 208Pb, with 7 � J < 13 [note that
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TABLE III. As the Table I but for Jmax = 5.

J T = 0, MT = 0 T = 1, MT = −1 T = 1, MT = 0 T = 1, MT = 1
T2
A

V2
A

T2
A

V2
A

T2
A

V2
A

T2
A

V2
A

0 0.121 −0.266 0.143 −0.337 0.106 −0.307 0.096 −0.253
1 1.150 −2.318 0.409 −0.806 0.318 −0.683 0.251 −0.541
2 1.489 −3.677 0.526 −1.833 0.385 −1.462 0.312 −1.168
3 1.571 −3.828 0.534 −1.788 0.365 −1.214 0.301 −1.092
4 1.507 −3.898 0.506 −1.831 0.350 −1.390 0.267 −1.054
5 1.302 −3.400 0.429 −1.548 0.187 −0.736 0.209 −0.808
6 0.698 −1.806 0.353 −1.320 0.225 −0.917 0.159 −0.649
7 0.821 −2.271 0.263 −0.995 0.095 −0.327 0.108 −0.451
8 0.608 −1.715 0.191 −0.763 0.110 −0.481 0.064 −0.138
9 0.395 −1.153 0.126 −0.517 0.063 −0.297 0.034 −0.015
10 0.250 −0.747 0.072 −0.312 0.032 −0.142 0.004 −0.012
11 0.125 −0.378 0.037 −0.152 0.004 −0.012 — —
12 0.069 −0.207 0.004 −0.011 0.000 −0.000 — —
13 0.000 −0.000 0.000 −0.000 0.000 −0.000 — —

this time is required (1) mainly for the calculation of the matrix
element, for example, calculation of each matrix element for
the 208Pb nucleus takes at least between 2 and 5 min and (2)
for the diagonalization].

III. RESULTS, DISCUSSIONS, AND CONCLUSIONS

Tables II and III, show the break down of diagonalized
matrix elements of the two-body kinetics (T2) and potentials
(V2) energies per nucleon for the 208Pb nucleus in terms of
J , T , and MT . They are obtained by using all of the matrix
elements of the CDEI for the Av18 interaction with Jmax = 2
and 5, respectively. In general, for the different values of the
total isospin T , asJ increases, the absolute values of T2 andV2

also increase and then for 4 � J � 6 they start to decrease. As
one should expect, the singlet isospin components; that is, T =
0, MT = 0 has larger two-body kinetic and lower two-body
potential energies. However, for the triplet case, T = 1, again
it is observed that while T2 decreases, the two-body potential
energy increases when the isospin projection changes from
MT = −1 to 0 or 1. By changing Jmax from 2 to 5, in general,
all of the matrix element absolute values decease. So in the
present calculation, and similar to our previous report [6], the
inclusion of the higher channels in the potential, force the
binding energy to decrease.

The differences of variational binding energies per nucleon
(MeV) of the light and the moderate symmetric closed shell
nuclei which are obtained by using all of the matrix elements
of CDEI (this work) and the diagonal ones (the previous
work) [5], with the Av18 interaction up to Jmax = 2 and
Jmax = 5 are given in Tables IV and V, respectively. In these
tables, the first column shows the nucleus types and the
second one gives the difference of oscillation parameters,
γ , between the two saturation points, that is, with and
without inclusion of the nondiagonal effects [5]. The six
other columns again show the differences between two latter
cases for the single-particle kinetic energy, the two-body
kinetic energy, the two-body potential energy, the Coulomb
energy, the binding energy, and the rms radius of the light
and the moderate closed shell symmetric nuclei. For the
case of Jmax = 2, in Table IV, generally for most of the
nuclei, the rms radii (γ ) do not change, which shows that
the diagonalization has not affected the rms radii. Only in
case of the 12C and 56Ni nuclei are the rms radii decreased.
A similar situation is held for the binding energies, in which
there are about 1.08- and 1.49-MeV increase in the binding
energies of the 28Si and 56Ni nuclei, respectively. Looking at
Table V, that is, the Jmax = 5 case, one notices that while
the rms radii do not change at all, which is in contrast to
the Jmax = 2 case, the difference in the binding energies

TABLE IV. The difference of the variational binding energies per nucleon (MeV) and the rms radii (fm) of the light and the moderate
symmetric closed shell nuclei obtained by using all of the matrix elements of CDEI (present work) and just by using the diagonal ones from
Ref. [5], with the Av18 interaction up to the Jmax = 2. See the text for explanations about the different columns.

Nucleus �γ
�T1
A

�T2
A

�V2
A

�Vc

A

�BEc

A
�rrms

12C 0.02 1.07 1.1 −2.66 −0.02 −0.50 −0.07
16O 0.00 0.00 −0.02 0.11 −0.04 0.05 0.00
28Si 0.01 0.7 0.82 −2.42 −0.19 −1.08 −0.05
32S 0.00 0.00 0.25 −0.32 −0.17 −0.24 0.00
40Ca −0.01 −0.72 −0.59 1.48 −0.31 −0.13 0.05
56Ni 0.02 1.66 1.65 −4.35 −0.45 −1.49 −0.10
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TABLE V. The same as Table IV but for Av18 interaction with Jmax = 5. See the text for explanations about the different columns.

Nucleus �γ
�T1
A

�T2
A

�V2
A

�Vc

A

�BEc

A
�rrms

12C 0.01 0.53 1.64 −3.96 −0.03 −1.82 −0.03
16O 0.00 0.00 1.04 −2.32 −0.04 −1.32 0.00
28Si 0.00 0.00 1.48 −3.68 −0.21 −2.41 0.00
32S −0.01 −0.70 0.84 −1.63 −0.21 −1.68 0.04
40Ca −0.01 −0.72 0.62 −1.15 −0.31 −1.56 0.05
56Ni 0.00 0.00 1.51 −3.71 −0.55 −2.74 0.00

becomes much larger with respect to the nondiagonalized
calculations.

The effect of nondiagonal matrix elements on the binding
energy can be investigated by comparing these contributions,
that is, Tables IV and V with those presented in our previous
works [5,6]. The nondiagonal matrix elements lead to shift the
saturation binding energies of the light and the moderate closed
shell nuclei to the lower ones. This behavior is demonstrated
in Fig. 1, in which the dash (full) curves are from our previous
(present) work. While, there are obviously no changes in
the ground-state energy of 4He nucleus, the diagonalization
procedures increase the binding energies of the light and the
moderate nuclei with respect to the nondiagonalization case
[5]. The shifts are larger near the saturation points. However,
still the present results are far from the experimental data, that
is, the stars in the Fig. 1, but one hopes that working in the
larger configuration space, for example including the 1s0d
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FIG. 1. The saturation curve of the light and the moderate closed
shell nuclei. Solid curves, present work; dashed curves, from Ref. [5]).

shell in 16O, etc., may shift the saturation binding energy to
the lower one. Evidence of this argument can be observed in
the heavy nuclei. However, we could not estimate the effect
of the nondiagonal matrix elements on the saturation points
of the heavy nuclei because of the computing time problems.
So we force to calculate their binding energies only near the
nondiagonalized [5] saturation points. So, the Tables VI (Av18

with Jmax = 2) and VII (Av18 with Jmax = 5) are the same
as two above latter tables and show the differences between
the results of present and our previous works [6] for the
asymmetric closed shell nuclei. Because (1) for the symmetric
nuclei we found that the rms radii (γ ) do not change and (2)
as it was pointed out before, the numerical calculation for the
heavy closed shell nuclei need an enormous computational
time, so the calculations are performed only at the saturation
points obtained from nondiagonalized calculations [6]. It is
interesting that while in case of Jmax = 2, the binding energy
increases for the 48Ca, 90Zr, and 120Sn nuclei it decreases
for 208Pb nucleus. For example, the diagonalization procedure
changes the binding energy of 208Pb nucleus from −9.22 to
−7.92 MeV, which approaches the experimental predication
of −7.87 MeV.

Figure 2 of Ref. [75] shows that by changing Jmax from
4 (5) to 5 (10) the variation of the binding energy of 40Ca is
about 0.3 (0.15) MeV per nucleon. However, in the Tables I
and III of Ref. [5] the difference between Jmax = 2 and Jmax =
5 is about 0.32 MeV per nucleon. So we do not expect to
observe the sizable changes by performing calculation up to
Jmax = 10, which needs much more computer time. As we
pointed out before, the LOCV calculation for nuclear matter
with the phenomenological potentials such as Av18 agrees
well with FHNC calculation (see our recent work in Ref. [68])
and it is reasonably convergent [18,19]. So the results of our
diagolaization in this work shows the accuracy of our previous
works in which only the diagonal matrix elements have been
taken into the account. However, in our future works we will try
to investigate the importance of the higher relative partial-wave

TABLE VI. The same as the Table IV but for asymmetric nuclei.

Nucleus γ
�T2
A

�V2
A

�Vc

A

�BEc

A

48Ca 0.59 0.10 −0.49 −0.24 −0.64
90Zr 0.54 0.13 −0.37 −0.57 −0.80
120Sn 0.52 0.14 −0.31 −0.92 −1.09
208Pb 0.49 0.15 2.81 −1.66 1.30
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TABLE VII. The same as the Table V but for asymmetric nuclei.

Nucleus γ
�T2
A

�V2
A

�Vc

A

�BEc

A

48Ca 0.59 0.04 −0.24 −0.24 −0.44
90Zr 0.54 0.05 −0.11 −0.57 −0.63
120Sn 0.52 −0.67 1.16 −0.92 −0.43
208Pb 0.49 −0.60 2.34 −1.66 0.09

contribution as well the effect of uncertainty in our LOCV
nuclear matter calculation.

In conclusion, the binding energies of the light, the
moderate, and the heavy closed shell nuclei, that is, 4He, 12C,
16O, 28Si, 32S, 40Ca, 56Ni, 48Ca, 90Zr, 120Sn, and 208Pb were
calculated, by using all of the channel-dependent effective
two-body interactions matrix elements which could be cal-
culated by performing the LOCV nuclear matter calculations
with the Av18 phenomenological NN potential for different
Jmax = 2 and 5. Rather than the M-coupling scheme the
J -coupling scheme was applied to construct the interaction
Hamiltonian matrices in the spherical harmonics oscillator
basis shell structure. The channel-dependent effective two-
body interactions were replaced with the average effective
interactions for the interaction channels with J > Jmax. It was
shown that the nondiagonal matrix elements with Av18,Jmax=2

interactions increase the binding energy of nuclei; that is, the

maximum magnitude of them was about 1.49 MeV for the
56Ni nucleus. However, similar calculations with Av18,Jmax=5

increased the binding energy of the symmetric nuclei more
than the asymmetric ones; that is, the maximum magnitude
of them was about 2.74 MeV for the 56Ni nucleus. Owing
to the huge computational time for the heavy nuclei, the
binding energies were calculated only at their saturation points
which were available from our previous works. The EISPACK

code was used for the above diagonalization procedure of our
interaction Hamiltonian matrices. Finally it is concluded that
working in the larger configuration shell model space and
with inclusion of nondiagonal matrix elements as well as the
effects of the higher partial waves, that is, Jmax � 5, and 3BF
it could be possible to remove the discrepancies between the
theoretical calculations and the experimental predications. We
also hope in our future works to find out about the effects
of the LDA, the harmonic oscillator approximation, and the
method of diagonalization procedures on the results presented
here.
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[51] A. Stadler, W. Glöckle, and P. U. Sauer, Phys. Rev. C 44, 2319

(1991).
[52] A. M. Green, Rep. Prog. Phys. 39, 1109 (1976).
[53] J. W. Clark, Prog. Part. Nucl. Phys. 2, 89 (1979).
[54] V. R. Pandharipande and R. B. Wiringa, Rev. Mod. Phys. 51,

821 (1979).
[55] B. Friedman and V. R. Pandharipande, Nucl. Phys. A 361, 502

(1981).
[56] R. B. Wiringa, V. Fiks, and A. Fabrocini, Phys. Rev. C 38, 1010

(1988).
[57] I. E. Lagaris and V. R. Pandharipande, Nucl. Phys. A 359, 331

(1981).
[58] R. B. Wiringa, R. A. Smith, and T. L. Ainsworth, Phys. Rev. C

29, 1207 (1984).

[59] K. E. Schmidt and V. R. Panharipande, Phys. Lett. B 87, 11
(1979).

[60] A. Akmal, V. R. Pandharipande, and D. G. Ravenhall, Phys. Rev.
C 58, 1804 (1998).
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