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Background: Superallowed β-decay rates provide stringent constraints on physics beyond the standard model of
particle physics. To extract crucial information about the electroweak force, small isospin-breaking corrections
to the Fermi matrix element of superallowed transitions must be applied.
Purpose: We perform systematic calculations of isospin-breaking corrections to superallowed β decays and
estimate theoretical uncertainties related to the basis truncation, to time-odd polarization effects related to the
intrinsic symmetry of the underlying Slater determinants, and to the functional parametrization.
Methods: We use the self-consistent isospin- and angular-momentum-projected nuclear density functional theory
employing two density functionals derived from the density-independent Skyrme interaction. Pairing correlations
are ignored. Our framework can simultaneously describe various effects that impact matrix elements of the Fermi
decay: symmetry breaking, configuration mixing, and long-range Coulomb polarization.
Results: Isospin-breaking corrections to the I = 0+, T = 1 → I = 0+, T = 1 pure Fermi transitions are
computed for nuclei from A = 10 to A = 98 and, for the first time, to the Fermi branch of the I, T = 1/2 → I ,
T = 1/2 transitions in mirror nuclei from A = 11 to A = 49. We carefully analyze various model assumptions
impacting theoretical uncertainties of our calculations and provide theoretical error bars on our predictions.
Conclusions: The overall agreement with empirical isospin-breaking corrections is very satisfactory. Using
computed isospin-breaking corrections we show that the unitarity of the CKM matrix is satisfied with a precision
of better than 0.1%.
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I. INTRODUCTION

By studying isotopes with an enhanced sensitivity to
fundamental symmetries, nuclear physicists can test various
aspects of the standard model in ways that are complementary
to other sciences. For example, a possible explanation for
the observed asymmetry between matter and antimatter in
the universe could be studied by searching for a permanent
electric dipole moment larger than standard model predictions
in heavy radioactive nuclei that have permanent octupole
shapes. Likewise, the superallowed β decays of a handful of
rare isotopes with similar numbers of protons and neutrons, in
which both the parent and the daughter nuclear states have zero
angular momentum and positive parity, are a unique laboratory
to study the strength of the weak force.

What makes these pure vector-current-mediated (Fermi)
decays so useful for testing the standard model is the
hypothesis of the conserved vector current (CVC), that
is, independence of the vector current on the nuclear
medium. The consequence of the CVC hypothesis is that
the product of the statistical rate function f and partial
half-life t for the superallowed I = 0+, T = 1 → I = 0+,
T = 1 Fermi β decay should be nucleus independent and
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equal to

f t = K

G2
V|M (±)

F |2
= const, (1)

where K/(h̄c)6 = 2π3h̄ ln 2/(mec
2)5 = 8120.2787(11) ×

10−10 GeV−4s is a universal constant; GV stands for the
vector coupling constant for semileptonic weak interactions,
and M

(±)
F is the nuclear matrix element of the isospin rising

or lowering operator T̂±.
Relation (1) does not hold exactly and must be slightly

amended by introducing a set of radiative corrections to the f t

values and a correction to the nuclear matrix element owing to
isospin symmetry breaking:

|M (±)
F |2 = 2(1 − δC) (2)

(see Refs. [1–4], and references cited therein). Because these
corrections are small, of the order of a percent, they can be
approximately factorized and arranged in the following way:

F t ≡ f t(1 + δ′
R)(1 + δNS − δC) = K

2G2
V

(
1 + �V

R

) , (3)

with the left-hand side being nucleus independent. In Eq. (3),
�V

R = 2.361(38)% stands for the nucleus-independent part
of the radiative correction [5], δ′

R is a transition-dependent
(Z-dependent) but nuclear-structure-independent part of the
radiative correction [2,5], and δNS denotes the nuclear-
structure-dependent part of the radiative correction [2,6].
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In spite of theoretical uncertainties in the evaluation of
radiative and isospin-symmetry-breaking corrections, the su-
perallowed β decay is the most precise source of experimental
information for determining the vector coupling constant GV

and provides us with a stringent test of the CVC hypothesis.
In turn, it is also the most precise source of the matrix
element Vud = GV/Gμ of the Cabibbo-Kobayashi-Maskawa
(CKM) three-generation quark mixing matrix [2,7–9]. This
is so because the leptonic coupling constant, Gμ/(h̄c)3 =
1.16637(1) × 10−5 GeV−2, is well known from the muon
decay [9].

The advantage of the superallowed β-decay strategy results
from the fact that, within the CVC hypothesis, Vud can be
extracted by averaging over several transitions in different
nuclei. For precise tests of the standard model, only these
transitions that have f t values known with a relative precision
better than a fraction of a percent are acceptable. Currently, 13
“canonical” transitions spreading over a wide range of nuclei,
from A = 10 to A = 74, meet this criterion (have f t values
measured with an accuracy of order 0.3% or better) and are
used to evaluate the values of GV and Vud [2].

In this work we concentrate on the isospin-breaking (ISB)
corrections δC that were already computed by various authors
using a diverse set of nuclear models [2,10–17]. The standard
in this field has been set by Towner and Hardy (HT) [2], who
used the nuclear shell model to account for the configuration
mixing effect and the mean-field (MF) approach to account
for a radial mismatch of proton and neutron single-particle
(s.p.) wave functions caused by Coulomb polarization. In
this study, which constitutes an extension of our earlier work
[15], we use the isospin- and angular-momentum-projected
density functional theory (DFT). This method can account,
in a rigorous quantum-mechanical way, for spontaneous
symmetry-breaking (SSB) effects, configuration mixing, and
long-range Coulomb polarization effects.

Our paper is organized as follows. The model is described
in Sec. II. The results of calculations for ISB corrections to
the superallowed 0+ → 0+ Fermi transitions are summarized
in Sec. III. ISB corrections to the Fermi matrix elements in
mirror-symmetric T = 1/2 nuclei are discussed in Sec. IV.
Section V studies a particular case of the Fermi decay of 32Cl.
Finally, a summary and perspectives are given in Sec. VI.

II. THE MODEL

The success of the self-consistent DFT approach to
mesoscopic systems [18], in general, and to atomic nuclei
[19–21], in particular, has its roots in the SSB mechanism
that incorporates essential short-range (pairing) and long-
range (spatial) correlations within a single deformed Slater
determinant. The deformed states provide a basis for the
symmetry-projected DFT approaches, which aim at including
beyond-MF correlations through the restoration of broken
symmetries by means of projection techniques [22].

A. Isospin- and angular-momentum-projected DFT approach

The building block of the isospin- and angular-momentum-
projected DFT approach employed in this study is the self-

consistent deformed MF state |ϕ〉, which violates both the
rotational and the isospin symmetries. While the rotational
invariance is of a fundamental nature and is broken sponta-
neously, the isospin symmetry is violated both spontaneously
and explicitly by the Coulomb interaction between protons.
The strategy is to restore the rotational invariance, remove
the spurious isospin mixing caused by the isospin SSB
effect, and retain only the physical isospin mixing owing
to the electrostatic interaction [23,24]. This is achieved by
a rediagonalization of the entire Hamiltonian, consisting of
the isospin-invariant kinetic energy and Skyrme force and the
isospin-non-invariant Coulomb force, in a basis that conserves
both angular momentum and isospin.

To this end, we first find the self-consistent MF state |ϕ〉
and then build a normalized angular-momentum- and isospin-
conserving basis |ϕ; IMK; T Tz〉 by using the projection
method,

|ϕ; IMK; T Tz〉 = 1√
Nϕ;IMK;T Tz

P̂ T
Tz,Tz

P̂ I
M,K |ϕ〉, (4)

where P̂ T
Tz,Tz

and P̂ I
M,K stand for the standard isospin and

angular-momentum projection operators,

P̂ T
Tz,Tz

= 2T + 1

2

∫ π

0
dT

TzTz
(βT )R̂(βT ) sin βT dβT , (5)

P̂ I
M,K = 2I + 1

8π2

∫
DI ∗

MK (�)R̂(�) d�, (6)

where R̂(βT ) = e−iβT T̂y is the rotation operator about the y

axis in the isospace, dT
TzTz

(βT ) is the Wigner function, and
Tz = (N − Z)/2 is the third component of the total isospin T .
As usual, R̂(�) = e−iγ Ĵz e−iβĴy e−iαĴz is the three-dimensional
rotation operator in space, � = (α, β, γ ) are the Euler angles,
DI

MK (�) is the Wigner function, and M and K denote
the angular-momentum components along the laboratory and
intrinsic z axis, respectively [22,25]. Note that unpaired MF
states |ϕ〉 conserve the third isospin component Tz; hence, the
one-dimensional isospin projection suffices.

The set of states (4) is, in general, overcomplete because
the K quantum number is not conserved. This difficulty is
overcome by selecting first the subset of linearly independent
states known as the collective space [22], which is spanned, for
each I and T , by the so-called natural states|ϕ; IM; T Tz〉(i)

[26,27]. The entire Hamiltonian—including the ISB terms—
is rediagonalized in the collective space, and the resulting
eigenfunctions are

|n; ϕ; IM; Tz〉 =
∑

i,T �|Tz|
a

(n;ϕ)
iIT |ϕ; IM; T Tz〉(i), (7)

where the index n labels the eigenstates in ascending order
according to their energies. The amplitudes a

(n;ϕ)
iIT define the

degree of isospin mixing through the so-called isospin-mixing
coefficients (or isospin impurities), determined for a given nth
eigenstate as

αn
C = 1 −

∑
i

|a(n;ϕ)
iIT |2, (8)

where the sum of norms corresponds to the isospin T

dominating in the wave function |n; ϕ; IM; Tz〉.
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One of the advantages of the projected DFT compared to
shell-model-based approaches [2,28] is that it allows for a
rigorous quantum-mechanical evaluation of the Fermi matrix
element using the bare isospin operators,

T̂± = 1

2

A∑
k=1

(
τ̂ (k)
x ± iτ̂ (k)

y

) ≡ ∓1

2
T̂1 ±1, (9)

where T̂1 ±1 denotes the rank 1 covariant one-body spherical-
tensor operators in the isospace (see discussion in Ref. [29]).
Indeed, noting that each mth eigenstate, (7), can be uniquely
decomposed in terms of the original basis states, (4),

|m; ϕ; IM; Tz〉 =
∑
K,T

f
(ϕ; m,I )
KT P̂ T

Tz,Tz
P̂ I

M,K |ϕ〉, (10)

with microscopically determined mixing coefficients f
(ϕ; m,I )
KT ,

the expression for the Fermi matrix element between the parent
state |m; ϕ; IM; Tz〉 and the daughter state |n; ψ ; IM; Tz ±
1〉 can be written as

〈m; ϕ; IM; Tz|T̂∓|n; ψ ; IM; Tz ± 1〉
= ±1

2

∑
T T ′

∑
KK ′

f
(ϕ; m,I )∗
KT f

(ψ ;n,I )
K ′T ′

× 〈ϕ|P̂ T
Tz,Tz

T̂1∓1P̂
T ′
Tz±1,Tz±1P̂

I
K,K ′ |ψ〉

= ±2I + 1

16π2

∑
T T ′

∑
KK ′

f
(ϕ;m,I ) ∗
KT f

(ψ ;n,I )
K ′T ′

∫
d�DI ∗

KK ′ (�)

×〈ϕ|P̂ T
Tz,Tz

T̂1 ∓1P̂
T ′
Tz±1,Tz±1|ψ̃〉, (11)

where the tilde indicates the Slater determinant rotated in
space: |ψ̃〉 = |ψ(�)〉 = R̂(�)|ψ〉. The matrix element appear-
ing on the right-hand side of Eq. (11) can be expressed through
the transition densities, which are basic building blocks of the
multireference DFT [24,30–32]. Indeed, with the aid of the
identity

P̂ T
K,MT̂λ μP̂ T ′

M ′,K ′ = CT M
T ′M ′ λμ

λ∑
ν=−λ

CT K
T ′K−ν λνT̂λνP̂

T ′
K−ν,K ′ , (12)

which results from the general transformation rule for spherical
tensors under rotations or isorotations,

R̂(�)T̂λμR̂(�)
† =

∑
μ′

Dλ
μ′μ(�)T̂λμ′, (13)

the matrix element entering Eq. (11) can be expressed as

〈ϕ|P̂ T
Tz,Tz

T̂1 ∓1P̂
T ′
Tz±1,Tz±1|ψ̃〉

= C
T Tz

T ′Tz±1 1∓1

∑
ν

C
T Tz

T ′Tz−ν 1ν〈ϕ|T̂1 νP̂
T ′
Tz−ν,Tz±1|ψ̃〉. (14)

For unpaired Slater determinants considered here, the double
integral over the isospace Euler angles in Eq. (11) can be
further reduced to a one-dimensional integral over the angle
βT using the identity

T̂λμeiαT̂z = e−iαμeiαT̂z T̂λμ, (15)

which is the one-dimensional version of the transformation
rule, (13), valid for rotations around the Oz axis in the isospace.

The final expression for the matrix element in Eq. (14) reads

〈ϕ|T̂1 νP̂
T ′
Tz−ν,Tz±1|ψ̃〉

= 2T ′ + 1

2

∫ π

0
dβT sin βT dT ′

Tz−1,Tz±1〈ϕ|T̂1 νe
−iβT T̂y |ψ̃〉

= (−1)ν
2T ′ + 1

2

∫ π

0
dβT sin βT dT ′

Tz−1,Tz±1N (�,βT )

×
∫

d3r ˜̃ρ1 −ν(�,βT , r), (16)

where ˜̃ρ1ν(�,βT , r) is the isovector transition density, and
the double-tilde sign indicates that the right Slater determinant
used to calculate this density is rotated both in space and
in isospace: | ˜̃ψ〉 = R̂(βT )R̂(�)|ψ〉. The symbol N (�,βT ) =
〈ϕ|R̂(βT )R̂(�)|ψ〉 denotes the overlap kernel.

Because natural states have good isospin, the states (7)
are free from spurious isospin mixing. Moreover, because the
isospin projection is applied to self-consistent MF solutions,
our model accounts for a subtle balance between long-range
Coulomb polarization, which tends to make proton and neutron
wave functions different, and short-range nuclear attraction,
which acts in the opposite way. Long-range polarization affects
globally all s.p. wave functions. Direct inclusion of this effect
in open-shell heavy nuclei is possible essentially only within
the DFT, which is the only no-core microscopic framework
that can be used there.

Recent experimental data on the isospin impurity deduced
in 80Zr from giant dipole resonance γ -decay studies [33] agree
well with the impurities calculated using isospin-projected
DFT based on modern Skyrme-force parametrizations [16,23].
This further demonstrates that the isospin-projected DFT is
capable of capturing the essential piece of physics associated
with isospin mixing.

B. The choice of Skyrme interaction

As discussed in Ref. [24], the isospin projection technique
outlined above does not yield singularities in energy kernels;
hence, it can be safely executed with all commonly used
energy density functionals (EDFs). However, as demonstrated
in Ref. [14], the isospin projection alone leads to unphysically
large isospin mixing in odd-odd N = Z nuclei. It has thus
been concluded that—in order to obtain reasonable results—
isospin projection must be augmented by angular-momentum
projection. This not only increases the numerical effort, but
also brings back the singularities in the energy kernels [14]
and thus prevents one from using the modern parametrizations
of the Skyrme EDFs, which all contain density-dependent
terms [34]. Therefore, the only option [14] is to use the
Hamiltonian-driven EDFs. For Skyrme-type functionals, this
leaves us with one choice: the SV parametrization [35]. In
order to better control the time-odd fields, the standard SV
parametrization must be augmented by the tensor terms, which
were neglected in the original work [35].

This density-independent parametrization of the Skyrme
functional has an isoscalar effective mass as low as m∗

m
≈ 0.38,

which is required to reproduce the actual nuclear saturation
properties. The unusual saturation mechanism of SV has a
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TABLE I. Skyrme parameters ti , xi (i = 0, 1, 2, 3), and W of SV
[35] and SHZ2. The last column shows relative changes in parameters.
Both parametrizations use the nucleon-mass parameter of h̄2/2m =
20.73 MeV fm2. Parameters not listed are equal to 0.

Parameter SV SHZ2 Change (%)

t0 −1248.290 −1244.98830 −0.26
t1 970.560 970.01156 −0.06
t2 107.220 99.50197 −7.20
x0 −0.170 0.01906 −111.21
W 150 150 0

dramatic impact on the overall spectroscopic quality of this
force, impairing such key properties as the symmetry energy
[14], level density, and level ordering. These deficiencies also
affect the calculated isospin mixing, which is a prerequisite
for realistic estimates of δC. In particular, in the case of 80Zr
discussed above, SV yields αC ≈ 2.8%, which is considerably
smaller than the mean value of ᾱC ≈ 4.4% ± 0.3% obtained by
averaging over nine popular Skyrme EDFs, the MSk1, SkO’,
SkP, SLy4, SLy5, SLy7, SkM∗, SkXc, and SIII functionals (see
Ref. [16] for further details). Even though the ISB corrections
δC are primarily sensitive to differences between isospin
mixing in isobaric analog states, the lack of a reasonable
Hamiltonian-based Skyrme EDF is probably the most critical
deficiency of the current formalism.

The aim of this study is (i) to provide the most reliable set of
ISB corrections that can be obtained within the current angular-
momentum and isospin-projected single-reference DFT and
(ii) to explore the sensitivity of results to EDF parameters,
choice of particle-hole configurations, and structure of time-
odd fields, which correlate valence neutron-proton pairs in
odd-odd N = Z nuclei. In particular, to quantify uncertainties
related to the Skyrme coupling constants, we have developed a
new density-independent variant of the Skyrme force, hereafter
dubbed SHZ2 (see Table I).

The force was optimized purposefully to properties of light
magic nuclei below 100Sn. The coupling constants t0, t1, t2,
and x0 of SHZ2 were found by means of a χ2 minimization
to experimental [36] binding energies of five doubly magic
nuclei: 16O, 40Ca, 48Ca, 56Ni, and 100Sn. The procedure reduced
the χ2 from ∼6.0 for the SV set to ∼3.6 for SHZ2. Most of
the nuclear matter characteristics calculated for both sets are
similar. It appears, however, that the fit to light nuclei only
weakly constrains the symmetry energy. The bulk symmetry
energy of SHZ2 is asym ≈ 42.2 MeV, i.e., it overestimates the
accepted value asym ≈ 32 ± 2 MeV by almost 30%. While this
property essentially precludes using SHZ2 in detailed nuclear
structure studies, it also creates an interesting opportunity for
investigating the quenching of ISB effects owing to the large
isospin-symmetry-restoring components of the force.

C. Numerical details

All calculations presented below were done using the code
HFODD [26,37], version (2.48q) or higher, which includes
both angular-momentum and isospin projections. In order

to obtain converged results for isospin mixing with respect
to basis truncation, in our SV calculations we used N = 10
harmonic oscillator (HO) shells for A < 40 nuclei, 12 shells
for 40 � A < 62 nuclei, and 14 shells for A � 62 nuclei. In
SHZ2 test calculations, we took N = 10 shells for A < 40 and
N = 12 shells for A > 40 nuclei.

For numerical integration over the Euler angles in space and
isospace (α, β, γ ; βT ), we used the Gauss-Tchebyschev (over
α and γ ) and Gauss-Legendre (over β and βT ) quadratures.
We took nα = nβ = nγ = 20 and nβT

= 8 (or 10) integration
points. This choice guarantees that the calculated values of δC

are not affected by the numerical integration error.

III. ISB CORRECTIONS TO SUPERALLOWED 0+ → 0+

FERMI TRANSITIONS

The 0+ → 0+ Fermi β decay proceeds between the ground
state (g.s.) of the even-even nucleus |I = 0, T ≈ 1, Tz = ±1〉
and its isospin-analog partner in the N = Z odd-odd nucleus,
|I = 0, T ≈ 1, Tz = 0〉. The corresponding transition matrix
element is

M
(±)
F = 〈I = 0, T ≈ 1, Tz = ±1|T̂±|I = 0, T ≈ 1, Tz = 0〉.

(17)

The g.s. |I = 0, T ≈ 1, Tz = ±1〉 in Eq. (17) is approxi-
mated by a projected state,

|I = 0, T ≈ 1, Tz = ±1〉 =
∑
T �1

c
(ψ)
T P̂ T

±1,±1P̂
I=0
0,0 |ψ〉, (18)

where |ψ〉 is the g.s. of the even-even nucleus obtained in self-
consistent MF calculations. The state |ψ〉 is unambiguously
defined by filling in the pairwise doubly degenerate levels of
protons and neutrons up to the Fermi level. The daughter state
|I = 0, T ≈ 1, Tz = 0〉 is approximated by

|I = 0, T ≈ 1, Tz = 0〉 =
∑
T �0

c
(ϕ)
T P̂ T

0,0P̂
I=0
0,0 |ϕ〉, (19)

where the self-consistent Slater determinant |ϕ〉 ≡ |ν̄ ⊗ π〉 (or
|ν ⊗ π̄〉) represents the so-called antialigned configuration,
selected by placing the odd neutron and the odd proton
in the lowest available time-reversed (or signature-reversed)
s.p. orbits. The s.p. configuration |ν̄ ⊗ π〉 manifestly breaks
the isospin symmetry as schematically depicted in Fig. 1.
The isospin projection from |ϕ〉 as expressed by Eq. (19) is
essentially the only way to reach the |T ≈ 1, I = 0〉 states in
odd-odd N = Z nuclei.

A. Shape-current orientation

At variance with the even-even parent nuclei, the an-
tialigned configurations in odd-odd daughter nuclei are not
uniquely defined. One of the reasons, which was not fully
appreciated in our previous work [15], is related to the relative
orientation of the nuclear shapes and currents associated with
the valence neutron-proton pairs. In all signature-symmetry-
restricted calculations for triaxial nuclei, such as ours, there
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FIG. 1. Left: Two possible g.s. configurations of an odd-odd
N = Z nucleus, as described by the conventional deformed MF
theory. These degenerate configurations are called aligned (upper)
and antialigned (lower), depending on what levels are occupied by the
valence particles. Right: What happens when the isospin symmetry is
restored. The aligned configuration is isoscalar; hence, it is insensitive
to the isospin projection. The antialigned configuration represents a
mixture of T = 0 and T = 1 states. The isospin projection removes
the degeneracy by lowering the T = 0 level.

are three antialigned Slater determinants, with the s.p. angular
momenta (alignments) of the valence protons and neutrons
pointing, respectively, along the Ox, Oy, or Oz axis of the
intrinsic shape defined by means of the long (Oz), intermediate
(Ox), and short (Oy) principal axes of the nuclear mass
distribution. These solutions, hereafter referred to as |ϕX〉,
|ϕY 〉, and |ϕZ〉, are schematically illustrated in Fig. 2. Their
properties can be summarized as follows.

(1) The three solutions are not linearly independent. Their
Hartree-Fock (HF) binding energies may typically differ
by a few hundred kilo–electron volts. The differences
come almost entirely from the isovector correlations in
the time-odd channel, as shown in the lower panel in Fig.
3 for the representative example of 34Cl. Let us stress that

FIG. 2. (Color online) Schematic illustration of relative orien-
tations of shapes and currents in the three antialigned states, |ϕX〉
(X), |ϕY〉 (Y ), and |ϕZ〉 (Z), discussed in the text. The long (Oz),
intermediate (Ox), and short (Oy) principal axes of the nuclear mass
distribution are indicated by thick arrows. The odd-neutron (jν) and
odd-proton (jπ ) angular momentum oriented along the Ox, Oy, or
Oz axis is shown by thin arrows. Note that in each case the total
angular-momentum alignment, jν + jπ , is 0.

FIG. 3. Top: ISB corrections δC for 0+ → 0+ superallowed β

decays 34Ar →34Cl (open circles) and 34Cl →34S (filled circles)
determined for the shape-current orientations X, Y , and Z depicted
schematically in Fig. 2. Bottom: Differences between the energies
of the X and Y configurations and that of the Z configuration in
34Cl. Filled triangles correspond to the total HF energies and open
triangles correspond to contributions from the time-odd isovector
channel. Filled circles show the total energy differences obtained for
the angular-momentum and isospin-projected states.

these poorly known correlations may significantly impact
the ISB corrections, as shown in the upper panel in Fig. 3.

(2) The type of isovector time-odd correlations captured by
the HF solutions depends on the relative orientation of
the nucleonic currents with respect to the nuclear shapes.
Solutions oriented perpendicular to the long axis, |ϕX〉
and |ϕY 〉, are usually similar to one another (they yield
identical correlations for axial systems) and differ from
|ϕZ〉, oriented parallel to the long axis, which captures
more correlations owing to the current-current time-odd
interactions.

(3) The three |T = 1, I = 0+〉 states projected from the |ϕX〉,
|ϕY 〉, and |ϕZ〉 Slater determinants differ in energy by
only a few tens of kilo–electron volts (see the lower
panel in Fig. 3). Hence, energywise, they represent the
same physical solution, differing only slightly owing to
polarization effects originating from different components
of the time-odd isovector fields. However, because these
correlations are completely absent in the even-even parent
nuclei, they strongly impact the calculated δC. The largest
differences in δC have been obtained for A = 34 and
A = 74 systems (see Fig. 3 and Tables II and III).

(4) Symmetry-unrestricted calculations always converge to
the signature-symmetry-conserving solution |ϕZ〉, which,
rather surprisingly, appears to be energetically unfavored
(except for 18F). In spite of our persistent efforts, no
self-consistent tilted-axis solutions have been found.

B. Nearly degenerate K orbitals

Owing to an increased density of s.p. Nilsson levels
in the vicinity of the Fermi surface for nearly spherical
nuclei, another type of ambiguity appears in choosing the
Slater determinants representing antialigned configurations.
Within the set of nuclei studied in this work, this ambiguity
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TABLE II. Results of calculations for superallowed transitions measured experimentally. Listed are empirical f t values [4]; SV values of
δC calculated by projecting from the |ϕX〉, |ϕY 〉, and |ϕZ〉 Slater determinants (see Sec. III A); recommended mean δ

(SV)
C corrections (see Sec.

III C) and corresponding F t values; empirical δ
(exp)
C corrections calculated using Eq. (23); contributions coming from individual transitions to

the χ 2 budget in the confidence-level test; and mean δ
(SHZ2)
C corrections and corresponding F t values.

Parent f t δ
(X)
C δ

(Y )
C δ

(Z)
C δ

(SV)
C F t δ

(exp)
C χ 2

i δ
(SHZ2)
C F t

nucleus (s) (%) (%) (%) (%) (s) (%) (%) (s)

Tz = −1
10C 3041.7(43) 0.559 0.559 0.823 0.65(14) 3062.1(62) 0.37(15) 3.7 0.462(65) 3067.8(49)
14O 3042.3(11) 0.303 0.303 0.303 0.303(30) 3072.3(21) 0.36(06) 0.8 0.480(48) 3066.9(24)
22Mg 3052.0(70) 0.243 0.243 0.417 0.301(87) 3080.5(75) 0.62(23) 1.9 0.342(49) 3079.2(72)
34Ar 3052.7(82) 0.865 0.997 1.475 1.11(29) 3056(12) 0.63(27) 3.1 1.08(42) 3057(15)

Tz = 0
26Al 3036.9(09) 0.308 0.308 0.494 0.370(95) 3070.5(31) 0.37(04) 0.0 0.307(62) 3072.5(23)
34Cl 3049.4(11) 0.809 0.679 1.504 1.00(38) 3060(12) 0.65(05) 48.4 0.83(50) 3065(15)
42Sc 3047.6(12) — — — 0.77(27) 3069.2(85) 0.72(06) 0.5 0.70(32) 3071(10)
46V 3049.5(08) 0.486 0.486 0.759 0.58(14) 3074.6(47) 0.71(06) 4.5 0.375(96) 3080.9(35)
50Mn 3048.4(07) 0.460 0.460 0.740 0.55(14) 3074.1(47) 0.67(07) 3.1 0.39(13) 3079.2(45)
54Co 3050.8(10) 0.622 0.622 0.671 0.638(68) 3074.0(32) 0.75(08) 2.0 0.51(20) 3078.0(66)
62Ga 3074.1(11) 0.925 0.840 0.881 0.882(95) 3090.0(42) 1.51(09) 44.0 0.49(11) 3102.3(45)
74Rb 3084.9(77) 2.054 1.995 1.273 1.77(40) 3073(15) 1.86(27) 0.1 0.90(22) 3101(11)

F t = 3073.6(12) χ 2 = 112.2 F t = 3075.0(12)
|Vud| = 0.97397(27) χ 2

d = 10.2 |Vud| = 0.97374(27)
0.99935(67) 0.99890(67)

manifests itself particularly strongly in 42Sc, where we deal
with four possible antialigned MF configurations built on the
Nilsson orbits originating from the spherical νf7/2 and πf7/2

subshells. These configurations can be labeled in terms of the
quantum number K as |νK̄ ⊗ πK〉, with K = 1/2, 3/2, 5/2,
and 7/2.

In the extreme shell-model picture, each of these states
contains all the T = 1 and I = 0, 2, 4, and 6 components.
Within the projected DFT picture, owing to configuration-
dependent polarizations in time-odd and time-even channels,
the situation is more complicated because the Slater determi-
nants |νK̄ ⊗ πK〉 corresponding to different K values are no
longer degenerate. Consequently, for each angular momentum
I , one obtains four different linearly dependent solutions.
Calculations show that in all I = 0 and T ≈ 1 states of

TABLE III. Similar to Table II, except for the unmeasured
transitions.

Parent δ
(X)
C δ

(Y )
C δ

(Z)
C δ

(SV)
C δ

(SHZ2)
C

nucleus (%) (%) (%) (%) (%)

Tz = −1
18Ne 2.031 1.064 1.142 1.41(46) 0.72(30)
26Si 0.399 0.399 0.597 0.47(10) 0.529(77)
30S 1.731 1.260 1.272 1.42(26) 0.98(21)

Tz = 0
18F 1.819 0.956 0.987 1.25(42) 0.42(24)
22Na 0.255 0.255 0.535 0.35(14) 0.216(86)
30P 1.506 0.974 1.009 1.16(27) 0.60(20)
66As 0.956 0.925 1.694 1.19(38) 0.64(12)
70Br 1.654 1.479 1.429 1.52(18) 1.10(52)

interest, the isospin mixing αC is essentially independent of
the choice of the initial Slater determinant. In contrast, the
calculated ISB corrections δC and energies depend on K (see
Fig. 4).

0.4

0.6

0.8

1.0

42Sc 42Ca

0
0.2
0.4
0.6

1/2 3/2 5/2 7/2

δδ C
(%

)

SV
SHZ2

ΔE
 (M

eV
)

K

0.377%

0.665(56)%

0.77(29)%

FIG. 4. Top: ISB corrections to the 42Sc →42Ca superallowed
β transition, calculated using SV (open circles) and SHZ2 (filled
circles) forces by projecting the |νK̄ ⊗ πK〉 configurations in 42Sc
for K = 1/2, 3/2, 5/2, and 7/2. From top to bottom, horizontal
lines show (i) the average ISB correction using SV (thick solid line);
(ii) the value from Ref. [2] (dotted line); and (iii) the δC from Ref.
[12]. Shaded regions mark related uncertainties. Bottom: Projected
energies of states |K; I = 0+, T ≈ 1〉 in 42Sc obtained from the con-
figurations |νK̄ ⊗ πK〉, relative to the projected energy of the K =
1/2 state.
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C. Theoretical uncertainties and error analysis

Based on the discussion presented in Secs. III A and III B,
the recommended calculated values of δC for the superallowed
0+ → 0+ β decay are determined by averaging over three
relative orientations of shapes and currents. Only in the case
of A = 42 do we adopt for δC an arithmetic mean over the four
configurations associated with different K orbitals.

To minimize uncertainties in αC and δC associated with
truncation of the HO basis in HFODD, we used different HO
spaces in different mass regions (cf. Sec. II C). With this
choice, the resulting systematic errors owing to the basis cutoff
should not exceed ∼10%. To illustrate the dependence of
δC on the number of HO shells, Fig. 5 shows the case of
the superallowed 46V →46Ti transition obtained by projecting
from the |ϕZ〉 solution in 46V. In this case, the parent and
daughter nuclei are axial, which allows us to reduce the
angular-momentum projection to one dimension and extend
the basis size up to N = 20 HO shells.

With increasing N , δC increases, and asymptotically it
reaches the value of 0.8096(12)%. This limiting value is about
6.7% larger than the value of 0.7587% obtained for N = 12
shells, that is, for a basis used to compute the 42 � A � 54
cases. For 62 � A � 74 nuclei, which were all found to be
triaxial, we have used N = 14 shells. A further increase in
basis size is practically impossible. Nonetheless, as shown in
Fig. 5, the rate of increase in δC slows down exponentially with
N , which supports our 10% error estimate owing to the basis
truncation.

The total error of the calculated value of δC includes
the standard deviation from the averaging, σn, and the
assumed 10% uncertainty owing to the basis size: �(δC) =√

σ 2
n + (0.1δC)2. The same prescription for �(δC) was also

used in the test calculations with SHZ2, even though a slightly
smaller HO basis was employed in that case.

For A = 38 nuclei, our model predicts the unusually large
correction δC ≈ 10%. The origin of the very different isospin
mixing obtained for odd-odd and even-even members of this
isobaric triplet is not fully understood. Most likely, it is
a consequence of the poor spectroscopic properties of SV.
Indeed, as a result of the incorrect balance between the
spin-orbit and the tensor terms in SV, the 2s1/2 subshell is
shifted up in energy close to the Fermi surface. This state is

FIG. 5. (Color online) Convergence of the ISB correction δC to
the 46V →46Ti superallowed β decay versus the number of oscillator
shells considered.
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FIG. 6. (Color online) ISB corrections to superallowed 0+ →
0+β decays calculated for (a) Tz = −1 → Tz = 0 and (b) Tz = 0 →
Tz = 1 transitions. Our adopted values from Table II (open circles
with error bars) are compared with ISB corrections from Refs. [2]
(filled circles; shaded band marks errors) and [12] (filled triangles).

more sensitive to time-odd polarizations than other s.p. states
around the 40Ca core (see Table I in Ref. [38]). The calculated
equilibrium deformations (β2, γ ) of the Tz ± 1 and Tz = 0,
A = 38 isobaric triplet are very similar, around (0.090, 60◦).
In the following, the 38K →38Ar transition is excluded from
the calculation of the Vud matrix element.

D. Survey of ISB corrections in 10 � A � 74 nuclei

The results of our calculations are collected in Tables II
and III and in Fig. 6. In addition, Fig. 7 shows the differences,
δ

(SV)
C − δ

(HT)
C , between our results and those in Ref. [2]. In spite

of clear differences between SV and HT, which can be seen
for specific transitions including those for A = 10, 34, and 62,
both calculations reveal a similar increase in δC versus A, at
variance with the RPA calculations in Ref. [12], which also
yield systematically smaller values.

The ISB corrections used for further calculations of Vud are
listed in Table II. Let us recall that our preference is to use
the averaged corrections and that the 38K →38Ar transition
has been disregarded. All other ingredients needed to compute
the F t values, including radiative corrections δ′

R and δNS, are
taken from Ref. [2], and the empirical f t values are taken
from Ref. [4]. For the sake of completeness, these empirical
f t values are also listed in Table II.

In the error budget of the resulting F t values listed in
Table II, apart from errors in the f t values and radiative
corrections, we also included the uncertainties estimated for
the calculated values of δC (see Sec. III C). To conform with
HT, the average value F t = 3073.6(12)s was calculated using
the Gaussian-distribution-weighted formula. However, unlike
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FIG. 7. Differences between the ISB corrections to the 12
accurately measured superallowed 0+ → 0+ β transitions (excluding
A = 38) calculated in this work with SV and those of HT [2]. Open
and filled circles mark the Tz = −1 → Tz = 0 and Tz = 0 → Tz = 1

decays, respectively. Errors, calculated as
√

(�δ
(SV)
C )2 + (�δ

(HT)
C )2,

are shown by shaded bands.

HT, we do not apply any further corrections to F t . This
leads to |Vud| = 0.97397(27), which agrees very well with
both the HT result [2], |V (HT)

ud | = 0.97418(26), and the central
value obtained from the neutron decay, |V (ν)

ud | = 0.9746(19)
[9]. A survey of the |Vud| values deduced using different
methods is given in Fig. 8. By combining the value of |Vud|
calculated here with those of the 2010 Particle Data Group [9],
|Vus| = 0.2252(9) and |Vub| = 0.00389(44), one obtains

|Vud|2 + |Vus|2 + |Vub|2 = 0.99935(67), (20)

which implies that the unitarity of the first row in the CKM
matrix is satisfied with a precision better than 0.1%. A survey
of the unitarity condition, (20), is shown in Fig. 9.

FIG. 8. The matrix element |Vud| deduced from the superallowed
0+ → 0+ β decay (filled circles) for different sets of the δC corrections
calculated in (a) Ref. [2]; (b) Ref. [12] with NL3 and DD-ME2
Lagrangians; and this work, using the averaged values of δC with (c)
SV and (d) SHZ2 functionals. Shaded circles show ISB corrections
with SV calculated at fixed shape-current orientations X, Y , and
Z (from left to right). Filled triangles mark values obtained from
pion-decay [39] and neutron-decay [9] studies. The open circle shows
the |Vud| deduced from β decays in T = 1/2 mirror nuclei [40].

FIG. 9. Similar to Fig. 8 except for the unitarity condition, (20).

It is worth noting that by using δC values corresponding
to the fixed current-shape orientations (|ϕX〉, |ϕY 〉, or |ϕZ〉)
instead of their average, one still obtains compatible results
for |Vud| and unitarity condition (20) (see Figs. 8 and 9).
Moreover, the value of |Vud| obtained by using SHZ2 is only
≈0.024 % smaller than the SV result (see Table II). This is
an intriguing result, which indicates that an increase in the
bulk symmetry energy—which tends to restore the isospin
symmetry—is partly compensated by other effects. The most
likely origin of this compensation mechanism is caused by
the time-odd spin-isospin MFs, which are poorly constrained
by the standard fitting protocols of Skyrme EDFs [41–43].
For instance, if one compares the Landau-Migdal parameters
characterizing the spin-isospin time-odd channels [41–43] of
SV (g0 = 0.57, g′

0 = 0.31, g1 = 0.46, g′
1 = 0.46) and SHZ2

(g0 = 0.27, g′
0 = 0.30, g1 = 0.47, g′

1 = 0.47), one notices
that these two functionals differ by a factor of 2 in the
scalar-isoscalar Landau-Migdal parameter g0.

To illustrate the compensation mechanism related to the
bulk symmetry energy and g0, in Fig. 10 we plot δC for
the 14O →14N →14C superallowed 0+ → 0+ transitions as
functions of the bulk symmetry parameter asym for a set
of SV-based Skyrme forces with a systematically varied x0

FIG. 10. ISB corrections for 14O →14N and 14N →14C superal-
lowed 0+ → 0+ β decays calculated for a set of SV-based Skyrme
forces with a systematically varied x0 parameter, which affects the
bulk asymmetry energy coefficient asym and spin-spin fields. Arrows
indicate x0 values corresponding to SV and SHZ2.
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FIG. 11. Top: Differences between calculated ISB corrections
and empirical values resulting from the CL test in Ref. [4]. The
shaded area, of width ±0.2%, is added in order to better illustrate
the differences. Bottom: Contributions from individual transitions
to the χ 2 budget. Note the particularly large contributions from the
34Cl →34S and 62Ga →62Zn transitions, which deteriorate the CL
test. See text for details.

parameter. At a functional level, x0 affects only two Skyrme
coupling constants (see, e.g., Appendix A in Ref. [20]):

C
ρ

1 = −1

4
t0

(
1

2
+ x0

)
− 1

24
t3

(
1

2
+ x3

)
ρα

0 , (21)

Cs
0 = −1

4
t0

(
1

2
− x0

)
− 1

24
t3

(
1

2
− x3

)
ρα

0 . (22)

The coupling constant C
ρ

1 influences the isovector part of
the bulk symmetry energy [44], while Cs

0 affects g0. The
ISB correction in Fig. 10 exhibits a minimum indicating the
presence of the compensation effect. A similar effect was
calculated for A = 34 transitions. Hence, it is safe to state
that our exploratory calculations are indicative of the interplay
between the symmetry energy and time-odd fields.

E. Confidence-level test

In this section, we present results of the confidence-level
(CL) test proposed in Ref. [4]. The CL test is based on
the assumption that the CVC hypothesis is valid up to at
least ±0.03%, which implies that a set of structure-dependent
corrections should produce a statistically consistent set of F t

values. Assuming the validity of the calculated corrections
δNS [6], the empirical ISB corrections can be defined as

δ
(exp)
C = 1 + δNS − F t

f t(1 + δ′
R)

. (23)

By least-squares minimization of the appropriate χ2, and
treating the value of F t as a single adjustable parameter, one
can attempt to bring the set of empirical values δ

(exp)
C as close

as possible to the set of δC.
The empirical ISB corrections deduced in this way are

listed in Table II and illustrated in Fig. 11. Table II also lists
individual contributions to the χ2 budget. The obtained χ2 per
degree of freedom (nd = 11) is χ2/nd = 10.2. This number is

twice as large as that quoted in our previous work [15], because
of the large uncertainty of δC for the 34Cl →34S transition.
Other than that, both previous and present calculations have
difficulty in reproducing the strong increase for A = 62.
Our χ2/nd is also higher than the perturbative-model values
reported in Ref. [4] (χ2/nd = 1.5), the shell model with
Woods-Saxon (SM-WS) radial wave functions (0.4) [2], the
shell model with radial wave functions (2.0) [3,45], the
Skyrme-HF with RPA (2.1) [11], and the relativistic HF plus
RPA model [12], which yields χ2/nd = 1.7.

It is worth noting that after disregarding the two transitions
that strongly violate the CVC hypothesis, 34Cl →34S and
62Ga →62As, and then performing a new CL test for the
remaining 10 transitions (nd = 9), the normalized χ2 drops
to 1.9. Within this restricted set of data, the calculated
|Vud| = 0.97420(28) and unitarity condition 0.99978(68) al-
most perfectly match the results in Ref. [2].

F. ISB corrections in 78 � A � 98 nuclei

Our projected DFT approach can be used to predict isospin
mixing in heavy nuclei. The calculated ISB corrections and
Q values in 78 � A � 98 nuclei are listed in Table IV. The
values of δC are also shown in Fig. 12. Note that the predicted
ISB corrections here are considerably smaller than those in
A = 70 and A = 74 nuclei (see Tables II and III). For the sake
of comparison, Fig. 12 also shows predictions of Ref. [46]
for the 82Nb →82Zr transition using the VAMPIR approach
with either the charge-independent Bonn A potential or the
charge-dependent Bonn CD potential. Note that our prediction
is only slightly below the Bonn A result and significantly lower
than the Bonn CD value. For the sake of completeness, it
should be mentioned that our Qβ value of 10.379 MeV for this
transition agrees well with the Qβ = 10.496 MeV (Bonn A)
and 10.291 MeV (Bonn CD) calculated within the VAMPIR
approach.

Our calculated values of δC in heavy nuclei are considerably
smaller than those obtained from a perturbative expression
[4,10,47],

δC = 0.002645
Z2

A2/3
(n + 1)(n + � + 3/2) (%), (24)

where n and � denote the number of radial nodes and
angular momentum of the valence s.p. spherical wave function,
respectively. Indeed, assuming the valence 1p1/2 state in
A = 78, Eq. (24) yields δC = 1.54%. In heavier nuclei, where
the spherical valence state is 0g9/2, Eq. (24) gives δC values
that increase smoothly from 1.30% in A = 82 to 1.64% in
A = 98.

IV. ISB CORRECTIONS TO FERMI MATRIX ELEMENTS
IN MIRROR-SYMMETRIC T = 1/2 NUCLEI

Transitions between the isobaric analog states in mirror
nuclei |T = 1/2, I, Tz = −1/2〉 → |T = 1/2, I, Tz = +1/2〉
offer an alternative way to extract the F t values [48] and Vud

[40,49]. Those transitions are mixed Fermi and Gamow-Teller,
meaning that they are mediated by both vector and axial-vector
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TABLE IV. Results of calculations for superallowed β decays in 78 � A � 98 nuclei: isospin impurities in parent and daughter nuclei; δC

for different shape-current orientations; averaged (recommended) δC; calculated equilibrium deformations β2 and γ ; and Qβ values calculated
here and estimated from the extrapolated masses in Ref. [36].

Tz = 0 → Tz = 1 α
(P)
C α

(D)
C δ

(X)
C δ

(Y )
C δ

(Z)
C δ

(SV)
C β

(SV)
2 γ (SV) Q

(th)
β Q

(exp)
β

(%) (%) (%) (%) (%) (%) (deg) (MeV) (MeV)

78Y →78Sr 2.765 0.976 1.20 1.19 1.20 1.20(12) 0.004 60.0 10.471 10.650#

82Nb →82Zr 3.099 1.408 0.70 0.91 0.70 0.77(13) 0.036 60.0 10.379 11.220#

86Tc →86Mo 3.337 1.518 0.89 0.89 1.08 0.95(13) 0.122 0.0 10.965 11.350#

90Rh →90Ru 3.525 1.608 0.99 0.99 1.09 1.02(11) 0.161 0.0 11.465 12.090#

94Ag →94Pd 3.674 1.689 0.86 0.86 1.17 0.96(18) 0.136 0.0 11.896 13.050#

98In →98Cd 3.805 1.771 0.89 0.89 1.36 1.05(25) 0.057 0.0 12.343 13.730#

currents. Hence, the extraction of Vud requires—in addition
to lifetimes and Q values—measuring another observable,
such as the β-neutrino correlation coefficient, β asymmetry,
or the neutrino-asymmetry parameter [50,51]. Moreover, the
method depends on the radiative and ISB corrections to both
the Fermi and the Gamow-Teller matrix elements. In spite of
these difficulties, the current precision of determination of Vud

using the mirror-decay approach is similar to that offered by
neutron-decay experiments [9,40,49] (see also Figs. 8 and 9).

Within our projected DFT model, we performed systematic
calculations of ISB corrections to the Fermi matrix elements,
δV

C , covering the mirror transitions in all 11 � A � 49 nuclei.
Calculations were based on the Slater determinants corre-
sponding to the lowest energy, unrestricted-symmetry HF
solutions. If the unrestricted-symmetry calculations did not
converge, the projection was applied to the constrained HF
solutions with imposed signature symmetry. These two types
of solutions differ, in particular, in relative shape-current
orientation, which also varies with A, depending on the
s.p. orbit occupied by an unpaired nucleon. It should be
emphasized, however, that the HF solutions corresponding to
the β-decay partners were always characterized by the same
orientation of the odd-particle alignment with respect to the
body-fixed reference frame. All calculations discussed in this

FIG. 12. ISB corrections to superallowed 0+ → 0+ transitions in
heavy nuclei calculated in the present work (filled circles). Vertical
bars mark ISB corrections to the 82Nb →82Zr transition calculated in
Ref. [46] using the VAMPIR formalism with the charge-independent
Bonn A and charge-dependent Bonn CD interactions.

section were performed using the full basis of N = 12 HO
shells and the SV force.

The obtained values of the ISB corrections to the Fermi
transitions,

δV
C ≡ 1 − |〈T = 1

2
, I, Tz = ∓1

2
|T̂∓|T = 1

2
, I, Tz = ±1

2
〉|2,
(25)

are listed in Table V and illustrated in Fig. 13. Because
the calculations were performed in a relatively large basis,
the basis-cutoff-related uncertainty in δV

C could be reduced
to approximately 5% (cf. Sec. III C). Except for one case,
theoretical spins and parities of decaying states were taken
equal to those found in experiments: Iπ

(th) = Iπ
(exp)(g.s.). Only

for A = 31 was no I = 1/2 component found in the HF
wave function, and thus the lowest solution corresponding
to Iπ

(th) = 5/2+ was taken instead. It should be mentioned
that, owing to the poor spectroscopic quality of SV, the
projected states corresponding to Iπ

(exp)(g.s.) are not always
the lowest ones. This situation occurs for A = 19, 25, and
45, where the lowest states have Iπ

(th) = 5/2+, 1/2+, and
3/2−, and the corresponding δV

C values are 0.308%, 0.419%,
and 0.636%, respectively. The relatively strong dependence
of the calculated ISB corrections on spin is worth noting.
The calculations also indicate an appreciable impact of the
signature-symmetry constraint on δV

C , in particular, in pf -shell
nuclei with A = 45, 47, and 49. A similar effect was calculated
for the 0+ → 0+ transitions; see the δC values at fixed
shape-current orientations in Tables II and III.

V. THE ISB CORRECTION TO THE FERMI DECAY
BRANCH IN 32Cl

The Vud values extracted using diverse techniques including
0+ → 0+ nuclear decays, nuclear mirror decays, neutron
decay, and pion decay are subject to both experimental and
theoretical uncertainties. The latter pertain to calculations of
radiative processes and—for nuclear methods—to the nuclear
ISB effect. The uncertainties in radiative and ISB corrections
affect the overall precision of Vud at the level of a few parts per
104 each [1,51]. It should be stressed, however, that the ISB
contribution to the error bar of Vud was calculated only for a
single theoretical model (SM-WS). Other microscopic models,
including the shell model with HF radial wave functions [3],
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TABLE V. Results of calculations for |T = 1/2, I, Tz = −1/2〉 → |T = 1/2, I, Tz = +1/2〉 β decays between mirror nuclei: theoretical
spin and parity assignments; isospin-mixing coefficients in parent and daughter nuclei; ISB corrections calculated in this work (asterisks denote
results obtained within unrestricted-symmetry calculations); ISB corrections from Ref. [48]; quadrupole equilibrium deformation parameters
in parent nuclei; and theoretical and experimental Qβ values.

Iπ α
(P)
C α

(D)
C δ

V(SV)
C δ

V(S)
C β

(SV)
2 γ (SV) Q

(th)
β Q

(exp)
β

(%) (%) (%) (%) (deg) (MeV) (MeV)

11C →11B 3
2

−
0.001 0.003 0.077 0.928 0.320 43.8 1.656 1.983

13N →13C 1
2

−
0.008 0.001 0.139 0.271 0.210 59.1 1.888 2.221

15O →15N 1
2

−
0.012 0.002 0.127 0.181 0.003 0.0 2.446 2.754

17F →17O 5
2

+
0.020 0.031 0.167 0.585 0.014 0.0 2.496 2.761
0.019 0.029 0.178∗ 0.585 0.064 60.0 2.499

19Ne →19F 1
2

+
0.036 0.034 0.365 0.415 0.321 0.0 2.928 3.239

21Na →21Ne 3
2

+
0.047 0.052 0.307 0.348 0.434 0.0 3.229 3.548

23Mg →23Na 3
2

+
0.064 0.070 0.340 0.293 0.434 0.0 3.587 4.057

25Al →25Mg 5
2

+
0.073 0.058 0.503 0.461 0.444 1.6 3.683 4.277

27Si →27Al 5
2

+
0.074 0.073 0.472 0.312 0.343 47.7 4.250 4.813

29P →29Si 1
2

+
0.123 0.113 0.694 0.976 0.332 54.4 4.399 4.943

31S →31P 5
2

+
0.163 0.164 0.504 0.715 0.315 0.0 4.855 5.396

33Cl →33S 3
2

+
0.177 0.160 0.644 0.865 0.258 33.5 5.002 5.583

35Ar →35Cl 3
2

+
0.186 0.182 0.576 0.493 0.209 50.4 5.482 5.966

37K →37Ar 3
2

+
0.291 0.267 1.425 0.734 0.143 60.0 5.589 6.149

39Ca →39K 3
2

+
0.318 0.289 0.392∗ 0.855 0.034 60.0 6.084 6.531

41Sc →41Ca 7
2

−
0.341 0.345 0.426∗ 0.821 0.032 60.0 5.968 6.496

43Ti →43Sc 7
2

−
0.376 0.380 0.463∗ 0.500 0.090 60.0 6.225 6.868

45V →45Ti 7
2

−
0.437 0.424 0.534 0.865 0.233 0.0 6.563 7.134
0.438 0.427 0.661∗ 0.865 0.233 0.0 6.559

47Cr →47V 3
2

−
0.480 0.457 0.518 — 0.276 0.0 6.827 7.452
0.483 0.463 0.710∗ — 0.275 0.0 6.826

49Mn →49Cr 5
2

−
0.515 0.497 0.522 — 0.284 0.9 7.054 7.715
0.518 0.499 0.681∗ — 0.284 0.0 7.053

RH-RPA [12], and projected DFT [15], yield δC corrections
that may differ substantially from those obtained in SM-WS
calculations.

Inclusion of the model dependence in the calculated
uncertainties is expected to increase the uncertainty of Vud.
According to Ref. [52] the increase can reach even an order
of magnitude. In our opinion, a reasonable assessment of
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FIG. 13. Filled circles: Calculated values of ISB corrections to
Fermi transitions in T = 1/2 mirror nuclei. Open circles with errors:
Results calculated by Severijns et al. [48].

systematic errors (owing to the model dependence) cannot
be done at present, as it requires the assumption either that all
the nuclear structure models considered are equally reliable or
that their performance can be graded in an objective way.

A good way to verify the reliability of various models
is to compare their predictions with empirically determined
δC. Recently, the anomalously large value of δC ≈ 5.3(9)%
has been determined from a precision measurement of the γ

yields following the β decay of the I = 1+, T = 1 state in
32Cl to its isobaric analog state (Fermi branch) in 32S [53].
This value offers a stringent test of nuclear-structure models,
because it is significantly larger than any value of δC in
A = 4n + 2 nuclei. The physical reason for this enhancement
can be traced back to a mixing of two close-lying I = 1+ states
seen in 32S at the excitation energies of 7002 and 7190 keV,
respectively [54]. The lower one is the isobaric analog state
having predominantly a T = 1 component, while the higher
one is primarily of T = 0 character.

The experimental value δC ≈ 5.3(9)% is consistent with
the SM-WS calculations: δC ≈ 4.6(5)%. In our projected DFT
approach, we also see fingerprints of the strong enhancement
of the δC value in 32Cl compared to other A = 4n + 2 nuclei.
Unfortunately, a static DFT approach based on projecting from
a single reference state is not sufficient to give a reliable
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FIG. 14. Schematic of several possible mean-field configurations
in odd-odd Z − N = 2 (left) and even-even N = Z (right) nuclei.
The pairs of proton (neutron) s.p. levels, labeled π and π̄ (ν and
ν̄), are assumed to be degenerated owing to the intrinsic signature
symmetry. The orbits ν and π carry the signature quantum number
r = −i (α = 1/2), while ν̄ and π̄ have r = i (α = −1/2).

prediction. This is because, as sketched in Fig. 14, there exist
ambiguities in selecting the HF reference state. In the extreme
isoscalar s.p. scenario, by distributing four valence protons and
neutrons over the Nilsson s.p. levels in an odd-odd nucleus,
one can form two distinctively different s.p. configurations
(see Fig. 14).

The total signature of valence particles determines the total
signature of the odd-odd nucleus and, in turn, an approximate
angular-momentum distribution in its wave function [55]; the
total additive signature αT(mod2) = 0(1) then corresponds to
even (odd) spins in the wave function [56]. It is immediately
seen that the antialigned configuration shown in Fig. 14 has
αT = 0; hence, in the first approximation, it can be disregarded.
In this sense, the reference wave function in 32Cl (or, in
general, in any N − Z = ±2 odd-odd nucleus) corresponds
to the uniquely defined aligned state. As shown in Fig. 14,
this does not hold for 32S (or, in general, for any N = Z

even-even nucleus), where one must consider two possible
Slater determinants having αT = 1, obtained by a suitable
proton or neutron particle-hole excitation.

The above discussion indicates that, contrary to transitions
involving the odd-odd N = Z nuclei studied in Sec. III,
those involving even-even N = Z nuclei cannot be directly
treated within the present realization of the model. To this
end, the model requires enhancements including configuration
mixing (multireference DFT). Nevertheless, we have carried
out an exploratory study by independently calculating two ISB
corrections for the two configurations discussed above. These
calculations proceeded in the following way.

(1) We select the appropriate reference configurations,
which, in the present case, are ν[4, 5, 3, 3]π [5, 6, 3, 3]
in 32Cl and ϕI: ν[5, 5, 3, 3]π [4, 6, 3, 3] and ϕII:
ν[4, 6, 3, 3]π [5, 5, 3, 3] in 32S. The labels denote the
numbers of neutrons and protons occupying the lowest
Nilsson levels in each parity-signature block, (π, r) =

(+,+i), (+,−i), (−,+i), and (−,−i), counting from the
bottom of the HF potential well, as defined in Ref. [57].

(2) We determine the lowest |Iπ = 1+, T ≈ 1, Tz = −1〉 and
|ϕi ; Iπ = 1+, T ≈ 1, Tz = 0〉 (i = I, II) states by project-
ing onto subspaces of good angular momentum and isospin
and performing K mixing and Coulomb rediagonalization
as described in Sec. II.

(3) Finally, we calculate matrix elements of the Fermi operator
T̂± and extract δC.

The resulting ISB corrections are δ
(ϕI)
C = 2.40(24)% and

δ
(ϕII)
C = 4.22(42)% for the ϕI and ϕII configurations, respec-

tively. As before, we assumed a 10% error owing to the basis
size (N = 10 spherical HO shells). Projections from the same
configurations cranked in space to 〈Ĵy〉 = 1h̄ (see discussion
in Ref. [27]) leave ISB corrections almost unaffected: δ

(ϕI)
C =

2.41(24) % and δ
(ϕII)
C = 4.30(43) %. A simple average value

would read δC = 3.4(10)%, which is indeed strongly enhanced
compared to the A = 4n + 2 cases. The obtained central value
is smaller than both the empirical value and the SM-WS
result. It is worth noting, however, that within the stated
errors our mean value, 3.4(10)%, agrees with the SM-WS
value, 4.6(05)%. Whether or not the configuration-mixing
calculations would provide a significant enhancement is an
entirely open question.

VI. SUMMARY AND PERSPECTIVES

Within the recently developed unpaired projected DFT
approach, we carried out systematic calculations of isospin
mixing effects and ISB corrections to the superallowed
0+ → 0+ Fermi decays in 10 � A � 74 nuclei and β tran-
sitions between the isobaric analog states in mirror T = 1/2
nuclei with 11 � A � 49. Our predictions are compared with
empirical values and with predictions of other theoretical
approaches. Using ISB corrections computed in our model,
we show that the unitarity of the CKM matrix is satisfied
with a precision of better than 0.1%. We also provide ISB
corrections for heavier nuclei with 78 � A � 98 nuclei that
can guide future experimental and theoretical studies.

We carefully analyze various model assumptions impacting
theoretical uncertainties of our calculations: basis truncation,
definition of the intrinsic state, and configuration selection. To
assess the robustness of our results with respect to the choice
of interaction, we compare SV results with predictions of the
new force SHZ2, which has been specifically developed for
this purpose. The comparison of SV and SHZ2 results suggests
that ISB corrections are sensitive to the interplay between the
bulk symmetry energy and time-odd MFs.

While the overall agreement with the empirical values
offered by the projected DFT approach is very encouraging,
and the results are fairly robust, there is a lot of room
for systematic improvement. The main disadvantages of our
model in its present formulation include (i) the lack of pairing
correlations; (ii) the lack of p-h interaction (or functional)
of good spectroscopic quality; (iii) the use of a single
HF reference state that cannot accommodate configuration
mixing effects; and (iv) ambiguities in establishing the HF

054316-12



ISOSPIN-BREAKING CORRECTIONS TO SUPERALLOWED . . . PHYSICAL REVIEW C 86, 054316 (2012)

reference state in odd and odd-odd nuclei caused by different
possible orientations of time-odd currents with respect to
the total density distribution. Work on various enhancements
of our model, including the inclusion of T = 0 and T = 1
pairing within the projected HF-Bogoliubov theory, better
treatment of configuration mixing using the multireference
DFT, and development of the spectroscopic-quality EDF used
in projected calculations, is in progress.
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