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Spectra of open-shell nuclei with Padé-resummed degenerate perturbation theory
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We apply degenerate many-body perturbation theory at high orders for the ab initio description of ground states
and excitation spectra of open-shell nuclei using soft realistic nucleon-nucleon interactions. We derive a recursive
formulation of standard degenerate many-body perturbation theory that enables us to evaluate order-by-order
perturbative energy and state corrections up to the 30th order. We study 6,7Li as test cases using a similarity
renormalization group (SRG) evolved nucleon-nucleon interaction from chiral effective field theory. The simple
perturbation series exhibits a strong, often oscillatory divergence, as was observed previously for ground states
of closed-shell nuclei. Even for very soft interactions resulting from SRG evolutions up to large flow parameter,
i.e., low-momentum scales, the perturbation series still diverges. However, a resummation of the perturbation
series via Padé approximants yields very stable and converged ground and excited-state energies in very good
agreement with exact no-core shell-model calculations for the same model space.
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I. INTRODUCTION

The precise description of the nuclear spectroscopy is one
of the major challenges in nuclear structure theory. A variety
of many-body approaches, both, exact and approximate, have
been developed to tackle this challenge. A simple and well-
known tool to obtain approximate solutions of the many-body
problem is Rayleigh-Schrödinger many-body perturbation the-
ory (MBPT) [1]. Low-order MBPT has been used for studies
of systematics of ground-state properties of closed-shell nuclei
throughout the nuclear chart [2–4], as well as for infinite
neutron and nuclear matter calculations [5,6]. Recently, we
have used high-order MBPT, i.e., an order-by-order evaluation
of the perturbation series up to typically 30th order, to address
ground-state energies of light closed-shell nuclei [7]. It turns
out that the perturbation series in general does not converge.
However, through a resummation by Padé approximants we
have shown that one can utilize the information of the divergent
power series to determine the ground-state energy of closed-
shell nuclei with the same precision as in the no-core shell-
model (NCSM) approach [8–10] using the same model space.

Unfortunately, standard nondegenerate Rayleigh-
Schrödinger perturbation theory is applicable only to
ground states of closed-shell nuclei. Both, the step to excited
states and the step to open-shell nuclei leads to degeneracies
in the unperturbed (zeroth-order) energy level, which must be
considered explicitly. In this paper, we investigate degenerate
Rayleigh-Schrödinger perturbation theory to overcome this
limitation. We derive recursive formulas for an efficient
order-by-order construction of the perturbation series. With
this extension we are able to study ground and excited
states of closed and open-shell nuclei. We focus on the
application of degenerate many-body perturbation theory
(DMBPT) up to high orders and Padé resummations for
the description of ground states and excitation spectra of
light nuclei, specifically 6Li and 7Li, and we compare the
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DMBPT results with exact NCSM calculations for the same
model space and Hamiltonian. We employ a nucleon-nucleon
interaction from chiral effective field theory [11,12] at
next-to-next-to-next-to-leading-order (N3LO) in the version
of Entem and Machleidt [13] after an additional similarity
renormalization group (SRG) transformation [3,14,15] to
further soften the interaction. As expected [7,16], the DMBPT
series does not converge, not even for very soft interactions.
However, we will show that a resummation through Padé
approximants leads to stable and accurate predictions for the
spectra.

This paper is organized as follows. In Sec. II, we present
the formalism of DMBPT, derive the relevant formulas for
the energy and state corrections, and highlight their recursive
structure. The latter allows us to construct the perturbation
series up to high orders. In Sec. III we introduce the Padé
approximants that we use to resum the typically divergent
power series from DMBPT. Finally, we show results for the
spectra of 6Li and 7Li obtained from the DMBPT power series
in Sec. IV.

II. DEGENERATE MANY-BODY PERTURBATION
THEORY

The starting point for the formulation of MBPT is the
eigenvalue problem of the intrinsic Hamiltonian

H |�n〉 = (T − Tc.m. + V ) |�n〉 = En |�n〉 , (1)

with Tc.m. denoting the center-of-mass kinetic energy and T −
Tc.m. being the intrinsic kinetic energy. Note that the interaction
V is general and might include three-body forces as well. Next,
we partition the Hamiltonian H into an unperturbed part H0

and a perturbation W with an auxiliary parameter λ such that
the original Hamiltonian is recovered for λ = 1

H
partitioning−−−−−→ Hλ = H0 + λW = H0 + λ(H − H0) . (2)

Formally one has complete freedom in defining this parti-
tioning and, thus, in choosing the unperturbed Hamiltonian H0.

054315-10556-2813/2012/86(5)/054315(8) ©2012 American Physical Society

http://dx.doi.org/10.1103/PhysRevC.86.054315


JOACHIM LANGHAMMER, ROBERT ROTH, AND CHRISTINA STUMPF PHYSICAL REVIEW C 86, 054315 (2012)

In practical applications the choice of H0 is often motivated
by computational simplicity. The eigenvalue problem of the
unperturbed Hamiltonian

H0 |�n〉 = εn |�n〉 (3)

defines the unperturbed basis { |�n〉} that is used throughout
the perturbative expansion. This basis should be sufficiently
easy to handle formally and computationally, but also adequate
for the physical system under consideration. For nuclear-
structure applications typical choices for H0 are Hartree-
Fock or harmonic-oscillator (HO) single-particle Hamilto-
nians. Throughout this paper we choose the latter, i.e., the
unperturbed states { |�n〉} are given by Slater determinants
of single-particle HO states. The energy eigenvalues εn are
determined by the sum of the single-particle energies of
occupied states.

In the simplest form of MBPT the unperturbed state
that represents the eigenstate of interest is required to be
nondegenerate. When using the HO basis, this is true only for
the ground states of light doubly magic nuclei, e.g., 4He, 16O,
and 40Ca [7]. However, for open-shell nuclei or excited states of
closed-shell nuclei the unperturbed states exhibit degeneracies
and one has to resort to degenerate Rayleigh-Schrödinger
many-body perturbation theory. In the following, we derive an
iterative formulation of DMBPT that enables us to efficiently
evaluate perturbative corrections to the energies and states up
to very high orders.

To characterize the degeneracy of the unperturbed states, we
introduce an additional degeneracy index d for the unperturbed
Slater determinants |�nd〉, which labels the states spanning
the gn-dimensional degenerate subspace associated with the
energy eigenvalue εn. As a consequence, the index d also
appears in the power-series for the perturbed energies and
states

End (λ) = εn + λE
(1)
nd + λ2E

(2)
nd + · · · , (4)

|�nd (λ)〉 = ∣∣�(0)
nd

〉 + λ
∣∣�(1)

nd

〉 + λ2
∣∣�(2)

nd

〉 + · · · , (5)

with E
(0)
nd = εn. We insert this ansatz in the eigenvalue problem

of the Hamiltonian (2) and match same orders of λ. For order λ0

we recover the unperturbed eigenvalue problem (3), whereas
for order λp with p � 1 we obtain

W
∣∣�(p−1)

nd

〉 + H0

∣∣�(p)
nd

〉 =
p∑

j=0

E
(j )
nd

∣∣�(p−j )
nd

〉
. (6)

The unperturbed states |�(0)
nd 〉 obviously enter in Eq. (6).

However, for each gn-dimensional degenerate subspace for
an unperturbed energy εn we can choose arbitrary linear
combinations of the naive Slater determinants |�nd〉 to
represent the unperturbed states

∣∣�(0)
nd

〉 =
gn−1∑
e=0

χnd,ne |�ne〉 . (7)

In order to fix the expansion coefficients χnd,ne we consider
Eq. (6) for p = 1, insert the expansion (7) and multiply with

〈�nd ′ | , yielding

gn−1∑
e=0

(〈�nd ′ |W |�ne〉 − E
(1)
nd δd ′e

)
χnd,ne = 0 , (8)

where we used the orthogonality 〈�nd |�nd ′ 〉 = δdd ′ . Equa-
tion (8) is an eigenvalue equation in the degenerate subspace
for εn. The eigenvectors define the expansion coefficients
χnd,ne of the unperturbed states in Eq. (7), and the eigenvalues
the first-order energy corrections E

(1)
nd . Moreover, the following

relations hold for the unperturbed states |�(0)
nd 〉

〈
�

(0)
nd

∣∣�(0)
nd ′

〉 =
gn−1∑
e=0

χ∗
nd,ne χnd ′,ne = δdd ′ . (9)

Using the intermediate normalization 〈�(0)
nd |�nd〉 = 1 we

obtain from Eq. (5) the relation
〈
�

(0)
nd

∣∣�(p)
nd

〉 = δ0p . (10)

After multiplying Eq. (6) with 〈�(0)
nd | and using the previous

orthogonality relation, we obtain a simple expression for the
pth order energy correction

E
(p)
nd = 〈

�
(0)
nd

∣∣W ∣∣�(p−1)
nd

〉
, (11)

which has the same form as in nondegenerate MBPT [7].
The derivation of the perturbative corrections to the states
|�(p)

nd 〉 is more involved. We start off with formally expanding
the pth order state corrections for p � 1 in terms of the
unperturbed basis. Within the degenerate subspace n of the
target state we use the unperturbed basis |�(0)

ne 〉 of Eq. (7), for
the orthogonal subspaces m �= n we use the naive unperturbed
basis of Slater determinants |�me〉 for simplicity. Thus we
obtain the following expansion of the pth order perturbative
correction

∣∣�(p)
nd

〉 =
m�=n∑
m

∑
e

|�me〉
〈
�me|�(p)

nd

〉 +
e �=d∑

e

∣∣�(0)
ne

〉〈
�(0)

ne

∣∣�(p)
nd

〉
.

(12)

The remaining task is to derive expressions for the expan-
sion coefficients

C
(p)
nd,me = 〈

�me

∣∣�(p)
nd

〉
m �= n , (13)

and

D
(p)
nd,ne = 〈

�(0)
ne

∣∣�(p)
nd

〉
e �= d . (14)

We multiply Eq. (6) with 〈�me| for m �= n, use Eq. (3) and
obtain

C
(p)
nd,me = 1

εn − εm

⎛
⎝〈�me|W

∣∣�(p−1)
nd

〉 −
p−1∑
j=1

E
(j )
nd C

(p−j )
nd,me

⎞
⎠ .

(15)

To get the coefficients D
(p)
nd,ne we multiply Eq. (6) with

〈�(0)
ne | for e �= d and make use of the expansion (12) and our

results from the diagonalization in the degenerate subspace,
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yielding

D
(p)
nd,ne = 1

E
(1)
nd − E

(1)
ne

⎛
⎜⎝

m�=n∑

m, e′

〈
�(0)

ne

∣∣W |�me′ 〉C(p)
nd,me′

−
p−1∑
j=1

E
(j+1)
nd D

(p−j )
nd,ne

⎞
⎠ . (16)

Note that Eqs. (15) and (16) hold for p � 1.
For implementation we manipulate Eqs. (11), (15), and (16)

into a more convenient form, using matrix elements of W with
respect to the naive Slater determinants |�nd〉 as input. We
obtain for the pth-order perturbative energy correction

E
(p=1)
nd =

gn−1∑
e=0

gn−1∑
e′=0

χ∗
nd,ne χnd,ne′ 〈�ne|W |�ne′ 〉 (17)

and

E
(p�2)
nd =

m�=n∑
m,e

gn−1∑
e′=0

χ∗
nd,ne′ 〈�ne′ |W |�me〉 · C

(p−1)
nd,me . (18)

The expressions for the C coefficients are recast to
C

(p=0)
nd,me = 0,

C
(p=1)
nd,me = 〈�me|W |�nd〉

εn − εm

, (19)

and

C
(p�2)
nd,me = 1

εn − εm

·
⎛
⎝

m′ �=n∑
m′,e′

〈�me|W |�m′e′ 〉C(p−1)
nd,m′e′

+
e′ �=d∑

e′

gn−1∑
e′′=0

χne′,ne′′ 〈�me|W |�ne′′ 〉D(p−1)
nd,ne′

−
p−1∑
j=1

E
(j )
nd C

(p−j )
nd,me

⎞
⎠. (20)

For the D coefficients we get D
(p=0)
nd,ne = 0 and

D
(p�1)
nd,ne

= 1

E
(1)
nd − E

(1)
ne

·
⎛
⎝

m�=n∑
m,e′

gn−1∑
e′′=0

χ∗
ne,ne′′ 〈�ne′′ |W |�me′ 〉C(p)

nd,me′

−
p−1∑
j=1

E
(j+1)
nd D

(p−j )
nd,ne

⎞
⎠ . (21)

For the construction of the perturbation series up to
high orders, carrying out all summations explicitly is very
inefficient. Closer inspection of Eqs. (17)–(21) reveals their
recursive structure: For the pth-order energy correction (11)
we need the state correction of (p − 1)th order. However,
we see from Eqs. (17) and (18) that the energy correction
depends only the coefficients C

(p−1)
nd,me which implicitly require

the coefficients D
(p−2)
nd,ne . The expansion coefficients C

(p�2)
nd,ne

themselves depend on C coefficients, D coefficients, and
energy corrections of lower order, while the coefficients
D

(p�1)
nd,ne depend on lower-order D coefficients and on

same-order C coefficients. To proceed to high orders it is
indispensable to make use of this recursive structure, i.e., to
construct the perturbation series order by order.

We start the construction of the perturbation series for
the energy with the zeroth-order contribution simply given
by the HO energy of |�(0)

nd 〉. We obtain the first correction
E

(1)
nd from the diagonalization in the degenerate subspace. To

go to second-order energy correction we need the first-order
coefficients C

(1)
nd only. To compute the energy correction of

order p with p � 3 we first calculate the coefficients D
(p−2)
nd,ne

for which we need the already known C
(p−2)
nd and all previous

D coefficients. Then, we use the D
(p−2)
nd,ne coefficients and all

C coefficients up to order (p − 2) to calculate the coefficients
C

(p−1)
nd . According to Eq. (18), the coefficients C

(p−1)
nd enable

the computation of the pth-order energy correction E
(p)
nd . This

scheme allows for the iterative setup of high-order DMBPT.
We present our results based on DMBPT corrections up to
30th order for excited states of 6Li and 7Li and the according
spectra in Sec. IV.

From a computational point of view, the critical operations
that have to be performed for evaluating the perturbative
corrections are matrix-vector multiplications of the Hamilton
matrix and the coefficient vectors, see, e.g., Eqs. (18) and
(20). The coefficient vectors of all previous orders need to be
stored. This is similar to a simple Lanczos algorithm [17] for
determining the few lowest eigenvalues and the corresponding
eigenvectors of the many-body Hamiltonian matrix, as used in
the NCSM. Therefore, the limitations in terms of particle num-
ber and model-space size for high-order DMBPT calculations
are similar to those of the NCSM. In order to apply DMBPT
at high orders beyond the domain of NCSM-type calculations,
one has to devise alternative ways of efficiently carrying out
the nested sums involved in the expressions above.

III. PADÉ APPROXIMANTS

Even though the recursive formulation of DMBPT will
allow us to perform calculations up to very high order of the
perturbation series, simple partial summations of this series do
not guarantee convergence of the energies. On the contrary, for
ground-state energies of closed-shell nuclei we have shown [7]
that even soft interactions lead to strongly diverging power
series at the physical point λ = 1. In this sense MBPT does
not converge in many practically relevant cases.

However, the coefficients of the power series of MBPT
contain all the relevant physics information on the problem.
An efficient and elegant way to extract this information are
Padé approximants [18,19]. Instead of expanding the function
E(λ) in a simple power series, we can employ a slightly more
involved ansatz and represent E(λ) as a rational function of
two power series in λ

E(λ) = a0 + λa1 + λ2a2 . . .

b0 + λb1 + λ2b2 . . .
. (22)
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If we truncate the power series in the numerator at order L

and in the denominator at order M this defines the so-called
Padé approximant

[L/M](λ) = a0 + λa1 + λ2a2 . . . + λLaL

b0 + λb1 + λ2b2 . . . + λMbM

. (23)

In order to determine the unknown coefficients ai and
bj from the known coefficients E(p) of the simple MBPT
power series (4), we use a Taylor expansion of Eq. (23) and

extract equations connecting the two sets of coefficients by
matching the different orders in λ. Starting from a perturbation
series up to order p this allows us to extract the coefficients
of Padé approximants with L + M � p by solving a set of
coupled linear equations. An equivalent but more elegant way
to compute the Padé approximant uses the ratio of determinants
constructed directly from the corrections E(p) of the MBPT
series [18]

[L/M](λ) =

∣∣∣∣∣∣∣∣∣∣∣∣∣

E(L−M+1) E(L−M+2) · · · E(L+1)

E(L−M+2) E(L−M+3) · · · E(L+2)

...
...

. . .
...

E(L) E(L+1) · · · E(L+M)

∑L−M
p=0 E(p)λM+p

∑L−M+1
p=0 E(p)λM+p−1 · · · ∑L

p=0 E(p)λp

∣∣∣∣∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣∣∣∣∣

E(L−M+1) E(L−M+2) · · · E(L+1)

E(L−M+2) E(L−M+3) · · · E(L+2)

...
...

. . .
...

E(L) E(L+1) · · · E(L+M)

λM λM−1 · · · 1

∣∣∣∣∣∣∣∣∣∣∣∣∣

, (24)

with E(p) = 0 for p < 0. Evaluating the above determinants
for the physical point λ = 1 directly provides us with a Padé
resummed [L/M] approximation for the ground- and excited-
state energies using the perturbative corrections E(p) up to
order p = L + M .

As we have shown in Ref. [7], Padé approximants provide a
reliable tool to obtain the ground-state energy of doubly-magic
nuclei in excellent agreement with exact NCSM calculations
even if the simple MBPT power series exhibits a strongly di-
verging behavior. Using the recursive formulation of DMBPT
derived above, we will extend these studies in the following
section to ground states and excitation spectra of open-shell
systems using the example of 6Li and 7Li.

IV. SPECTRA OF 6Li AND 7Li

As a first application and benchmark of the recursive
formulation of DMBPT for open-shell nuclei and excitation
spectra, we consider 6Li and 7Li as test cases. In these systems
exact NCSM calculations are easily possible and serve as
a reference to study the accuracy of the DMBPT results.
Therefore, we perform the DMBPT calculations using the
same many-body basis and model-space truncation as used
in the NCSM. The unperturbed Hamiltonian H0 consists
of the kinetic energy and a one-body harmonic oscillator
potential leading to an unperturbed basis |�nd〉 of Slater
determinants consisting of harmonic-oscillator single-particle
states. As in the NCSM, we truncate the Hilbert space to

a finite model space by imposing a maximum excitation
energy Nmaxh̄� above the lowest unperturbed energy [8–10].
In this unperturbed basis, degeneracy emerges if we study
ground states of nuclei away from the harmonic-oscillator shell
closures or if we investigate excited states.

For the full Hamiltonian H given in Eq. (1) we include a
two-nucleon interaction V based on chiral effective field theory
at next-to-next-to-next-to-leading order (N3LO). Starting from
the N3LO interaction of Entem and Machleidt [13] we
apply the similarity renormalization group (SRG) [3,14,15] to
soften the interaction by a continuous unitary transformation.
As a result, the full Hamiltonian has very favorable conver-
gence properties as we increase the size of the many-body
model space by increasing Nmax. Furthermore, the unitary
transformation is believed to facilitate the order-by-order con-
vergence of MBPT [20], which we will come back to later on.

First, we investigate 6Li in the framework of DMBPT up to
30th order. The degenerate subspace for the lowest unperturbed
energy (n = 0), which is simply the Nmax = 0 subspace in the
language of the NCSM, consists of ten Slater determinants
|�0d〉. In a first step, we diagonalize the perturbation W in this
subspace yielding the first-order energy corrections E

(1)
0d and

the unperturbed basis |�(0)
0d 〉. We assign the degeneracy index

d = 0, . . . , 9 in ascending order of the first-order energy. Then
we use the recursive formulation of DMBPT derived in Sec. II
to compute the perturbative corrections to the energies and
states up to 30th order.

The results of the DMBPT calculations for the 6Li energies
of all states with n = 0 are shown in Fig. 1 for a model
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SPECTRA OF OPEN-SHELL NUCLEI WITH PADé- . . . PHYSICAL REVIEW C 86, 054315 (2012)

-40

-30

-20

-10

0

.

E
[M
eV
]

d = 0 d = 1 d = 2 d = 3 d = 4

0 4 8 12 16 20 24 28
pth order

-40

-30

-20

-10

.

E
[M
eV
]

d = 5

0 4 8 12 16 20 24 28
pth order

6Li
Nmax = 8
Ω = 20MeV

d = 6

0 4 8 12 16 20 24 28
pth order

d = 7

0 4 8 12 16 20 24 28
pth order

d = 8

0 4 8 12 16 20 24 28
pth order

d = 9

FIG. 1. (Color online) Energy from DMBPT power series truncated at order p for the energy levels of 6Li corresponding to the degenerate
HO n = 0 subspace using a Nmax = 8 model space for h̄� = 20 MeV. The indices d are determined by diagonalization in the degenerate
subspace, i.e., by the first-order energy corrections. The dashed lines correspond to the NCSM result in the same model space. Two SRG flow
parameters are shown: 0.04 fm4 (	 ≈ 2.24 fm−1; blue discs, blue dashed lines) and the softer 0.16 fm4 (	 ≈ 1.58 fm−1; red diamonds, red
dashed lines).

space with Nmax = 8 and h̄� = 20 MeV. We use two different
Hamiltonians including SRG-evolved chiral NN interactions
with SRG flow-parameters α = 0.04 fm4 (	 ≈ 2.24 fm−1) and
0.16 fm4 (	 ≈ 1.58 fm−1), respectively. For comparison we
show the exact NCSM results for those Hamiltonians in
the same model space as horizontal lines. In all cases the
perturbation series diverges. However, we can distinguish
different characteristics of the partial sums of the perturbation
series as function of the truncation order p.

Let us first consider the harder interaction with α =
0.04 fm4 (blue discs). One class of states (d = 1, 5, 6, 7, 9)
exhibits an apparent alternating convergence with increasing
order p up to p ≈ 12, but then at p ≈ 16 the size of the
perturbative corrections explodes and the partial sum diverges
in an oscillatory pattern. For another class (d = 0, 2, 8) the
oscillatory behavior sets in earlier and the amplitude first
increases slowly before the rapid divergence sets in. A third
class (d = 3, 4) diverges monotonously starting already at
p ≈ 8.

The general situation is the same for the second Hamil-
tonian using a SRG-transformed chiral NN interaction with
α = 0.16 fm4 (red diamonds). This interaction is generally
considered to be very soft and shows a rapid convergence
of the energies as function of model space size. Sometimes
these interactions are termed ‘perturbative’, based on an
analysis of Weinberg eigenvalues in two-body systems [20,21].
Our order-by-order calculation in DMBPT up to p = 30
shows that the softness of the interaction does not guarantee
convergence—not even a systematic improvement of the
convergence behavior. For all states we observe a strong
oscillatory divergence for high orders of DMBPT. Thus, in
terms of the order-by-order perturbation theory for a light
nucleus, even these very soft interactions lead to a divergent
perturbation series and are nonperturbative in this sense.

The divergence of the perturbation series makes it impos-
sible to determine a robust and unambiguous approximation
for the exact eigenvalues from the high-order results. This

problem was already found and addressed in our previous study
focusing on ground-state energies of closed-shell nuclei [7].

Even low-order estimates obtained from the second- or
third-order calculations do not provide a reliable guideline.
For the harder interaction with α = 0.04 fm4 the exact NCSM
eigenvalue is typically between the second-order and the
third-order estimate, i.e., the second-order approximation
gives an energy below and the third-order approximation an
energy above the exact energy eigenvalue. However, with
increasing degeneracy index d the second-order approximation
moves up and appears above the exact eigenvalue for d = 9.
This trend is even more pronounced for the soft interaction
with α = 0.16 fm4, starting from d = 5 the second-order
approximation and all other low-order approximations are
above the exact energy. In particular, going from second-
to third-order DMBPT enlarges the discrepancy to the exact
NCSM result. Thus, in general, low-order approximations do
not provide a controlled estimate for the exact eigenvalue.

To overcome the convergence problems of the simple
perturbation series defined in Eq. (4), we compute the Padé
approximants according to Eq. (24) and evaluate them at
λ = 1. The diagonal [L/L], the superdiagonal [L/L + 1], and
the subdiagonal [L/L − 1] Padé approximants are shown in
Fig. 2 again for the ten states corresponding to the lowest
degenerate subspace n = 0 of 6Li for the interaction with SRG
parameter 0.04 fm4. Recall that the information that enters
the [L/M] Padé approximant is exactly the same as in the
perturbation series truncated at (L + M)th order.

If we use only low-order DMBPT energy corrections as
input the quality of the Padé approximants is comparable to
the simple perturbation series truncated at these orders. If we
include information from higher orders of DMBPT, the agree-
ment of the Padé approximants with the exact NCSM results
improves successively. Beyond L + M = 15 we generally find
an excellent agreement of the Padé approximants with the exact
NCSM result for the same model space. This can be understood
in terms of the Padé conjecture, which postulates the existence
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FIG. 2. (Color online) Padé approximation for energy of the ten states corresponding to the n = 0 HO subspace of 6Li. Shown are the
diagonal [L/L] (blue discs), superdiagonal [L/L + 1] (red diamonds), and subdiagonal [L/L − 1] (green triangles) Padé approximants. The
dashed horizontal lines represent the exact energies obtained by a NCSM calculation. We used a Nmax = 8 model space with HO frequency
20 MeV and the SRG parameter is 0.04 fm4(	 ≈ 2.24 fm−1).

of a convergent subsequence of diagonal Padé approximants
[7,18,19]. Nonetheless, there are individual approximants
that show larger deviations from the exact result, e.g., for
d = 3, 4, 5 or 8. However, we observe deviations only for
nondiagonal approximants, which are not covered by the Padé
conjecture. In principle outliers are possible also for diagonal
approximants, since only a subsequence of approximants is
expected to converge.

The efficiency of the Padé resummation in recovering
a robust and accurate approximation from the divergent
perturbation series is impressive, in particular for d = 3 and
4, which are the extreme cases of monotonous divergence. We
observe that Padé approximants with at least L + M ≈ 10 are
needed to obtain a quantitative agreement with the NCSM
result. In turn this shows that the information contained
in the high-order energy corrections, which are responsible
for the break-down of the power series, is indispensable to
obtain stable and accurate results from the sequence of Padé
approximants.

In Fig. 3 we show the excitation spectrum for the positive
parity states of 6Li again for SRG parameters α = 0.04 fm4

(a) and α = 0.16 fm4 (b). The columns from left to right
represent the experimental spectrum, the exact NCSM results,
the results from the Padé approximation and the spectrum
obtained by truncating the power series at second, third, fourth,
and eighth order. We extract an averaged Padé result from
the data shown in Fig. 2 in the following way: As discussed
earlier, the diagonal as well as the sub- and superdiagonal Padé
approximants [L/M] for L + M � 15 are very stable, except
for extremely few outliers. Therefore, we compute the average
of all approximants for L + M � 15 excluding those approx-
imants which deviate by more than 0.5 MeV from the average
of the remaining set. We use the standard deviation of the
approximants as a measure for the uncertainty of this average
of the approximants. In Fig. 3 the bars representing the Padé
results show an additional orange band representing this un-
certainty. Overall, the uncertainty bands are very small and for
the first five excited states we find remarkably good agreement

between the Padé resummed excitation energy and the exact
results obtained in the NCSM. For the four high-lying states we
observe a small deviation of the Padé resummed result from the
NCSM values, reaching about 500 keV for the highest state.

In contrast, the low-order DMBPT results do not provide
a stable and reliable approximation for the exact eigenvalues.
The excitation energies from second-order DMBPT are gener-
ally too large and the deviations from the exact NCSM results
increase with increasing excitation energy. The third-order
contribution typically lowers the excitation energy. In a few
cases the exact eigenvalue appears between the second- and
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FIG. 3. (Color online) Low-lying spectrum of 6Li computed in
an Nmax = 8 model space for h̄� = 20 MeV, using SRG transformed
N3LO two-body interactions with flow parameter 0.04 fm4(	 ≈
2.24 fm−1) in (a) and 0.16 fm4(	 ≈ 1.58 fm−1) in (b). Shown are
from the left the experimental observed energies, the NCSM results,
the Padé resummed results (see text for details) and results from
the truncated power series of DMBPT at order p = 2, 3, 4, and 8.
Experimental values taken from Ref. [22].
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FIG. 4. (Color online) Excitation energies of the nine energet-
ically lowest states of the 7Li spectrum computed in an Nmax = 8
model space for h̄� = 20 MeV, using SRG transformed N3LO
two-body interactions with flow parameter 0.04 fm4(	 ≈ 2.24 fm−1)
in (a) and 0.16 fm4(	 ≈ 1.58 fm−1) in (b). Shown are from the left the
experimental observed energies, the NCSM results, the Padé resumed
results (see text for details), and results from the truncated power
series of DMBPT at order p = 2, 3, 4, and 8. Experimental values
taken from Ref. [22].

third-order estimate, however, in other cases both low-order
estimates are still above the exact NCSM eigenvalue. The
inclusion of the fourth-order contribution typically improves
the results, but going to still higher orders destroys the
agreement again. All these statements hold also for the soft
potential with α = 0.16 fm4, see Fig. 3(b).

A similar picture emerges for the negative-parity spectrum
of 7Li depicted in Fig. 4, again using an Nmax = 8 model space
for the NCSM and the DMBPT calculations. Again, we find
excellent agreement of the Padé-resummed energies with the
exact NCSM spectrum for all states, with very stable Padé
approximations giving rise to very small uncertainties. The
only exception is the highest excited state computed with the
α = 0.16 fm4 interaction, that shows about 500 keV deviation
compared to the NCSM result. In contrast, the low-order
DMBPT results show sizable deviations from the exact NCSM
energies and change substantially from order to order. Again
the second-order result typically overestimates the excitation
energy and the third-order contribution lowers the excitation
energy and often underestimates the excitation energy. With
increasing order the changes become less coherent and for high
orders, beyond the order p = 8 the onset of divergence of the
DMBPT series destroys the excitation spectrum completely
(not shown in Figs. 3 and 4).

Finally, we note that though the general structure of the
spectrum obtained in NCSM or Padé-resummed DMBPT is
in agreement with experiment for the low-lying states, the
excitation energies are systematically to high. This hints at
deficiencies of the SRG-evolved two-body interaction used
here, e.g., the lack of a three-nucleon interaction. The inclusion
of three-body forces is straight-forward, because the recursive

formulas of Sec. II remain unchanged since the formalism is
developed in terms of A-body Slater determinants. However,
this is beyond the scope of this paper.

V. CONCLUSIONS

We have discussed degenerate Rayleigh-Schrödinger
many-body perturbation theory for the description of ground
and excited states of light nuclei with realistic Hamiltonians.
We have derived an efficient, recursive formulation for the
energy and state corrections in DMBPT that allows us to
evaluate the perturbation series order-by-order up to very high
orders, typically up to p = 30. These formal developments
pave the way for first direct applications of DMBPT to
open-shell nuclei and excited states, where one has to deal
with degeneracies by construction.

We demonstrate the application of this formalism for the
ground and excited states of 6Li and 7Li using an SRG-
transformed NN interaction from chiral EFT at N3LO. In
order to allow for a direct comparison with NCSM calculations
for the same model space, we use the harmonic oscillator
as unperturbed Hamiltonian. We find that the perturbation
series itself is divergent for all states considered although
the interactions used here are extremely soft and are some-
times termed ‘perturbative’. This divergence of order-by-order
MBPT was observed for ground states of closed-shell systems
already in Ref. [7]. To overcome this problem we resum
the perturbation series using Padé approximants, i.e., we use
the energy corrections from DMBPT to construct a rational
function instead of a simple power series to approximate the
energy. We find that Padé approximants using only low-order
DMBPT results yield no improvement compared to low-order
DMBPT results. However, if we include DMBPT information
from high orders, i.e., 15th to 30th order, the diagonal
and neighbor-diagonal Padé approximants are in excellent
agreement with exact NCSM calculations for the same model
space. In contrast, low-order DMBPT results are clearly not
sufficient to provide a quantitative and reliable approximation
to the exact NCSM excitation energies.

A number of interesting topics remain, which we will
address in the future: We can use the formalism of degen-
erate many-body perturbation theory to study binding-energy
systematics also for heavier open-shell nuclei, eventually also
including three-body forces. Moreover, the convergence pat-
tern of the DMBPT series will be affected by the partitioning
of the Hamiltonians, i.e., by the choice of the unperturbed
basis. There are hints from preliminary studies in the nonde-
generate case that, e.g., a Hartree-Fock basis can improve the
convergence behavior of the corresponding power series.
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