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Background: Symmetry restoration and configuration mixing in the spirit of the generator coordinate method
based on energy density functionals have become widely used techniques in low-energy nuclear structure physics.
Recently, it has been pointed out that these techniques are ill defined for standard Skyrme functionals, and a
regularization procedure has been proposed to remove the resulting spuriosities from such calculations. This
procedure imposes an integer power of the density for the density-dependent terms of the functional. At present,
only dated parametrizations of the Skyrme interaction fulfill this condition.
Purpose: To construct a set of parametrizations of the Skyrme energy density functional for multireference
energy density functional calculations with regularization using the state-of-the-art fitting protocols.
Method: The parametrizations were adjusted to reproduce ground-state properties of a selected set of doubly
magic nuclei and properties of nuclear matter. Subsequently, these parameter sets were validated against properties
of spherical and deformed nuclei.
Results: Our parameter sets successfully reproduce the experimental binding energies and charge radii for a wide
range of singly magic nuclei. Compared to the widely used SLy5 and to the SIII parametrization that has integer
powers of the density, a significant improvement of the reproduction of the data is observed. Similarly, a good
description of the deformation properties at A ∼ 80 was obtained.
Conclusions: We have constructed new Skyrme parametrizations with integer powers of the density and validated
them against a broad set of experimental data for spherical and deformed nuclei. These parametrizations are
tailor-made for regularized multireference energy density functional calculations and can be used to study
correlations beyond the mean field in atomic nuclei.
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I. INTRODUCTION

One of the most widely used designs of an effective
nucleon-nucleon interaction for mean-field-based methods
[1] was introduced by Skyrme [2,3] as a combination
of momentum-dependent two-body contact forces and a
momentum-independent three-body contact force. The first ap-
plications [4–6] demonstrated the remarkable qualities of this
interaction to describe many properties of nuclei throughout
the chart of nuclei. However, some drawbacks due to an insuf-
ficient flexibility of Skyrme’s original ansatz became apparent.

The early parametrizations of Skyrme’s interaction led to
two major problems. First, the simple contact three-body force
does not allow for a realistic value of the incompressibility
K∞ of symmetric infinite nuclear matter. Typically, values of
about 350 MeV were obtained, which is significantly larger
than the empirical value of 210 � K∞ � 240 MeV [7–9].
Second, the same three-body force almost always gives rise
to a spin-instability in infinite nuclear matter [10–12] and
finite nuclei [13], rendering the calculation of excitations of
unnatural parity in the random-phase approximation (RPA)
impossible [14].

*Present address: RIKEN Nishina Center, Wako 351-0198, Japan.

It turned out that both problems can be simultaneously
solved when replacing Skyrme’s three-body force t3 δ(r1 −
r2)δ(r1 − r3) with a density-dependent two-body contact
force 1

6 t3 (1 + x3P̂σ ) ρα
0 [(r1 + r2)/2] δ(r1 − r2), where P̂σ

and ρ0(r) are the spin-exchange operator and the isoscalar den-
sity, respectively. For α = 1 and x3 = 1, both are equivalent
as long as time-reversal symmetry is conserved [4]. However,
the so-called time-odd terms from the density-dependent two-
body force have an isospin structure that differs from those of
the three-body force, which removes the spin instability [10].
Therefore, all early parametrizations have since been used as
two-body forces with a linear density dependence. In fact, the
ambiguity around the three-body term was recognized from
the beginning by the authors of the earliest fits of Skyrme’s
interaction [4,6], who pointed out that its three-body force
“should not be considered as a real three-body force, but rather
as convenient way of simulating the density dependence of an
effective interaction” [6].

In a second step, reducing the exponent α to values
between 1/6 and 1/3 allows also for a realistic compressibility
[7,15,16]. The appearance of density dependencies of the
form ρα

0 (r) is also motivated through approximations to the G

matrix of Brueckner-Goldstone theory [17–20]. Until now, all
widely used parametrizations of the Skyrme interaction have
stuck to this simple form of density dependence, although

054309-10556-2813/2012/86(5)/054309(14) ©2012 American Physical Society

http://dx.doi.org/10.1103/PhysRevC.86.054309


K. WASHIYAMA et al. PHYSICAL REVIEW C 86, 054309 (2012)

several extensions were attempted over time [1]. The same
form of density-dependent two-body contact force is also used
to complement the finite-range Gogny interaction [21,22].
Modifications of specific terms in the total energy have been
made as well, hence, abandoning the link to an underlying
force [1]. It is then more appropriate to refer to a Skyrme
energy density functional (EDF).

There have been many adjustments of the parameters
of Skyrme’s interaction since the 1970s [1]. The range of
data on which the parameters are fitted has been varied
and extended, sometimes with choices dictated by specific
applications. Most fitting protocols, however, are designed
to deliver multipurpose parametrizations that can be used
for applications as diverse as the description of ground-state
masses and density distributions, deformations, and rotational
bands, the response to external probes, fission, and reaction
dynamics for nuclei all over the mass table, and even the
properties of neutron stars. One of these is the protocol by
Chabanat et al. developed in the 1990s [23,24], which led to
a significant improvement of isospin properties by including
pseudodata for neutron matter. The resulting parametrizations,
in particular SLy4, have been extensively tested and used for
the description of many properties of atomic nuclei throughout
the nuclear chart.

The Skyrme interaction was designed for use in self-
consistent methods, i.e., Hartree-Fock (HF), HF + BCS,
Hartree-Fock-Bogoliubov (HFB), in both their static and time-
dependent variants, and in RPA. From the 1990s, Skyrme’s
interaction was also frequently employed in extensions of
mean-field methods, such as the construction of a microscopic
Bohr Hamiltonian [25,26], exact projection [27,28], and
configuration mixing by use of the generator coordinate
method (GCM) [29–34]. Two issues were apparent from the
beginning, one related to the adjustment of the parameters of
the interaction and the other to its analytical form.

Because the adjustment of the parameters is done within
the mean-field approximation, the inclusion of beyond-mean-
field correlations will often give rise to an overbinding of
nuclei, in particular of those used during the fit. The extra
binding, however, was always found to be within a few MeV
and appears to saturate quickly when several collective modes
and symmetry restorations are added consecutively [34]. Here,
we shall not consider this issue as overbinding constitutes a
small smooth trend that at the present stage is smaller than other
systematic errors and/or uncertainties [1,29,35–37]. Instead,
we will postpone the role of correlations on the outcome of a
parameter fit to future work and concentrate on the setup of
the functional itself.

As already mentioned, the Skyrme functional is adopted
in extensions of the mean-field approach. Such a functional
is a priori defined only for mean-field calculations, i.e., for a
single mean-field wave function, whereas beyond-mean-field
calculations require determination of a matrix element be-
tween wave functions generated by two different mean fields.
Unlike a formalism based on a Hamiltonian, the extension of a
density functional from a single-reference (SR) definition to a
multireference (MR) one is not an unambiguous procedure. In
the early applications of GCM using a Skyrme functional [30],
the SIII and SIV parametrizations were indeed used as two- and

three-body forces to calculate matrix elements between two
different mean-field wave functions. Taking advantage of the
generalized Wick theorem derived by Balian and Brézin [38],
this amounts to replacing the mean-field densities that enter
the energy density by so-called mixed densities. This scheme
for the construction of the energy density was also followed
in Ref. [31], where the parametrization SIII was adopted as
a density-dependent energy functional to construct the energy
kernel in a GCM calculation mixing mean-field states with
different axial quadrupole deformation. This procedure was
not altered until very recently in subsequent applications
with more recent functionals of the Skyrme, Gogny, and
relativistic type [29,34,39,40] that often include multiple
symmetry restorations.

However, such a generalization of the functional ignores
several complications, in particular the fact that the mixed
densities can become complex in MR calculations and that,
often, different functionals are chosen in the mean-field and
pairing channels. Still, the substitution of mean-field densities
by mixed densities in the construction of the MR EDF was
used with some success in many applications, despite its
drawbacks that can, in principle, lead to unreliable results for
an energy functional. In one way or the other, the problems of
the functionals mentioned thus far are related to the breaking
of the Pauli principle [41–43]. In the standard Skyrme EDF,
this has many facets. First, the density dependence itself
cannot be written in a completely antisymmetrized form.
Second, it is customary to use different effective interactions
for the particle-hole and particle-particle parts of the EDF.
In addition, certain exchange terms of the Skyrme interaction
are sometimes neglected or modified, and, for the Coulomb
exchange term, approximations are used. All of these are
either motivated by phenomenology or by computational
reasons. For an overview, we refer to Ref. [1]. The standard
density dependence ρα

0 (r) poses one additional problem. In
all currently used prescriptions, the density entering the
density dependence might become complex. For noninteger
values of α, the function ρα

0 (r) then becomes a nonanalytical
function of ρ0 that is multivalued and exhibits branch cuts
[41,42,44]. To resolve this particular issue, some alternatives
for the density dependence were formulated. Indeed, several
studies have concentrated on the most appropriate definition
of the density dependence in MR calculations, primarily for
symmetry restorations [39,42,45–48]. The question, however,
is not settled yet.

The net result of these problems is that the off-diagonal
terms in the MR EDF can exhibit discontinuities or even
divergences when varying one of the collective coordinates.
We refer to Refs. [41–44,49] for an in-depth analysis of
these issues but present the arguments for the lack of signs
of their presence in the published GCM calculations. First,
the problems are especially critical for very light nuclei,
but applications were often devoted to medium-mass and
heavy ones. Second, the discretizations commonly chosen
for numerical reasons when setting up projection and GCM
restrain the contamination of the energy with nonphysical
contributions to a very small scale.

One possibility to avoid these problems altogether would be
a return to a Skyrme-force-based Hamiltonian. This, however,
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will inevitably demand the systematic addition of higher-order
terms in the Skyrme force, as within the standard form it is
impossible to construct a parametrization that, at the same
time, describes the empirical properties of nuclear matter,
has no spin or other instabilities, and gives attractive pairing.
By contrast, within an energy functional framework a fair
description of nuclear matter and finite nuclei is achieved
within the standard form. Thus, to keep the effective interaction
simple, it appears to be preferable to work with a functional
instead of a force. To enable their use in a MR framework, tools
to by-pass the obstacles outlined above by a regularization of
the Skyrme functional have been designed recently [43,49].
They require, however, that the functional dependence on the
density has an integer power [44].

In this article, we construct Skyrme functionals that have the
same density dependence as SIII and thereby are regularizable
in the sense of Ref. [43]. The first parametrizations of
the Skyrme functional built about 40 years ago [6] had
all these properties, but, since then, the fitting protocols
have significantly evolved and these early parametrizations
certainly have to be reconsidered. Our study is based on
the protocol first used for the SLyx parametrizations [23,24]
that has proven to be efficient to construct functionals used
successfully in a large number of applications. In this first
study, we will restrict ourselves to the standard form of
the Skyrme functional. The construction of a regularizable
functional including higher-order density-dependent terms is
underway [50,51] and will be reported elsewhere. However,
we take the opportunity of the present study to include a new
set of data in the fitting protocol, which are used to validate
(or reject) the parametrizations.

There is a major conceptual difference between the
parametrization of the Skyrme functional that we aim at and the
ones by Kortelainen et al. [52,53], who have recently adjusted
new Skyrme parametrizations on a large set of data. The aim
of Kortelainen et al. is to describe the nucleus in the spirit
of the density functional theory [54] that is very successful
in condensed matter physics. Staying on the computationally
simple single-reference level, as much correlation energy as
possible is incorporated into the energy functional. Our aim
is to construct a parametrization of the Skyrme EDF that will
be used in beyond-mean-field calculations, i.e., where specific
correlations are to be calculated explicitly in a multireference
framework. Both views are complementary. The advantage
of our approach is that it enables us to calculate spectra
and transition probabilities directly in the laboratory frame
of reference and avoids the ambiguities related to approx-
imate determinations of spectroscopic quantities, whereas
its disadvantage is that, even for standard observables, high
predictive power will require the time-consuming calculation
of correlations beyond the mean field. In the following, we will
call the method that we have already used in many applications
and where mean-field wave functions generated by a constraint
on a collective variable are projected on particle numbers
and angular momentum and mixed by the GCM the “beyond
mean-field method.”

The article is organized as follows. Section II reviews the
fitting protocol used here and its differences to the one used to
construct the SLyx parametrizations in the past. In Sec. III,

we will test the parametrizations on a large set of typical
observables for spherical and deformed nuclei, including
masses, separation energies, charge radii, deformations, the
fission barrier of 240Pu, and the moment of inertia of a
superdeformed rotational band in 194Hg. Section IV will
summarize our findings.

II. FITTING PROTOCOL

A. The energy functional

The standard density-dependent Skyrme interaction has the
form [35]

v(R, r) = t0 (1 + x0P̂σ ) δ(r) + 1
6 t3 (1 + x3P̂σ ) ρα

0 (R) δ(r)

+ 1
2 t1 (1 + x1P̂σ )[k̂′2 δ(r) + δ(r) k̂2]

+ t2 (1 + x2P̂σ ) k̂′ · δ(r) k̂

+ i W0 (σ̂ 1 + σ̂ 2) · k̂′ × δ(r) k̂, (1)

where we use the shorthand notation r ≡ r1 − r2 and R ≡
1
2 (r1 + r2) for the relative distance and center-of-mass coor-
dinates, respectively, where P̂σ is the spin exchange operator,
k̂ ≡ − i

2 (∇1 − ∇2) the relative momentum operator acting to
the right, k̂′ is the complex conjugate of k̂ acting to the left,
and ρ0(R) is the isoscalar density. The Skyrme interaction (1)
contains in total 10 parameters t0, t1, t2, t3, x0, x1, x2, x3, W0,
and α to be adjusted to data.

As it is customary, we only calculate the particle-hole part
of the EDF from Eq. (1). We keep, however, all terms in that
channel, which is not always done [1]. For the special case of
time-reversal invariance and spherical symmetry, this leads to

ESkyrme =
∫

d3r
∑
t=0,1

{
C

ρ
t [ρ0]ρ2

t + C
�ρ
t ρt�ρt

+Cτ
t ρt τt + 1

2
CJ

t J2
t + C∇·J

t ρt∇ · J t

}
, (2)

where ρ, τ , and J are the density, kinetic density, and
spin-current vector density, respectively, and the index t labels
isoscalar (t = 0) and isovector (t = 1) densities. The definition
of these densities and the relations between the coefficients
Ct in Eq. (2) and the parameters in Eq. (1) can be found in
Ref. [35]. Note that the coefficients C

ρ
t [ρ0] depend on the

isoscalar density ρ0(r), whereas all others are just numbers.
In case of deformed nuclei and when breaking intrinsic time-
reversal symmetry, there are additional terms in the Skyrme
EDF for which we refer to Refs. [35,55]

The total energy is given by the sum of the Skyrme EDF (2),
the Coulomb energy, the kinetic energy, the center-of-mass
correction, and the pairing energy. As in our previous stud-
ies, we have chosen a density-dependent zero-range pairing
interaction [1,55,56], which leads to a functional of the form

Epairing = V0

4

∑
q=p,n

∫
d3r

[
1 − ρ0(r)

ρc

]
ρ̃q(r) ρ̃∗

q (r). (3)

The switching density ρc = 0.16 fm−3 is set to the empirical
nuclear saturation density, such that the pairing interaction
is most active on the surface of the nucleus. The pairing
functional depends on the local pair density ρ̃q(r) [55] of
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protons and neutrons, labeled by q = p, n, and the isoscalar
local density ρ0(r). An energy cutoff of 5 MeV in the
single-particle spectrum is taken above and below the Fermi
energy [57]. The strength V0 will be adjusted separately for
each parametrization of the Skyrme interaction.

For most (if not all) Skyrme interactions constructed up to
now, the Coulomb exchange energy has been replaced by its
Slater approximation [1] that amounts to a local energy density
of the form ∼ρ

4/3
p (r), i.e., a term depending on a noninteger

power of the density. Like the standard density dependence
in the Skyrme EDF ∼ρα

0 (r) with 0 < α < 1, this term cannot
be regularized with the currently available techniques [44].
For interactions that can be safely used in regularized MR
EDF calculations, the Coulomb exchange energy has to be
either treated exactly or to be omitted. For simplicity, we have
chosen to neglect it in the mean-field channel in the present
study since an exact treatment of the Coulomb exchange
field makes all calculations much more time-consuming. In
addition, phenomenological arguments have also been brought
forward that justify this course of action [58–60]. As usually
done, the contribution of the Coulomb interaction to the pairing
channel is neglected.

For the center-of-mass correction, we employ the widely
used approximation where only the one-body term is consid-
ered [61]. However, the often neglected J2 term in the Skyrme
functional (2) is kept. The latter two choices correspond to
the ones made for the parametrization SLy5 of Chabanat
et al. [24].

B. The protocol

The first step of our fitting protocol is similar to the one
used for the construction of the SLyx parametrizations [23,24].
During this step, we minimize a merit function, which is a
weighted sum of squared residuals,

χ2 =
∑
A

χ2
A, χ2

A = 1

NA

NA∑
i=1

(
Oi − Ocalc.

i

�Oi

)2

. (4)

The Oi are experimental data for finite nuclei and empirical
values for nuclear matter and the �Oi are tolerance parameters
used to weight these data during the fit. Five categories
of data are used: (i) nuclear matter properties around the
saturation point, (ii) neutron matter equation of state, (iii)
binding energies of doubly-magic nuclei, (iv) charge radii,
and (v) spin-orbit splittings of neutron and proton states.

The nuclear matter properties that we have included are as
follows:

(i) the saturation density ρsat = 0.16 fm−3 with a tolerance
�Oi = 0.003 fm−3;

(ii) the binding energy per nucleon E/A = −16 MeV with
�Oi = 0.3 MeV;

(iii) the symmetry energy asym = 31 MeV with �Oi =
1 MeV; and

(iv) the Thomas-Reiche-Kuhn sum-rule enhancement fac-
tor κv = 0.25 with �Oi = 0.15.

Since the incompressibility of nuclear matter K∞ cannot
be adjusted to a realistic value with the restriction imposed

on α = 1 [23], this quantity is not considered in our fitting
protocol.

The binding energies of six doubly magic nuclei are
included: 48Ca, 132Sn, and 208Pb with tolerances of �Oi =
0.2 MeV; 40Ca and 100Sn with �Oi = 0.5 MeV; and 56Ni
with �Oi = 0.75 MeV. We allow for larger �Oi for N = Z

nuclei as one always has difficulties to reproduce their binding
energy at the mean-field level. However, the discrepancies
cannot be simply related to the Wigner energy that cannot be
described by mean-field calculations. Usually only 56Ni turns
out to be underbound, whereas 40Ca and 100Sn are overbound.
The charge radii of 40,48Ca, 56Ni, 132Sn, 208Pb have a tolerance
�Oi = 0.02 fm, and the spin-orbit splittings of the neutron 3p

levels and the proton 1h levels in 208Pb both have a tolerance
�Oi = 0.2 MeV.

For the neutron matter equation of state, Oi are the energies
per neutron for ρ � 0.5 fm−3 predicted by Wiringa et al.
[62] with the bare two-body UV14 potential and three-body
UVII potential. The tolerance parameters are set to �Oi =
0.2 × Oi .

These data are used to determine a first set of values
of the Skyrme parametrization. The resulting EDF is then
tested on several properties of finite nuclei that will be
discussed in the following sections. Among these properties,
the charge radii were strongly underestimated with the first
set of weights that we have used. Therefore, we have chosen
to relax the weights of nuclear matter properties, especially,
the density at saturation and the constraints on neutron matter
properties. After some attempts, this was sufficient to arrive to
a satisfactory reproduction of charge radii. The weights that
are given above are the final weights used in the fit.

During the first attempts to fit our new parametrizations, we
encountered finite-size isospin instabilities that are character-
ized by a separation of protons and neutrons as examined in
Ref. [63]. The instability appears when the coupling constant
C

�ρ

1 = 3
32 t1( 1

2 + x1) + 1
32 t2( 1

2 + x2) in the Skyrme EDF (2)
takes too large a value. To prevent such instabilities, we enforce
a condition on the coupling constant,

χ2
A =

⎧⎨
⎩

(C
�ρ

1,calc−C
�ρ

1,max

1.5

)2
for C

�ρ

1,calc � C
�ρ

1,max,

0 for C
�ρ

1,calc < C
�ρ

1,max,

(5)

where the empirical choice for the maximum value C
�ρ

1,max =
25 MeV fm5 has been found to lie safely within the stable zone.
We have also checked that the parametrizations do not lead to
finite-size instabilities due to the st · �st terms in the time-odd
part of the Skyrme EDF [55] when setting the corresponding
coupling constants to their Skyrme force value.

III. RESULTS

A. New parameter sets

The fact that we do not constrain the compressibility of
nuclear matter leaves some freedom in the choice of the
effective mass, cf. the discussion in Ref. [23]. We have
constructed four parameter sets corresponding to values of the
isoscalar effective mass m∗

0 from 0.7 to 1.0 times the nucleon
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TABLE I. New parameter sets for the Skyrme energy functional with effective masses as indicated.

0.7 0.8 0.9 1.0

t0 (MeV fm3) −1122.408 −1100.272 −1082.609 −1066.976
t1 (MeV fm5) 440.572 359.568 295.999 245.431
t2 (MeV fm5) −197.528 −210.840 −240.653 −245.314
t3 (MeV fm6) 11 906.299 13 653.845 15 003.161 16 026.086
x0 0.394 119 0.445 280 0.491 775 0.525 497
x1 0.068 384 0.224 693 0.389 884 0.603 399
x2 −0.752 728 −0.615 015 −0.579 284 −0.500 115
x3 0.946 945 0.639 947 0.512 106 0.366 056
W0(MeV fm5) 119.125 110.828 103.516 97.977
α 1 1 1 1

mass m. We will refer to these as SLyIII.xx, where xx is the
value of m∗

0/m.
The coupling constants of these four parametrizations are

listed in Table I and the corresponding saturation properties of
infinite homogeneous nuclear matter in Table II. As expected,
the value of K∞ is much too large. It increases with the
effective mass [23] and there is no room to obtain a value
close to the empirical value when imposing α = 1 without
introducing additional terms in the Skyrme functional. To
obtain a reasonable agreement between theory and experiment
for charge radii requires relaxation of the constraint on ρsat,
leading to a value lower than the usual one of 0.160 fm−3 but
still larger than the one for SIII.

The equation of state E/A of symmetric infinite matter
obtained with SLyIII.0.8 is compared with results for SLy5
and SIII in Fig. 1. As can be expected from the values for
K∞, it is stiffer than the equation of state obtained with
SLy5.

In the same figure, we also compare the binding energy
per neutron for pure neutron matter determined using SLy5,
SIII, and SLyIII.0.8 to ab initio results obtained by Wiringa
et al. [62]. On the scale of the plot, obvious differences between
the parametrizations appear only at rather large densities ρn �
0.12 fm−3. At values below, the results obtained with the three
parametrizations cannot be easily distinguished, in spite of
the fact that SIII was not fitted to this quantity. For larger
densities, however, as expected, the inclusion of the neutron
matter equation of state in the fitting protocol improves the
results obtained with SLyIII.xx with respect to those of SIII.
For SLy5, the tolerance in the merit function [Eq. (4)] has been
chosen to be much smaller than for the SLyIII.xx, leading to
a better reproduction of the equation of state.

The residuals of binding energies and charge radii of doubly
magic nuclei are displayed in Fig. 2 and the corresponding
values of χ2 are given in Table III. In both cases, the new
parametrizations perform much better than SIII and SLy5,
irrespective of the value of the effective mass. We have to
recall, however, that SIII and SLy5 were fitted with different
protocols, such that the comparison of the χ2 can serve only as
a guideline for the relative performance of the parametrizations
for these specific observables. It does not allow us to judge their
overall quality. In particular, as discussed above, SLy5 gives a
much better description of some key nuclear matter properties
that cannot be adjusted with SLyIII.xx.

1. Adjustment of the pairing strength

To compute spherical and deformed open-shell nuclei,
pairing correlations need to be taken into account. The
functional form and the adjustment of a pairing interaction
is a problem that requires, in principle, a dedicated study
of its own [67,68]. Since our focus is on the properties of
the interaction used in the particle-hole channel, we restrict
ourselves to the surface pairing energy density functional (2)
that we have used in numerous past studies.

The pairing strength V0 in Eq. (2) is fitted in 120Sn on the
neutron spectral pairing gap −Epairing,n/

∫
d3r ρ̃n(r) [67,68]. In

this expression, Epairing,n is the pairing energy of the neutrons
and ρ̃n(r) the neutron pair density, respectively. The empirical
value is determined by a five-point formula for the gap [67] and
is equal to 1.393 MeV. The pairing strengths obtained for the
four values of the effective mass are listed in Table IV. They
are very close to each other and do not scale significantly with
the effective mass.

TABLE II. Saturation properties of nuclear matter as obtained with the new parameter sets. Values for SIII and SLy5
are shown for comparison.

0.7 0.8 0.9 1.0 SIII SLy5

ρsat (fm−3) 0.153 0.153 0.153 0.153 0.145 0.160
E/A (MeV) −16.33 −16.32 −16.31 −16.31 −15.85 −15.98
m∗

0/m 0.700 0.800 0.900 1.000 0.763 0.697
K∞ (MeV) 361.3 368.7 374.5 379.4 355.4 229.9
asym (MeV) 31.98 31.69 31.44 31.31 28.16 32.03
κv 0.612 0.467 0.336 0.250 0.525 0.250
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FIG. 1. (Color online) Binding energy per nucleon E/A for
symmetric nuclear matter (solid lines) and for pure neutron matter
(dotted lines) as a function of nucleon density ρ. The solid squares
indicate empirical values of the neutron matter equation of state by
Wiringa et al. [62].

B. Spherical nuclei

We start our validation of the SLyIII.xx interactions by
confronting their predictions with various experimental data
for singly magic nuclei.

1. Binding energies

The differences between the calculated and the experi-
mental binding energies are shown in Figs. 3 and 4 for
representative isotopic and isotonic chains of singly magic
nuclei. The agreement with the data is in general better for
the SLyIII.xx parametrizations than for SIII and SLy5. To
quantify these energy differences, we have defined two mean
deviations,

Edev = 1

N

N∑
i=1

∣∣Ei − E
expt.
i

∣∣, (6)

Erel = 1

N

N∑
i=1

|Ei − E
expt.
i |

|Eexpt.
i | , (7)

where N is the total number of singly magic nuclei that
have been calculated. Analogous quantities can be defined
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FIG. 2. (Color online) Residuals between calculated and exper-
imental values [64–66], defined as δ = (Ocalc. − Oexpt.)/|Oexpt.|, for
binding energies and charge radii of doubly magic nuclei.

TABLE III. χ 2 values in Eq. (4) for binding energies E and charge
radii rc.

0.7 0.8 0.9 1.0 SIII SLy5

E 5.12 4.33 3.93 4.02 63.99 14.80
rc 0.67 0.74 0.87 1.22 7.79 1.74

for charge radii. The values given in Table V confirm that the
agreement with data is improved by the SLyIII.xx parametriza-
tions. Deviations for binding energies Edev decrease with
increasing effective mass.

Let us recall that our aim is to construct an interaction
well suited for adding the correlations generated by symmetry
restorations and configuration mixing calculations. Therefore,
the nuclei calculated at the mean-field level of approximation
should be underbound and in such a manner that the difference
between mean-field calculation and data is slightly larger for
midshell nuclei than for doubly magic ones [29].

It is clear that the SLyIII.xx parametrizations with the
largest values of m∗

0/m leave nearly no room for the addition
of correlation energies in the Sn and Pb chains. The increase
of the effective mass washes out the shell effects in the
mean-field results. At this point, SLyIII m∗

0/m = 0.8 is the
most promising parametrization, underbinding the energy of
the Sn and Pb isotopes by what can be expected to be added
from correlations.

2. Charge radii

The calculated and experimental charge radii are compared
in Fig. 5. The charge radii are determined according to
Ref. [23], taking into account the internal charge distribution of
both protons and neutrons and adding a correction for the elec-
tromagnetic spin-orbit effect. The corresponding deviations,
defined in Eqs. (6) and (7), are given in Table V. The SLyIII.xx

parametrizations clearly provide a better description of these
data than SIII, which systematically underestimates the charge
radii. SLy5, on the other hand, leads to even larger radii and,
therefore, performs in general better than the SLyIII.xx. As
can be seen from Table V, the deviations from the data Rdev

and Rrel decrease with decreasing effective mass.
Again, we recall that correlations from fluctuations in the

quadrupole degree of freedom consistently increase the charge
radii of spherical nuclei [29]. Overall, the observed trend of
the charge radii is well reproduced by the calculation. The
deviations from the smooth trend observed in the data for the
Pb and Ca isotopes and for the N = 82, and 126 isotones are
not described by any of the parametrizations and seemingly
require either the inclusion of explicit correlations or higher-
order terms in the EDF, cf. Ref. [1] and references therein.

TABLE IV. Pairing strength V0 for the parametrizations as
indicated. The switching density is set to 0.16 fm−3 in all cases.

0.7 0.8 0.9 1.0 SLy5 SIII

V0 (MeV fm3) −994 −987 −985 −988 −977 −944
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FIG. 3. (Color online) Residuals of the binding energy E − Eexpt. as a function of neutron number N for the Ca, Sn, Ni, and Pb isotopic
chains obtained with the parametrizations as indicated. Experimental data are taken from Ref. [64].

3. Two-neutron separation energies

The two-neutron separation energies are compared to the
experimental data in Fig. 6 for the Ca, Ni, Sn, and Pb
isotopic chains. All six parametrizations give similar results for
midshell nuclei. They tend to overestimate the characteristic

jump at neutron magic numbers, which, however, would be
reduced by dynamical quadrupole correlations [29]. For Ca
and Ni isotopes, our values do not reproduce the slope of
the experimental data for midshell nuclei. For the Sn and Pb
isotopes, the agreement with the data is improved by SLyIII.xx

with respect to SIII and SLy5.
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FIG. 4. (Color online) Same as in Fig. 3 but for N = 20, 50, 82, 126 isotonic chains as a function of proton number Z.
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TABLE V. Mean deviation with respect to the data for binding
energies and charge radii obtained for the parametrizations as
indicated.

Edev (MeV) Erel (%) rc
dev (fm) rc

rel (%)

SLyIII.0.7 1.97 0.26 0.018 0.40
SLyIII.0.8 1.46 0.21 0.020 0.46
SLyIII.0.9 1.09 0.17 0.023 0.52
SLyIII.1.0 0.98 0.15 0.029 0.65
SLy5 2.49 0.31 0.012 0.29
SIII 1.88 0.23 0.051 1.09

4. Single-particle energies

Until now, our analysis of the Skyrme parametrizations
has been limited to data for which the comparison between
theory and experiment is model independent. This is no
longer the case for single-particle energies, for which there
exist several conflicting definitions that often even do not
correspond to observables [70]. Here, we use the eigenvalues
of the single-particle Hamiltonian. They provide a lowest-
order approximation to separation energies, which should
be corrected for polarization effects [1] and the coupling to
vibrations, cf. Refs. [71,72]. In Fig. 7, single-particle energies
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FIG. 5. (Color online) Charge radii for Ca, Sn, Pb isotopic chains
and for N = 50, 82, 126 isotonic chains obtained by SLyIII, SLy5,
and SIII. Experimental data shown by solid squares are taken from
Ref. [69].
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FIG. 6. (Color online) Two-neutron separation energies for Ca,
Ni, Sn, and Pb isotopes calculated with the parametrizations as
indicated.

are compared to one-nucleon separation energies to or from
doubly magic nuclei.

For 40Ca and 132Sn, the spectra obtained with the SLyIII.xx

parametrizations are very similar to those of SIII. For 208Pb,
there are several differences, in particular concerning the
position of high-j levels.

A rule of thumb predicts that a higher effective mass gives
a more compressed spectrum. We are in a good position to
check this rule. The SLyIII.xx have been constructed using
exactly the same protocol but correspond to four values of the
effective mass. They are a modern version of SIII but share with
it many similarities. Looking to Fig. 7, a higher effective mass
corresponds indeed to a more compressed spectrum. However,
a change in the effective mass does not correspond to a simple
rescaling of the single-particle spectra. For neutron holes
in 208Pb or neutron particles in 132Sn, the relative distances
between levels hardly vary at all. Also, this rule of thumb is no
longer valid for a change in the fitting protocol, as exemplified
by SIII. The differences between the single-particle spectra
obtained with SIII and the SLyIII.xx cannot be due to the
effective mass. The SLy5 results sometimes differ markedly.
In all cases, the reproduction of the experimental gaps is
rather poor. A more detailed analysis would require direct
computation of one-nucleon separation energies, including
correlations beyond the mean field which are known to give
a sizable contribution to the two-nucleon separation energies
to and from doubly magic nuclei [29,73]. We present below,
in Sec. III C4, results for self-consistent calculation of binding
energies of a few very heavy odd-A well-deformed nuclei, for
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FIG. 7. Single-particle energies obtained as eigenvalues of the mean-field Hamiltonian in spherical calculations for 40Ca (left), 132Sn
(center), and 208Pb (right) for the parametrizations as indicated and compared with experimental data determined as one-nucleon separation
energies to or from the doubly magic nucleus.

which correlations beyond the mean field can be expected to
play a lesser role.

C. Deformed nuclei

In addition to the properties of singly magic nuclei, we
also validate the performance of the new parametrizations for
deformation and rotational properties of selected key nuclei.

1. Deformation energy curves

We start by studying nuclei that have been experimentally
identified to be either deformed or have states of different
deformation coexisting at low energy. In Fig. 8, the deforma-
tion energy curves of 24Mg, 74Kr, 80Zr, 100Zr, and 186Pb are
plotted as a function of the dimensionless axial quadrupole
deformation

β2 =
√

5

16π

4π

3R2A
〈2z2 − x2 − y2〉, (8)

where R = 1.2 A1/3 fm. Experimentally, a prolate deformation
for their ground state is well established for 24Mg and 100Zr.
For 80Zr, spectroscopic data suggest that the excited states
of the ground state rotational band have a large quadrupole
deformation with a β2 value around 0.4. The sparse available
data, however, do not rule out that the ground state of 80Zr has a
complicated structure that involves a large mixing of different
deformations.

The only parametrization that gives rise to a pronounced
prolate minimum for 24Mg, 80Zr, and 100Zr is SIII. For both
SLyIII.xx shown, the ground state of 80Zr is spherical with a
prolate minimum at a slightly higher energy, nearly degenerate
with a very shallow oblate minimum, whereas the ground
state of 100Zr has a large prolate deformation, with an oblate
minimum at smaller |β2| excited by around 1 MeV. For SLy5,

the ground state of 80Zr is spherical with a prolate minimum
excited by about 4 MeV. For 100Zr, this parametrization
gives nearly degenerate prolate and oblate minima. Before
drawing conclusions on how well these topographies are
compatible with experimental data, one has to estimate how
the correlations that we plan to introduce explicitly in future
applications might change the simple picture of energy curves.
Rodrı́guez and Egido [74] have calculated the energy surface
of 80Zr, including triaxial quadrupole deformations using the
Gogny force. They have found several spherical, axial, and
triaxial minima. Before projection, the axial part of their
energy surface is similar to the one obtained here with SLy5.
For this nucleus, however, projection on angular momentum
alters the topography of the energy surface, leading after
configuration mixing to a ground state with a predominant
component at a large quadrupole axial deformation.

A beyond-mean-field study of the neutron-deficient Kr
isotopes using the Skyrme parametrization SLy6 has been
published in Ref. [33]. After projection and mixing, the
relative energy of prolate and oblate states leads to excitation
spectra in disagreement with the experimental data. The
energy curve obtained for 74Kr with SLy5 resembles the one
of SLy6 presented, such that it can be expected that SLy5
would also give similar results after configuration mixing.
By contrast, the prolate minimum obtained with SIII and
SLyIII.xx seems more realistic in view of the experimental
data. Finally, the deformation energy curve of 186Pb is alike
for all parametrizations, displaying a spherical ground state
and a prolate and oblate minimum within less than 1 MeV of
excitation energy each.

It is remarkable that SIII and the SLyIII.xx parametrizations
give a much more realistic description of the energy curves
in the A ≈ 80 region than the SLyx parametrizations. This
difference, however, cannot be traced back directly to the linear
density dependence, as some other Skyrme parametrizations
with noninteger exponents α of the density dependence give
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FIG. 8. (Color online) Potential energy curves along quadrupole deformation β2 for 24Mg, 74Kr, 80Zr, 100Zr, and 186Pb obtained by constraint
HFB calculations.

an energy curve for 80Zr that is much closer to the one of SIII
than that of SLy5 [75].

The value of the effective mass has a clear effect on the
variation of energy with deformation. Comparing the curves
obtained with SLyIII.0.8 and SLyIII.1.0, one can see that
a higher effective mass results in a flatter behavior of the
deformation energy curves.

Overall, the SLyIII.xx parametrizations provide encourag-
ing results for the deformation properties at the mean-field
level. The following examples, however, will illustrate some
limitations of these parametrizations.

2. Fission barrier of 240Pu

In Fig. 9, the fission barrier of 240Pu is presented as a
function of quadrupole deformation. For all parametrizations,
triaxiality was taken into account in the calculation of the first
barrier and octupole deformations for the second barrier.

In all cases shown in the figure, the excitation energy of
the fission isomer overestimates the experimental value, for
which two conflicting values of ∼2.8 MeV [76] and 2.25 ±
0.20 MeV [77] can be found in the literature. In the same way,
the energies of the inner and outer fission barriers overestimate
the experimental values of 6.05 and 5.15 MeV, respectively

FIG. 9. (Color online) Fission barrier along quadrupole deforma-
tion β2 for 240Pu obtained by different Skyrme parameter sets.

[78]. For SIII this deficiency long has been known [79]. Also,
the results obtained with SLy5 are less realistic than those
obtained with the SLy4 and SLy6 parametrizations discussed
in Ref. [80]. However, one must take into account that the
calculations performed in Ref. [80] and here are not fully
equivalent: The pairing strength is not the same and the
particle number projection was performed in Ref. [80] and
is not used here. In that paper, it was shown that at the
mean-field level, the energy of the fission isomer is close to
the experimental value with SLy6, whereas SLy4 gives better
agreement when beyond-mean-field correlations are taken into
account. All parametrizations shown in Fig. 9 give energies
for the fission isomer much larger than SLy4 when used with
standard pairing, and beyond-mean-field correlations cannot
be expected to be large enough to obtain agreement with the
data for any of them.

The differences in barrier height for SIII and SLyIII.xx seen
in Fig. 9 cannot be correlated with the value of the surface
energy coefficient of these parametrizations. The values for
SLy5 (asurf = 18.5 MeV) and SIII (18.6 MeV) are very similar
[81], whereas those for SLyIII.0.8 (19.5 MeV) and SLyIII.1.0
(19.4 MeV) are significantly larger. The value of the isoscalar
effective mass, and thereby the average level density at the
Fermi energy, does not play a crucial role either. However,
the similarity of the energy curves obtained with SIII and all
SLyIII.xx hints at an insufficiency of a simple linear density
dependence to describe large deformation.

3. Superdeformed rotational band in 194Hg

The next test of the new parametrizations concerns the
description of superdeformed rotational bands (SD). These
bands are well described all over the nuclear chart by self-
consistent mean-field calculations and represent one of the
most impressive successes of these approaches in the 1990s.
The SD bands in the Hg region are of specific interest as the
gradual increase of the dynamical moments of inertia J (2),

J (2) = ∂〈Jz〉
∂ω

= 1

ω

∂E
∂ω

, (9)

as a function of rotational frequency h̄ω results from the grad-
ual disappearance of pairing correlations and the alignment of
the intruder orbitals. For further details we refer to our recent
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FIG. 10. (Color online) Dynamical moment of inertia as a
function of angular frequency h̄ω for the superdeformed rotational
band in 194Hg obtained with the parametrizations as indicated.

detailed analysis of the various contributions of the EDF to
J (2) in Ref. [55]. The dynamical moments of inertia for the
ground SD band of 194Hg are presented in Fig. 10. For SIII
and SLyIII.xx, the peak in the J (2) appears at too low an h̄ω

and, overall, the description of the experimental data is less
satisfactory than that of other Skyrme parametrizations such
as SLy4 or SkM*. It should be noted that the currently used
pairing strength V0 is rather low in comparison with the typical
values of V0 = −1250 MeV fm3 that was determined in SD
bands. An increase of the pairing strength, however, will have
very little influence on the location of the peak in J (2).

4. Single-particle levels in deformed transactinide nuclei

Previous studies of odd-mass transactinides [82] have put
into evidence some major drawbacks in the spectra obtained
with the current Skyrme parametrizations. We have tested
the parametrizations that we have constructed in this work
on two nuclei, 251Cf and 249Bk, for which very detailed
data are available and which have been studied in Ref. [82].
The same method as in Ref. [82] has been used. Each state
results from a self-consistent calculation of a one-quasiparticle
excitation on an even-even HFB vacuum. In this way,
the polarization effect due to the quasiparticle excitation and
the terms in the Skyrme EDF depending on time-odd densities
are taken into account self-consistently. The results are shown
in Fig. 11. The 251Cf spectra exhibit the expected effect
of the effective mass: The spectrum becomes more dense
when the effective mass is increased. Note, however, that
the compression of the spectrum is not uniform and that the
changes do not correspond to a simple scaling proportional to
the ratios of effective masses as it is sometimes assumed [85].
Moreover, the order of the levels can differ when comparing the
parametrizations. The nontrivial effective mass dependence is
still more apparent for the spectrum of 249Bk, where the first
excited state is lower in energy for the lowest values of the
effective mass and does not have the same quantum numbers
for all the parametrizations. Although the obtained spectra
depend on the parametrizations, none of the SLyIII.xx corrects
the main drawbacks of previous EDF parametrizations, i.e.,
the misplacement of some levels that may be connected with
specific spherical single-particle orbitals.

FIG. 11. (Color online) Low-lying one-quasiparticle states in
251Cf and 249Bk. Experimental data are taken from Refs. [83,84].

5. Particle number symmetry restored
deformation energy surfaces

The main motivation of the present study was to construct
a Skyrme functional that can be used in regularized MR EDF
calculations. In Fig. 12, we show, as an example of such a
calculation, the particle-number restored deformation energy
surfaces of 24Mg without and with regularization in one sextant
of the β-γ plane. The calculations were performed as described
in Ref. [49] with two differences. The first one is the use of
SLyIII.0.8, and the second one is the use of the extension
of the regularization scheme to trilinear terms in the same
particle species as is required by this parametrization. We use
Fomenko’s prescription [49] with 19 discretization points for
the gauge-space integrals. At small deformation, the difference
between the regularized and nonregularized energy surfaces is
quite dramatic. Without regularization, the absolute minimum
is located in a region where the spurious contribution to the
EDF is particular large. It is only with the regularization that
one finds the usual topography of the energy surface with a
prolate axial minimum.

The nature and size of problems with spurious contributions
to the MR EDF depend strongly on the parametrization of
the functional. The presence of terms that are trilinear in the
same particle species in SLyIII.0.8 makes the deformation
and discretization dependence of the spurious energies much
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FIG. 12. (Color online) Particle-number restored deformation
energy surface of 24Mg in the β-γ plane constructed with the
SLyIII.0.8 MR EDF without (a) and with regularization (b) of the
MR EDF. Solid black circles indicate the location of the absolute
minimum of each energy surface and gray circles the location of
secondary minima. The dots indicate the calculated points.

more violent than what is found for the SIII parametrization
used in the regularized calculations Ref. [49]. Also, there
are no evident problems in the (nonregularized) particle-
number projected energy surfaces of 24Mg obtained with SLy4
and presented in Ref. [34]. There we encountered obvious
irregularities only when projecting simultaneously on particle
number and angular momenta J > 0.

A detailed discussion of the regularization that will
also address its application to angular-momentum projection

and general configuration mixing will be given elsewhere
[86].

IV. SUMMARY

The present study is a part of our program to construct an
effective interaction of high spectroscopic quality for mean-
field and beyond-mean-field calculations. In this first step, we
have constructed a regularizable (in the sense of Ref. [43]) EDF
within the standard form of the Skyrme EDF. This requires
that the power α of the density dependence takes an integer
value. The simple form of the non-momentum-dependent
trilinear terms used here has known deficiencies. It forbids
us to obtain a value for the incompressibility compatible
with the empirical value. We have shown also the problems
encountered in the description of charge radii, fission barriers
heights, and moments of inertia in SD bands in the A ≈ 190
region. However, the protocol that we have developed leads to
a significantly improved description of shape coexistence in
the A ≈ 80 region.

The four variants with different isoscalar effective mass
will enable studies on how the correlation energy in beyond-
mean-field methods depends on the effective mass. However,
the mean-field results presented here show a clear preference
for m∗

0/m = 0.8.
Even with their deficiencies, the present parametrizations

will allow us to analyze and benchmark the performance of
the regularization. Work in that direction is underway [86].

Higher-order terms (i.e., at least trilinear terms with
derivatives) are clearly necessary to remove the deficiencies
of the SLyIII.xx parametrizations pinpointed here and to
improve the predictive power of regularizable Skyrme-type
functionals. Work in that direction is also underway [50,51].
Alternative (non-Skyrme-type) regularizable forms of the
density dependence might be considered as well, as, for
example, the form proposed in Ref. [87]. The moment a form
of a sufficiently flexible functional that is safely usable in
MR EDF calculations has been established, fits should be
performed on the level of MR EDF.
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