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Transition probabilities in the U(3,3) limit of the symplectic interacting vector boson model
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The tensor properties of the algebra generators are determined with respect to the reduction chain Sp(12, R) ⊃
U(3, 3) ⊃ Up(3) ⊗ Un(3) ⊃ U∗(3) ⊃ O(3), which defines one of the dynamical symmetry limits of the interacting
vector boson model. The symplectic basis according to the considered chain is thus constructed and the action of
the Sp(12, R) generators as transition operators between the basis states is illustrated. The matrix elements of the
U(3, 3) ladder operators in the so obtained symmetry-adapted basis are given. The U(3, 3) limit of the model is
further tested on the more complicated and complex problem of reproducing the B(E2) transition probabilities
between the collective states of the ground band in 104Ru, 192Os, 192Pt, and 194Pt isotopes, considered by many
authors to be axially asymmetric. Additionally, the excitation energies of the ground and γ bands in 104Ru are
calculated. The theoretical predictions are compared with the experimental data and some other collective models
which accommodate the γ -rigid or γ -soft structures. The obtained results reveal the applicability of the model
for the description of the collective properties of nuclei exhibiting axially asymmetric features.
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I. INTRODUCTION

Symmetry is an important concept in physics. In finite
many-body systems, it appears as time reversal, parity, and
rotational invariance, but also in the form of dynamical
symmetries [1–5]. In algebraic models, the use of dynamical
symmetries defined by a certain reduction chain of the group of
dynamical symmetry yields exact solutions for the eigenvalues
and eigenfunctions of the model Hamiltonian, which is
constructed from the invariant operators of the subgroups
in the chain. Many properties of atomic nuclei have been
investigated using such models, in which one obtains bands of
collective states which span irreducible representations of the
corresponding dynamical groups.

Moreover, it is very simple and straightforward to calculate
the matrix elements of transition operators between the
eigenstates as both the basis states and the operators can
be defined as tensor operators with respect to the considered
dynamical symmetry. Then the calculation of matrix elements
is simplified by the use of a respective generalization of
the Wigner-Eckart theorem, which requires the calculation
of the isoscalar factors and reduced matrix elements. By
definition such matrix elements give the transition probabilities
between the collective states attributed to the basis states of
the Hamiltonian.

The comparison of the experimental data with the calcu-
lated transition probabilities is one of the best tests of the
validity of the considered algebraic model. With the aim
of such applications of one of the dynamical symmetries
of the symplectic interacting vector boson model (IVBM),
we develop in this paper a practical mathematical approach
for explicit evaluation of the matrix elements of transitional
operators in the model.

*On leave of absence from the Institute of Nuclear Research and
Nuclear Energy, Bulgarian Academy of Sciences, Sofia, Bulgaria.

The IVBM and its recent applications for the description of
diverse collective phenomena in low-lying energy spectra (see,
e.g., the review article [6]) exploit the symplectic algebraic
structures, and the Sp(12,R) group is used as a dynamical
symmetry group. Symplectic algebras and their substructures
have been applied extensively in the theory of nuclear structure
[7–15]. They are used generally to describe systems with
a changing number of particles or excitation quanta and
in this way provide for larger representation spaces and
richer subalgebraic structures that can accommodate the more
complex structural effects as realized in nuclei with nucleon
numbers that lie far from the magic numbers of closed shells.
In particular, the model approach was adapted to incorporate
the newly observed higher collective states, in both the first
positive- and negative-parity bands [16] by considering the
basis states as “yrast” states for the different values of the
number of bosons, N , that built them.

In Ref. [17] a new dynamical symmetry limit of the IVBM
was introduced; it seems to be appropriate for the description
of deformed even-even nuclei exhibiting triaxial features.
Usually, in the geometrical approach the triaxial nuclear
properties are interpreted in terms of either the γ -unstable
rotor model of Wilets and Jean [18] or the rigid triaxial rotor
model (RTRM) of Davydov and Filippov [19]. An alternative
description can be achieved by exploiting the properties of the
SU∗(3) algebra introduced in Ref. [17] (and appearing also in
the context of IBM-2 [20]). The latter is appropriate for nuclei
in which the one type of particles is particle-like and the other is
hole-like. By using a schematic Hamiltonian with a perturbed
SU∗(3) dynamical symmetry, the IVBM was applied for the
calculation of the low-lying energy spectrum of the nucleus
192Os [17]. The obtained results proved the relevance of the
proposed dynamical symmetry in the description of deformed
triaxial nuclei.

In this paper we develop further our theoretical approach
initiated in Ref. [17] by considering the transition probabilities
in the framework of the symplectic IVBM with Sp(12, R) as
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a group of dynamical symmetry. For this purpose we consider
the tensorial properties of the algebra generators with respect
to the reduction chain:

Sp(12, R) ⊃
{

U(6)

U(3, 3)

}

⊃ Up(3) ⊗ Un(3) ⊃ U∗(3) ⊃ SO(3), (1)

where Up(3) and Un(3) are the one-fluid algebras correspond-
ing to the two nuclear subsystems, U∗(3) is the combined two-
fluid algebra, and SO(3) is the standard angular momentum
algebra. Further, we classify the basis states by the quantum
numbers corresponding to the irreducible representations
(irreps) of different subgroups along chain (1). In this way
we are able to define the transition operators between the basis
states and then to evaluate analytically their matrix elements.
This will allow us further to test the model in the description
of the electromagnetic properties observed in some nonaxial
nuclei. As a first step we will test the theory on the transitions
between the states belonging to the ground-state bands (GSB)
in some even-even nuclei from the A ≈ 100 and A ≈ 190 mass
regions.

II. TENSORIAL PROPERTIES OF THE GENERATORS
OF THE SP(12,R) GROUP

It was suggested by Bargmann and Moshinsky [21] that
two types of bosons are needed for the description of nuclear
dynamics. It was shown there that the consideration of only a
two-body system consisting of two different interacting vector
particles will suffice to give a complete description of N

three-dimensional oscillators with a quadrupole-quadrupole
interaction. The latter can be considered as the underlying basis
in the algebraic construction of the phenomenological IVBM.

The basic building blocks of the IVBM [17] are the creation
and annihilation operators of two kinds of vector bosons,
u
†
m(α) and um(α) (m = 0,±1), which differ in an additional

quantum number α = ±1/2 (or α = p and n), the projection
of the T -spin (an analog to the F -spin of IBM-2 or the
I -spin of the particle-hole IBM). In the present paper, we
consider these two bosons just as elementary building blocks
or quanta of elementary excitations (phonons) rather than
real fermion pairs, which generate a given type of algebraic
structures. Thus, only their tensorial structure is of importance
and they are used as an auxiliary tool, generating an appropriate
dynamical symmetry.

The vector bosons can be considered as components
of a six-dimensional vector, which transform accord-
ing to the fundamental U(6) irreducible representation
[1, 0, 0, 0, 0, 0]6 ≡ [1]6 and its conjugate (contragradient)
one [0, 0, 0, 0, 0,−1]6 ≡ [1]∗6, respectively. These irreducible
representations become reducible along the chain of subgroups
(1) defining the dynamical symmetry. This means that, along
with the quantum number characterizing the representations
of U(6), the operators are also characterized by the quantum
numbers of the subgroups of chain (1). By introducing the
notation u

†
i (

1
2 ) = p

†
i and u

†
i (− 1

2 ) = n
†
i , the components of the

creation operators u
†
m(α) labeled by chain (1) can be written

as

p†
m ≡ p

†[1]6

[1]3[0]∗3 [1]3(1)3m
, n†

m ≡ n
†[1]6

[0]3[1]∗3 [1]∗3(1)3m
. (2)

According to chain (1), the fundamental U(6) irrep [1]6

decomposes as

[1]6 ⊃ [1]3 ⊕ [1]∗3, (3)

i.e., as a direct product sum of the Up(3) and Un(3) fundamen-
tal irreps. In Eq. (3) [1]∗3 denotes the (contragradient) irrep of
Un(3) which is conjugate to [1]3 of Up(3). This corresponds
to the case when the one type of particles in the two-fluid
nuclear system is particle-like and the other is hole-like. Note
that there is an alternative decomposition of the fundamental
U(6) irrep [1]6:

[1]6 ⊃ [1]3 ⊕ [1]3, (4)

where the group Un(3) in Eq. (1) should be replaced by
the Un(3) one. This decomposition (4) is appropriate for the
situation when the nucleus is considered as consisting of two
particle-like constituents. In our further considerations we will
need also the reduction of the U(6) irrep [2]6 along chain (1).
According to the decomposition rules for the fully symmetric
U(6) irreps, we obtain for the Up(3) ⊗ Un(3) content

[2]6 ⊃ [2]3[0]∗3 + [1]3[1]∗3 + [0]3[2]∗3. (5)

Thus, the generators of the symplectic group Sp(12, R) can
already be defined as irreducible tensor operators according to
the whole chain (1) of subgroups as follows.

The raising operators of Sp(12, R) can be expressed as

F
[χ]6 LM

[λ]3[0]∗3 [λ]3
= C

[1]6 [1]6 [χ]6

[1]3[0]∗3 [1]3[0]∗3 [λ]3[0]∗3
C

[λ]3
[1]3,[1]3

×C
[1]3[1]3[λ]3
(1)3(1)3(L)3

CLM
1m1n

×p
†[1]6

[1]3[0]∗3 [1]3(1)3m
p
†[1]6

[1]3[0]∗3 [1]3(1)3n
, (6)

F
[χ]6 LM

[0]3[λ]∗3 [λ]∗3
= C

[1]6 [1]6 [χ]6

[0]3[1]∗3 [0]3[1]∗3 [0]3[λ]∗3
C

[λ]3
[−1]3,[−1]3

×C
[1]∗3[1]∗3[λ]∗3
(1)3(1)3(L)3

CLM
1m1n

×n
†[1]6

[0]3[1]∗3 [1]∗3(1)3m
n
†[1]6

[0]3[1]∗3 [1]∗3(1)3n
, (7)

F
[χ]6 LM

[1]3[1]∗3 [λ]3
= C

[1]6 [1]6 [χ]6

[1]3[0]∗3 [0]3[1]∗3 [0]3[λ]3
C

[λ]3
[1]3,[−1]3

×C
[1]3[1]∗3[λ]3

(1)3(1)3(L)3
CLM

1m1n

×p
†[1]6

[1]3[0]∗3 [1]3(1)3m
n
†[1]6

[0]3[1]∗3 [1]∗3(1)3n
, (8)

where, according to the lemma of Racah [22], the Clebsch-
Gordan coefficients along the chain are factorized by means
of the isoscalar factors (IF), defined for each step of de-
composition (1). The lowering operators G

[χ]6 LM

[λ′]3[λ′′]3 [λ]3
of

Sp(12, R) are obtained from the rasing ones F
[χ]6 LM

[λ′]3[λ′′]†3 [λ]3

by Hermition conjugation. That is why we consider only the
tensor properties of the raising operators.

The tensors (6)–(8) transform according to

[1]6 × [1]6 = [2]6 + [1, 1]6, (9)

and their Hermition conjugate counterparts transform accord-
ing to

[1]∗6 × [1]∗6 = [−2]6 + [−1,−1]6, (10)
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respectively. But, since the basis states of the IVBM are
fully symmetric, we consider only the fully symmetric U(6)
representation [2]6 and its conjugate [−2]6. Hence, the tensors
(6)–(8) transform according to the U(6) irrep [χ ]6 ≡ [2]6.

The tensor (6) with respect to the U∗(3) subgroup trans-
forms according to the direct product

[1]3 × [1]3 = [2]3 + [1, 1]3, (11)

while (7) and (8) transform according to

[1]∗3 × [1]∗3 = [2, 2]3 + [2, 1, 1]3 = [−2]3 + [1]3, (12)

[1]3 × [1]∗3 = [2, 1]3 + [1, 1, 1]3 = [1,−1]3 + [0]3 (13)

and obviously, because of their symmetric character, (6)
and (7) transform only according to the symmetric U∗(3)
representations [2]3 and [−2]3, respectively. The latter follows
also from the reduction (5). In this way we obtain the following
set of raising generators:

F
[2]6 LM

[2]3[0]∗3 [2]3
, F

[2]6 LM

[0]3[2]∗3 [−2]3
, (14)

F
[2]6 LM

[1]3[1]∗3 [2,1,0]3
, F

[2]6 LM

[1]3[1]∗3 [0]3
, (15)

which together with their conjugate (lowering) operators
change the number of bosons, N , by two. The operators (15)
and their conjugate counterparts are the ladder generators of
U(3, 3) algebra.

In terms of Elliott’s notation [23] (λ,μ), we have [2]3 =
(2, 0), [2]∗3 = [−2]3 = (0, 2), [210]3 = (1, 1), and [0]3 =
(0, 0). The corresponding values of L from the SU(3) ⊃ O(3)
reduction rules are L = 0, 2 in both the (2, 0) and (0, 2) irreps,
L = 1, 2 in the (1, 1) irrep, and L = 0 in the (0, 0) irrep.

The number-preserving operators transform according to
the direct product [χ ]6 of the corresponding U(6) representa-
tions [1]6 and [1]∗6, namely,

[1]6 × [1]∗6 = [1,−1]6 + [0]6, (16)

where [1,−1]6 = [2, 1, 1, 1, 1, 0]6 and [0]6 = [1, 1, 1, 1,

1, 1]6 is the scalar U(6) representation. They generate the
maximal compact subgroup U(6) of Sp(12, R).

The tensor operators

A
[1−1]6 LM

[λ]3[0]∗3 [λ]3
	 1√

2

∑
m,k

CLM
1m1kp

†
mpk, (17)

A
[1−1]6 LM

[0]3[λ]∗3 [λ]∗3
	 1√

2

∑
m,k

CLM
1m1k n†

mnk (18)

correspond to the generators of the Up(3) and Un(3) al-
gebras, respectively. The operators with L = 1 represent
the angular momentum components, whereas those with
L = 2 correspond to the quadrupole momentum operators
and together they generate the one-fluid SUτ (3) (τ = p, n)
algebra. The tensors (17) and (18) together with (15) and their
conjugate counterparts, in turn, constitute the full set of U(3, 3)
generators.

The linear combination operators

A′LM
[λ]3

= A
[1−1]6 LM

[λ]3[0]∗3 [λ]3
− (−1)LA

[1−1]6 LM

[0]3[λ]∗3 [λ]3
(19)

generate the U∗(3) algebra. The SU∗(3) algebra is obtained by
excluding the operator A′00 = Np − Nn = M , which is the

TABLE I. Tensor products of two raising operators.

[2]6 [2]6 [4]6 U∗(3) O(3)
[λ′

1]3[λ′′
1]∗3 [λ′

2]3[λ′′
2]∗3 [λ1]3[λ2]∗3 [λ]3 K; L

[2]3[0]∗3 [2]3[0]∗3 [4]3[0]∗3 [4]3 0; 0, 2, 4

[2]3[0]∗3 [0]3[2]∗3 [2]3[2]∗3 [42]3

{ 2; 2, 3, 4
0; 0, 2

[2]3[0]∗3 [0]3[2]∗3 [2]3[2]∗3 [321]3 1; 1, 2
[2]3[0]∗3 [0]3[2]∗3 [2]3[2]∗3 [0]3 0; 0
[0]3[2]∗3 [0]3[2]∗3 [0]3[4]∗3 [−4]3 0; 0, 2, 4

single generator of the O(2) algebra, whereas the angular
momentum algebra SO(3) is generated by the generators
A′1M ≡ LM = L

p

M + Ln
M only. The operator M , counting the

difference between particle and holes, is also the first-order
Casimir of U(3, 3) algebra and it decomposes the action space
H of the Sp(12, R) generators to the ladder Hν subspaces of
the boson representations of Sp(12, R) with ν = Np − Mn =
±0,±2,±4, . . . [24].

Finally, the tensors

A
[1−1]6 LM
[1]3[1]3 [λ]3

	 1√
2

∑
m,k

CLM
1m1k p†

mnk, (20)

A
[1−1]6 LM

[1]∗3[1]∗3 [λ]3
	 1√

2

∑
m,k

CLM
1m1k n†

mpk (21)

with L = 0, 1, 2 and M = −L,−L + 1, ..., L extend the
Up(3) ⊗ Un(3) algebra to the U(6) one.

In this way we have listed all the irreducible tensor operators
with respect to the reduction chain (1) that correspond to the
infinitesimal operators of the Sp(12, R) algebra.

III. CONSTRUCTION OF THE SYMPLECTIC BASIS
STATES OF THE IVBM

Next, we can introduce the tensor products

T
([χ1]6[χ2]6) ω[χ]6

[λ1]3[λ2]3 [λ]3 LM

=
∑

T
[χ1]6 L1M1

[λ′
1]3[λ′′

1]∗3 [λ1]3
T

[χ2]6 L2M2

[λ′
2]3[λ′′

2]∗3 [λ2]3

×C
[χ1]6 [χ2]6 ω[χ]6

[λ′
1]3[λ′′

1]∗3 [λ′
2]3[λ′′

2]∗3 [λ1]3[λ2]3

×C
[λ]3
[λ1]3,[λ2]3

C
[λ1]3 [λ2]3 [λ]3
K1L1 K2L2 KL C

L1 L2 L
M1 M2 M (22)

of two tensor operators T
[χi ]6 LiMi

[λ′
i ]3[λ′′

i ]∗3 [λi ]3
, which are as well

tensors with respect to the considered reduction chain. We use
(22) to obtain the tensorial properties of the operators in the
enveloping algebra of Sp(12, R), containing the products of
the algebra generators. In this particular case we are interested
in the transition operators between states differing by four
bosons, T

[4]6 LM

[λ′]3[λ′′]∗3 [λ]3
, expressed in terms of the products of

two operators, T
[2]6 LiMi

[λ′
i ]3[λ′′

i ]∗3 [λi ]3
. Making use of decomposition

(5) and the reduction rules in chain (1), we list in Table I
all the representations of the chain subgroups that define the
transformation properties of the resulting tensors.

In order to clarify the role of the tensor operators introduced
in the previous section as transition operators and to simplify
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TABLE II. Symplectic classification of the SU∗(3) basis states.

N\ν · · · 6 4 2 0 −2 −4 −6 · · ·
0 (0, 0)
2 F

[2]6
[2]3[0]∗3

(2, 0) (1, 1) (0, 2) F
[2]6
[0]3[2]∗3↙ (0, 0) ↘

(4, 0) (3, 1) (2, 2) (1, 3) (0, 4)
4 F

[2]6
[1]3[1]∗3

↓ (2, 0) (1, 1) (0, 2)

(0, 0)
(6, 0) (5, 1) (4, 2) (3, 3) (2, 4) (1, 5) (0, 6)

6 A
[1−1]6
[1]∗3[1]∗3

(0, 4) (3, 1) (2, 2) (1, 3) (0, 4) A
[1−1]6
[1]∗3[1]∗3=⇒ (2, 0) (1, 1) (0, 2) ⇐=

(0, 0)
...

...
...

...
...

...
...

...

the calculation of their matrix elements, the basis for the
Hilbert space must be symmetry adapted to the algebraic
structure along the considered subgroup chain (1). It is evident
from (14) and (15) that the basis states of the IVBM in the H+
(N even) subspace of the boson representations of Sp(12, R)
can be obtained by a consecutive application of the raising
operators F

[χ ]6 LM

[λ′]3[λ′′]∗3 [λ]3
on the boson vacuum | 0 〉 (ground

state), annihilated by the tensor operators G
[χ]6 LM

[λ′]3[λ′′]∗3 [λ]3
| 0 〉 =

0 and A
[χ ]6 LM

[λ′]3[λ′′]∗3 [λ]3
| 0 〉 = 0.

Thus, in general a basis for the considered dynamical
symmetry of the IVBM can be constructed by apply-
ing the multiple symmetric couplings (22) of the raising
tensors T

[2]6 LiMi

[λ′
i ]3[λ′′

i ]∗3 [λi ]3
with itself—[F × . . . × F ][χ]6 LM

[λ′]3[λ′′]∗3 [λ]3
.

The possible U∗(3) couplings are enumerated by the
set [λ]3 = {[n1, n2, n3] ≡ (λ = n1 − n2, μ = n2 − n3); n1 �
n2 � n3 � 0}. We note that the integers {ni} can take non-
negative as well as negative values and hence correspond
to mixed irreps of U∗(3) [25]. The number of copies of the
operator F in the symmetric product tensor [N ]6 is N/2, where
N = Np + Nn. Each raising operator will increase the number
of bosons, N , by two. Then, the resulting infinite basis can be
written as

|[N ]6; [Np]3, [Nn]∗3; (λ,μ); KLM〉, (23)

where [N ]6, [Np]3, and [Nn]∗3 denote the irreducible repre-
sentations of the U(6), Up(3), and Un(3) groups, respectively,
while the quantum numbers KLM denote the basis of the
irrep (λ,μ) of SU∗(3). By means of these labels, the basis
states can be classified in each of the two irreducible even
H+ with N = 0, 2, 4, . . . and odd H− with N = 1, 3, 5, . . .

representations of Sp(12, R).
The Sp(12, R) classification scheme for the SU∗(3) boson

representations obtained by applying the reduction rules for
the irreps in chain (1) for even values of the number of bosons,
N , is shown in Table II. Each row (fixed N ) of the table
corresponds to a given irreducible representation of the U(6)
algebra, whereas the SU∗(3) quantum numbers (λ,μ) define
the cells of Table II. On the other hand, the so-called ladder
representation of the noncompact algebra U(3, 3) acts in the
space of the boson representation of the Sp(12, R) algebra.

Thus the ladder representations of U(3, 3) correspond to the
columns (fixed value of ν) of Table II. Note that along the
columns the SU∗(3) irreps repeat each other except the ones
corresponding to the first row for each N .

Now, it is clear which of the tensor operators act as transition
operators between the basis states ordered in the classification
scheme presented in Table II. The operators F

[2]6 LM

[1]3[1]∗3 [λ]3
give

the transitions between two neighboring cells (↓) from one
column, while the F

[2]6 LM

[2]3[0]∗3 [λ]3
(↙) or F

[2]6 LM

[0]3[2]∗3 [λ]3
(↘) ones

change the column as well. The tensors A
[1−1]6 LM
[1]3[1]3 [λ]3

and

A
[1−1]6 LM

[1]∗3[1]∗3 [λ]3
, acting within the rows, change a given SU∗(3)

irrep to the neighboring one on the left (⇐=) and right (=⇒),
respectively. The operators A′LM

[210]3
(19), which correspond to

the SU∗(3) generators, do not change the SU(3) representations
(λ,μ), but they can change the angular momentum L inside
it. The action of the tensor operators on the SU∗(3) vectors
inside a given cell or between the cells of Table II is also
schematically presented with corresponding arrows, given
above in parentheses.

IV. MATRIX ELEMENTS OF THE U(3, 3)
LADDER OPERATORS

Physical applications are based on the correspondence
of sequences of SU(3) vectors to sequences of collective
states belonging to different bands in the nuclear spectra.
The above analysis permits the definition of the appropriate
transition operators as corresponding combinations of the
tensor operators given in Secs. II and III.

In the present work we are interested in the calculation of the
matrix elements of the U(3, 3) generators in an appropriately
chosen symmetry-adapted basis. For this purpose we consider
the following reduction chain:

U(3, 3) ⊃ Up(3) ⊗ Un(3) ⊃ U∗(3) ⊃ SO(3), (24)

which is a part of (1). The basis is

|ν; [Np]3, [Nn]∗3; [λ]3; KLM〉, (25)

where [λ]3 = (λ,μ) and the new label ν denotes the different
U(3, 3) ladder representations. Note that the number of bosons,
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N , is not a good quantum number along chain (24) and hence
the U(6) irrep label [N ]6 is irrelevant and will be omitted in
the further considerations.

The matrix elements of U(3, 3) generators can be calculated
by using the fact that the Hilbert state space is the tensor
product of the p- and n-boson representation spaces [Np]3

and [Nn]∗3, i.e.,

|[Np]3, [Nn]∗3; [λ]3〉 = |[Np]3〉 ⊗ |[Nn]∗3〉, (26)

coupled to good total U∗(3) symmetry. Tensor operators in
the p-n space can be constructed by coupling tensors in the
separate spaces to good total U∗(3) symmetry.

In the preceding sections we expressed all the symplectic
generators and the basis states as components of irreducible
tensors with respect to the reduction chain (1). Thus, for
calculating the matrix elements of the U(3, 3) generators
(which are a subset of the symplectic generators), one can
use the generalized Wigner-Eckart theorem with respect to the
Up(3) ⊗ Un(3) subgroup:

〈ν; [N ′
p]3, [N ′

n]∗3; [λ′]3; K ′L′M ′|T lm
[σ ′]3[σ ′′]3 [σ ]3

|ν; [Np]3, [Nn]∗3; [λ]3; KLM〉
= 〈ν; [N ′

p]3, [N ′
n]∗3; [λ′]3; K ′L′||T lm

[σ ′]3[σ ′′]3 [σ ]3
||ν; [Np]3, [Nn]∗3; [λ]3; KL〉CL′M ′

LM,lm. (27)

Note that the U(3, 3) generators (15) act within a given ladder
representation (fixed ν) and change the number of bosons, N ,
by two, whereas the generators (14) change the U(3, 3) irrep

ν as well. The double-barred reduced matrix elements in (27)
are determined by the triple-barred matrix elements:

〈ν; [N ′
p]3, [N ′

n]∗3; [λ′]3; K ′L′||T lm
[σ ′]3[σ ′′]3 [σ ]3

||ν; [Np]3, [Nn]∗3; [λ]3; KL〉
= 〈ν; [N ′

p]3, [N ′
n]∗3; [λ′]3|||T lm

[σ ′]3[σ ′′]3 [σ ]3
|||ν; [Np]3, [Nn]∗3; [λ]3〉C[λ]3 [σ ]3 [λ′]3

KL kl K ′L′ , (28)

where C
[λ]3 [σ ]3 [λ′]3
KL kl K ′L′ are the U(3) isoscalar factors and

the triple-barred matrix elements depend only on the Up(3),
Un(3), and U∗(3) quantum numbers. Obviously, for the
evaluation of the matrix elements (27) of the U(3, 3) op-
erators with respect to chain (1) knowledge of the U(3)

IF as well as the reduced triple-barred matrix elements is
required.

We consider the SO(3) reduced matrix element of
the U(3, 3) ladder operator F lm

[1]3[1]∗3 [2,1,0]3
∼ [p†

[1]3
×

n
†
[1]∗3

] lm
[2,1,0]3

:

〈ν; [N ′
p]3, [N ′

n]∗3; [λ′]3; K ′L′||F lm
[1]3[1]∗3 [2,1,0]3

||ν; [Np]3, [Nn]∗3; [λ]3; KL〉

= 〈ν; [N ′
p]3, [N ′

n]∗3; [λ′]3|||F lm
[1]3[1]∗3 [2,1,0]3

|||ν; [Np]3, [Nn]∗3; [λ]3〉C[λ]3 [2,1,0]3 [λ′]3
KL kl K ′L′ . (29)

Since the operator under consideration acts on the separate p

and n spaces, the reduced triple-barred matrix element can be
expressed as a product of the separate reduced triple-barred
matrix elements [26]:

〈ν; [N ′
p]3, [N ′

n]∗3; [λ′]3|||F lm
[1]3[1]∗3 [2,1,0]3

|||ν; [Np]3, [Nn]∗3; [λ]3〉

=
∑
ρpρn

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(Np, 0) (1, 0) (N ′
p, 0) ρp

(0, Nn) (0, 1) (0, N ′
n) ρn

(Np,Nn) (1, 1) (N ′
p,N ′

n) 1

1 1 1

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

〈[N ′
p]3|||p†|||[Np]3〉ρp

〈[N ′
n]∗3|||n†|||[Nn]∗3〉ρn

, (30)

054311-5



H. G. GANEV PHYSICAL REVIEW C 86, 054311 (2012)

where {. . .} stands for the SU(3) 9 − (λ,μ) symbol. In our case
ρp and ρn are equal to 1, so there is no sum in Eq. (30). Taking
into account that for the maximal couplings (i.e., N ′

p = Np + 1

and N ′
n = Nn + 1) the corresponding SU(3) 9 − (λ,μ) symbol

is equal to 1, we obtain for the reduced triple-barred matrix
element

〈ν; [Np + 1]3, [Nn + 1]∗3; [λ′]3|||F lm
[1]3[1]∗3 [2,1,0]3

|||ν; [Np]3, [Nn]∗3; [λ]3〉 = √
(Np + 1)(Nn + 1), (31)

where we have used the fact that, in the case of vector
bosons which span the fundamental irrep [1] of u(n) algebra,
the u(n)-reduced matrix element of raising generators has a
well-known form [27].

The SO(3) reduced matrix element of the complemen-
tary ladder operator G lm

[1]∗3[1]3 [2,1,0]3
∼ [p[1]∗3 × n[1]3 ] lm

[2,1,0]3
of

U(3, 3) algebra can be obtained from Eq. (30) and Eq. (31)
simply by conjugation:

〈ν; [Np − 1]3, [Nn − 1]∗3; [λ′]3; K ′L′||G lm
[1]∗3[1]3 [2,1,0]3

||ν; [Np]3, [Nn]∗3; [λ]3; KL〉

= (〈ν; [Np]3, [Nn]∗3; [λ′]3||F lm
[1]3[1]∗3 [2,1,0]3

||ν; [Np − 1]3, [Nn − 1]∗3; [λ]3〉)∗ = √
NpNnC

[λ]3 [2,1,0]3 [λ′]3
KL kl K ′L′ . (32)

We want to point out that the isoscalar factors appearing in
Eqs. (29) and (32) are not known in general. A computer code
is available for their numerical evaluation [28].

V. B(E2) TRANSITION PROBABILITIES
FOR THE GROUND-STATE BAND

The most important point of the symplectic IVBM in
practical applications to real nuclei is the identification of the
experimentally observed collective states of different bands
with a subset of the basis states from the symplectic extension
given in Table II. In general, an appropriate subset of SU(3)
states are the so-called stretched states [29]. Their domination
is determined by the important role of the quadrupole-
quadrupole interactions in the collective excitations. Thus,
the most important SU(3) states will be those with maximal
weight, i.e., those which have maximal eigenvalues of the
second-order SU(3) Casimir operator.

In the present approach we give as an example the evalu-
ation of the B(E2) transition probabilities between the states
of the ground-state band. For this purpose, we consider the
following type of stretched states: (λ,μ) = (λ0 + k, μ0 + k),
where λ0 and μ0 fix the starting SU∗(3) state built by
N0 = λ0 + μ0 bosons and k is changing. In our application,
the integer number k is related to the angular momentum L

and gives rise to the collective bands. Note that the presented
type of SU∗(3) stretched states comprises states from the
ladder representations (the columns of Table II) of the U(3, 3)
algebra. Hence an arbitrary transition between these ladder
states can be performed by the action of the ladder operators
of U(3, 3) or the tensor product operators from the enveloping
algebra of Sp(12, R). For the GSB we chose N0 = 0; i.e.,
the initial SU∗(3) state corresponding to the ground state
is (λ0, μ0) = (0, 0). In this way, the states of the GSB are
identified with the SU∗(3) multiplets (L,L). In order to

visualize the correspondence under consideration, we illustrate
the selected subset of basis states in Table III.

As mentioned earlier, the vector bosons are considered
as elementary excitations or phonons that build different
collective states. Because of the latter, the same U(3, 3)
irrep [i.e., the same SU∗(3) content in the p-n space as
described above] is associated with the GSB for all nuclei
under consideration.

Transition probabilities are by definition SO(3) reduced
matrix elements of transition operators T E2 between the |i〉
(initial) and |f 〉 (final) collective states:

B(E2; Li → Lf ) = 1

2Li + 1
|〈f ‖ T E2 ‖ i〉|2 . (33)

By using the tensorial properties of the Sp(12, R) generators
and the mapping considered above, it is easy to define the E2
transition operator between the states of the GSB band as

T E2 = e
[
A′20

[210]3
+ θ

(
[F × F ] 20

[2]3[2]∗3 [420]3

+ [G × G] 20
[2]∗3[2]3 [420]3

)]
, (34)

where the first tensor operator is the SU∗(3) quadrupole
operator and actually changes only the angular momentum
with �L = 2 within a given irrep (λ,μ).

The tensor product

[F × F ] 20
[2]3[2]∗3 [420]3

=
∑

C
[420]3
[2]3,[2]∗3

C
(2,0)(0,2)(2,2)

2 2 2 C20
20,20

×F 20
[2]3[0]∗3 [2]3

F 20
[0]3[2]∗3 [−2]3

(35)

TABLE III. The subset of basis states (25) associated with the
GSB.

(λ,μ) (0, 0) (2, 2) (4, 4) (6, 6) (8, 8) . . .

L 0 2 4 6 8 . . .
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of the rasing generators of Sp(12, R) changes the number of
bosons by �N = 4 and �L = 2.

For the SO(3) reduced matrix element of the tensor product
[F × F ] 20

[2]3[2]∗3 [420]3
between the states of the GSB we obtain

〈0; [Np + 2]3, [Nn + 2]∗3; [λ′]3; K ′ = 0L′||[F × F ] 20
[2]3[2]∗3 [420]3

||0; [Np]3, [Nn]∗3; [λ]3; K = 0L〉

= C
[λ]3 [4,2,0]3 [λ′]3
KL kl K ′L′

∑
ρpρn

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(Np, 0) (2, 0) (Np + 2, 0) ρp

(0, Nn) (0, 2) (0, Nn + 2) ρn

(Np,Nn) (2, 2) (Np + 2, Nn + 2) 1

1 1 1

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

〈[Np + 2]3|||F |||[Np]3〉ρp
〈[Nn + 2]∗3|||F |||[Nn]∗3〉ρn

= √
(Np + 1)(Np + 2)(Nn + 1)(Nn + 2)C[λ]3 [4,2,0]3 [λ′]3

KL kl K ′L′ , (36)

where again for the case of the maximal couplings ρp = ρn =
1 and hence there is no sum in Eq. (36) and the SU(3) 9 −
(λ,μ) coefficient is equal to 1. In Eq. (36) we have used the

standard recoupling technique for two coupled U(3) tensors
[30]:

〈[Np + 2]3|||F |||[Np]3〉 = U([Np]3; [1]3; [Np + 2]3; [1]3|[Np + 1]3; [2]3)

×〈[Np + 2]3|||p†
[1]3

|||[Np + 1]3〉〈[Np + 1]3|||p†
[1]3

|||[Np]3〉, (37)

where U(. . .) denotes the U(3) Racah coefficient, which for
maximal couplings is equal to 1.

Similarly, for the SO(3) reduced matrix element of the
tensor product [G × G] 20

[2]∗3[2]3 [420]3
we obtain

〈0; [Np − 2]3, [Nn − 2]∗3; [λ′]3; K ′ = 0L′||[G × G] 20
[2]∗3[2]3 [420]3

||0; [Np]3, [Nn]∗3; [λ]3; K = 0L〉
= √

Np(Np − 1)Nn(Nn − 1)C[λ]3 [4,2,0]3 [λ′]3
KL kl K ′L′ . (38)

Finally, we calculate the matrix element of the quadrupole
operator A′20

[210]3
using the fact that it is an SU∗(3) generator.

So, the Wigner-Eckart theorem is applied with respect to the
SU∗(3) subgroup

〈0; [N ′
p]3, [N ′

n]∗3; (N ′
p,N ′

n); 0L − 2||A′20
[210]3

||0; [Np]3, [Nn]∗3; (Np,Nn); 0L〉
= δNpN ′

p
δNnN ′

n

∑
ρ=1,2

C
(N ′

p,N ′
n) (1,1) ρ(Np,Nn)

L−2 2 L 〈(N ′
p,N ′

n)|‖A′20
[210]3

‖|(Np,Nn)〉ρ. (39)

The reduced triple-barred matrix elements are well known and
are given for ρ = 1 by [31]

〈(λ = Np,μ = Nn)|||A′20
[210]3

|||(λ = Np,μ = Nn)〉1

=
{

gλμ, μ = 0,

−gλμ, μ �= 0,
(40)

where

gλμ = 2

(
λ2 + μ2 + λμ + 3λ + 3μ

3

)1/2

(41)

and the phase convention is chosen to agree with that
of Draayer and Akiyama [28]. For ρ = 2 we have
〈(λ,μ)|||A′20

[210]3
|||(λ,μ)〉2 = 0.

With the help of the above analytic expressions (36), (38),
and (39) for the matrix elements of the tensor operators
forming the E2 transition operator we can calculate the
transition probabilities (33) between the states of the ground-
state band as attributed to the SU∗(3) symmetry-adapted
basis states of the model (25). All the required U(3) IF are
numerically obtained using the computer code in [28].
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VI. APPLICATION TO REAL NUCLEI

In order to test the model predictions following from
our theoretical considerations we apply the theory to real
nuclei exhibiting axially asymmetric features for which there
is enough available experimental data for the transition
probabilities between the states of the ground bands from the
A ∼ 100 and A ∼ 190 mass regions. The application actually
consists of fitting the two parameters e and θ of the transition
operator T E2 (34) to experiment for each isotope.

As a first example we consider the intraband B(E2) transi-
tions in the GSB for the nucleus 104Ru, which was assumed to
possess transitional properties between the γ -soft [O(6) limit]
and γ -rigid [SU∗(3) limit] structures [20,32]. The 96–108Ru
isotopes have also been described within the framework of
IBM-1 as transitional between U(5) and O(6) limits [33],
whereas in the generalized collective model these nuclei are
described as transitional between spherical and triaxial with
a prolate onset for 96Ru [34]. The experimental data [35]
for the B(E2) transition probabilities between the states of
the GSB are compared with the corresponding theoretical
results of the symplectic IVBM in Fig. 1. For comparison, the
theoretical predictions of IBM-1 [35], including a cubic term
producing a stable triaxial minimum, those of IBM-2 [36], the
RTRM [37], and the γ -unstable model of Wilets and Jean [18]
are also shown. From the figure one can see that all models
presented reproduce the general trend of the experimental data,
but nevertheless the latter lie between the predictions of the
γ -unstable and γ -rigid models, suggesting a more complex
and intermediate situation between these two structures. Note
the identical curves for IBM-1 and IBM-2 up to L 	 8. With
slightly modified values of the parameters θ and e, the IVBM
results become very similar to those of the IBM, which is also
illustrated in Fig. 1 (dashed curve).

Next, we present the theoretical results for some nuclei from
the A ∼ 190 mass region. The Pt–Os region is traditionally
considered within the IBM-1 framework to be a good example
for the transition between SU(3) and O(6) [38]. A number
of theoretical calculations [39–43] predict a tiny region of
triaxiality between the prolate and oblate shapes in this
mass region. Recent self-consistent Hartree-Fock-Bogoliubov

FIG. 1. (Color online) Comparison of theoretical and experi-
mental values for the B(E2) transition probabilities in 104Ru. The
theoretical results of IBM-1 with a cubic term included, IBM-2, the
rigid triaxial rotor model, and the γ -unstable model of Wilets and
Jean are also shown.

FIG. 2. (Color online) Comparison of theoretical and experi-
mental values for the B(E2) transition probabilities in 192Os. The
theoretical results of the rigid triaxial rotor model, IBM-2 in its SU∗(3)
limit, the SMA, and the γ -unstable model are also shown.

calculations [41] with Gogny D1S and Skyrme SLy4 forces
predict that the prolate to oblate transition takes place at
neutron number N = 116 (192Os, 194Pt).

In Fig. 2, the experimental B(E2) values for transitions
between the members of the GSB in 192Os are compared with
the theoretical results of the IVBM, IBM-2 [44] [SU∗(3) limit],
the RTRM [37], the sextic and Mathieu approach (SMA) [45],
and γ -unstable model of Wilets and Jean [18]. One can see
a slight reduction of the collectivity with the increasing spin
well described by the IVBM, whereas the RTRM, the SMA,
and γ -unstable model of Wilets and Jean overestimate the
observed experimental data.

Next, the experimental B(E2) values [43] between the
states of the GSB in 192Pt and 194Pt isotopes are shown in Figs. 3
and 4, respectively, compared with the theoretical predictions
of the IVBM from one side and those of IBM-2 [43], the
RTRM [37], the quadrupole collective model (Coll.) [43], and
the γ -unstable model [18] from another. The reduction in the
B(E2) values with increasing spin is well described by the
IVBM in the two nuclei, compared to the predictions of other
collective models.

From Figs. 1–4 one can see that the IVBM describes the
B(E2) transitions probabilities between the collective states of
the GSB in the four considered even-even nuclei rather well.
At this point we want to make some comments concerning
the two parameters e and θ . Detailed analysis shows that

FIG. 3. (Color online) Comparison of theoretical and experi-
mental values for the B(E2) transition probabilities in 192Pt. The
theoretical results of the rigid triaxial rotor model, IBM-2, the
quadrupole collective model, and the γ -unstable model are also
shown.
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FIG. 4. (Color online) Comparison of theoretical and experi-
mental values for the B(E2) transition probabilities in 194Pt. The
theoretical results of the rigid triaxial rotor model, IBM-2, the
quadrupole collective model, and the γ -unstable model are also
shown.

the two main types of B(E2) behavior—the enhancement or
the reduction of the B(E2) values—can be described within the
present approach. The change of the values of the parameter e

affects mainly the scale. The coefficient in front of the second
term in Eq. (34) is about two orders of magnitude smaller
than the SU(3) contribution to the transition operator (34), but
its role in reproducing the correct behavior of the transition
probabilities between the states of the GSB is very important.
At θ = 0 the theory gives a very specific, almost linear,
behavior of the B(E2) values. For θ < 0, with increasing
absolute value of the parameter θ , the theoretical curve goes
from that of enhanced B(E2) values (which is an indication
for the enhanced collectivity in the high-angular-momentum
domain) to the case of the well-known “cutoff effect,” which
is a characteristic feature of all SU(3)-based calculations.

Being a group of dynamical symmetry, the Sp(12, R) group
through its reduction given by Eq. (1) determines the type of
spectra (obtained at fixed values of the model parameters in
the Hamiltonian) of different nuclei that it can describe. As
an illustration, in Fig. 5 we show the theoretical results for
the excitation energies of the ground and γ bands in 104Ru,
compared with the experimental data and the predictions [46]
of IBM-2 in its SU∗(3) limit and the RTRM, both of which
incorporate γ -rigid structures. The states of the γ band are
associated with the stretched states from the ν = −2 irrep of

FIG. 5. (Color online) Excitation energies of the GSB and γ band
in 104Ru, compared with the experimental data and the predictions
of IBM-2 in its SU∗(3) limit and the RTRM. The values of the
model parameters are a1 = 0.2155 MeV, b = −0.0098 MeV, a3 =
−0.0002 MeV, and b3 = 0.0387 MeV.

U(3, 3). (Detailed comparison of the energy spectra obtained in
the present approach for some even-even nuclei, assumed to be
axially asymmetric, with experiment will be given elsewhere.)
The Hamiltonian used in our calculation, expressed as a linear
combination of the Casimir operators along chain (1), is of the
form

H = a1M
2 + b

(
N2

n − N2
p

)+a3C2[SU∗(3)] + b3C2[SO(3)].

(42)

The values of the model parameters are determined by fitting
the energies of the ground and γ bands in 104Ru to the
experimental data [47], using a χ2 procedure. From Fig. 5
we see that the IVBM results are very similar to the ones
predicted by IBM-2. The RTRM gives a better description
of the collective states of the GSB, while for the γ band it
gives a pronounced γ -rigid doublet structure not observed in
experiment. The latter shows more regular spacings of the
states in the γ band, reasonably well reproduced by both the
IVBM and IBM-2.

The results obtained for both the B(E2) transition prob-
abilities between the collective states of the GSB in the
even-even nuclei under consideration and the energy levels
of the GSB and γ band in 104Ru prove the correct mapping
of the basis states to the experimentally observed ones. We
recall the transitional character of the nucleus 104Ru between
γ -unstable [O(6) limit] and γ -rigid [SU∗(3) limit] state in
terms of the IBM. In this way the theoretical results obtained
within the framework of the IVBM suggest the range of the
applicability of the present approach and reveal its relevance
in the description of nuclei that exhibit axially asymmetric
features in their spectra.

VII. CONCLUSIONS

In the present paper we investigated the tensor properties
of the algebra generators of Sp(12, R) with respect to the
reduction chain (1). Sp(12, R) is the group of dynamical
symmetry of the IVBM. The basis states of the model are
also classified by the quantum numbers corresponding to the
irreducible representations of the subgroups from the chain.
The action of the symplectic generators as transition operators
between the basis states is analyzed. The matrix elements of the
U(3, 3) ladder operators in the so obtained symmetry-adapted
basis are given.

The U(3, 3) limit of the symplectic IVBM is further tested
on the more complicated and complex problem of reproducing
the B(E2) transition probabilities between the states of the
ground band in some even-even nuclei from the A = 100 and
A = 190 mass regions assumed by many authors to be axially
asymmetric. In developing the theory the advantages of the
algebraic approach are used for the assignment of the basis
states to the experimentally observed states of the collective
bands and the construction of the E2 transition operator
as linear combination of tensor operators representing the
generators of the subgroups of the respective chain. This allows
the application of a specific version of the Wigner-Eckart
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theorem and consecutively leads to analytic results for their
(reduced) matrix elements in the U(3, 3) symmetry-adapted
basis that give the transition probabilities.

In application to real nuclei, the parameters of the transition
operator are evaluated in a fitting procedure for GSB of the
considered nuclei. The B(E2) transition probabilities between
collective states of the ground state bands in 104Ru, 192Os,
192Pt, and 194Pt isotopes are calculated and compared with the
experimental data and some other collective models that ac-
commodate the γ -rigid or γ -soft structures. The experimental
data for the presented examples are reproduced rather well,
although the results are very sensitive to the values of the
model parameters.

Being a group of dynamical symmetry, the Sp(12, R) group
through its reduction given by Eq. (1) determines the type of
spectra (obtained at fixed values of the model parameters in
the Hamiltonian) of different nuclei that it can describe. The
excited states of the GSB and γ band in the transitional nucleus
104Ru are calculated within the IVBM using a four-parameter
Hamiltonian, expressed as a linear combination of the Casimir

operators along the dynamical chain (1) and compared with
the experimental data and the predictions of IBM-2 in its
SU∗(3) limit and the RTRM, both of which incorporate γ -rigid
structures. The structure of the two bands is reasonably well
described by the present approach.

In summary, the results obtained for both the B(E2)
transitions probabilities between the collective states of the
GSB in the even-even nuclei under consideration and the
energy levels of the GSB and γ band in 104Ru prove the correct
mapping of the basis states to the experimentally observed
ones and reveal the role of the symplectic symmetries in the
description of nuclei exhibiting axially asymmetric features in
their spectra.
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