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are extracted by using experimental data of binding energies. Nonpairing interactions, δV (2)

pp and δV (2)
nn , are very

sensitive to the shell and subshell evolution, the phase transition, and the Wigner effect. Odd-even staggerings of
one-nucleon separation energies are discussed in terms of empirical pairing interactions.
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I. INTRODUCTION

Nuclear binding energy B and its derivatives, such as one-
proton separation energy Sp, one-neutron separation energy
Sn, and α-decay energy Qα , are of great importance not only in
nuclear physics but also in astrophysics. On the one hand, there
are many theoretical efforts in describing and predicting the
values of B, e.g., mean field approaches [1,2], macroscopic-
microscopic approaches [3,4], and liquid drop models [4,5].
On the other hand, the values of B exhibit various simplicities
which provide us with a number of approaches to predict
unknown binding energies by extrapolations. Good examples
are the Garvey-Kelson mass relations [6] and the recent work
by using systematics of empirical proton-neutron interactions
[7–10]. See Refs. [11,12] for comprehensive reviews.

In Ref. [13] Streletz et al. noticed an interesting pattern.
Let Np and Nn denote the valence proton number and valence
neutron number, respectively. Streletz et al. found that

Sp = C1Np + C2Nn + C3, Sn = C ′
1Np + C ′

2Nn + C ′
3,

(1)

where C1, C2, C3, C ′
1, C ′

2, and C ′
3 are constants for all even-

even nuclei in the same shell. This behavior was discussed by
using the Weizsäcker binding energy formula in Ref. [5] and
by the major shell lowest seniority mass equation in Ref. [14].

In Ref. [15] Jiang et al. showed that the relation in Eq. (1)
holds not only for even-even but also for even-odd, odd-even,
and odd-odd nuclei. For Sp (Sn) the main difference between
these four types is the value of C3 (C ′

3): The value of C3 (C ′
3) is

the largest for even-even cases, the second largest for proton-
even-neutron-odd (proton-odd-neutron-even) cases, the third
for odd-odd cases, and the smallest for proton-odd-neutron-
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even (proton-even-neutron-odd) cases. The values of C1 and
C2 (C ′

1 and C ′
2) remain approximately the same for Sp (Sn)

of these four types. These features were studied in terms of
the symmetry energy of Ref. [4] and the pairing interaction of
Ref. [16].

In this paper we study the origin of the features in
Refs. [13,15], in terms of pairing interaction and so-called
nonpairing interactions. We suggest that the linear correlation
in Sp (Sn) is given by the smooth and slow change of these
interactions, and that the odd-even staggering is originated
from the paring interactions.

The one-nucleon separation energies are defined as follows.

Sp(Z,N) = B(Z,N ) − B(Z − 1, N),

Sn(Z,N) = B(Z,N ) − B(Z,N − 1),

where Z and N present the proton and neutron numbers of
a given nucleus, respectively. B, Sp, and Sn are taken to be
positive in this paper. All experimental data in this paper are
taken from the AME2011-preview database [17].

This paper is organized as follows. In Sec. II we discuss the
systematics of pairing interactions (and the nonpairing part)
between valence nucleons. In Sec. III we discuss Sp and Sn in
terms of the systematics of pairing and nonpairing interactions
between nucleons, and in Sec. IV we summarize our results
obtained in this paper.

II. THE EMPIRICAL PAIRING INTERACTIONS

In this section we discuss the empirical pairing interactions
of proton-neutron, proton-proton, and neutron-neuron types.
Similar to Refs. [18,19], we define

−δV (1)
pp (Z − 1, Z; N ) =

⎧⎨
⎩

B(Z,N) − 2B(Z − 1, N) + B(Z − 2, N) + δV (2)
pp (Z − 1, Z; N ) for even Z and even N

B(Z,N − 1) − 2B(Z − 1, N − 1) + B(Z − 2, N − 1) + δV (2)
pp (Z − 1, Z; N ) for even Z and odd N

0 for odd Z, (2)

−δV (1)
nn (N − 1, N ; Z) =

⎧⎨
⎩
B(Z,N ) − 2B(Z,N − 1) + B(Z,N − 2) + δV (2)

nn (N − 1, N ; Z) for even N and even Z

B(Z − 1, N) − 2B(Z − 1, N − 1) + B(Z − 1, N − 2) + δV (2)
nn (N − 1, N ; Z) for even N and odd Z

0 for odd N , (3)
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where

−δV (2)
pp (Z − 1, Z; N ) = 1

2 [B(Z,N) − B(Z − 1, N)

−B(Z − 2, N) + B(Z − 3, N)],

(4)

−δV (2)
nn (N − 1, N ; Z) = 1

2 [B(Z,N ) − B(Z,N − 1)

−B(Z,N − 2) + B(Z,N − 3)].

(5)

δV (1)
pp (δV (1)

nn ) is the proton-proton (neutron-neutron) pairing
interaction, and δV (2)

pp (δV (2)
nn ) is our “nonpairing” interaction

between the last two protons (neutrons). The study of δV (2)
pp

and δV (2)
nn has been initiated in Refs. [18,20].

In Figs. 1(a) and 1(b) we show δV (2)
pp versus Z and δV (2)

nn

versus N , respectively. One sees that most of the values are
positive, which means that the nonpairing part of interac-
tions between like particles are repulsive (and very small).
This feature has been already pointed out and discussed in
Refs. [18,21]. From Figs. 1(a) and 1(b) one also sees the
absolute values of δV (2)

pp for nuclei with Z − N = 1 and
Z − N = 2 and those of δV (2)

nn for nuclei with N − Z = 1
and N − Z = 2 are exceptionally large. These “anomalies”
are given mainly by the Wigner effect. In this paper, however,
we are interested in anomalies irrelevant of the Wigner effect,
i.e., solid diamonds in red which largely deviate from the
compact trajectory of solid circles in black. One sees that these
anomalous results (diamonds in red) include all well-known
magic numbers (8, 20, 28, 50, 82, 126). The anomaly at magic
numbers is easily understood. For example, when protons fill
all the orbits of the closed shell, adding one additional proton
would lead to a reduction of the attractive force between the
last proton and other nucleons. Thus one obtains a large value
of δV (2)

pp in Eq. (4) for nuclei with one or two extra nucleons
outside the magic nucleus core. The same situation holds
for δV (2)

nn . A similar argument of this phenomenon was also
suggested in Ref. [19].

In Fig. 1 the results of δV (2)
pp and δV (2)

nn which are not affected
by the Wigner effect, the shell or subshell closure, or the phase
transition (see solid circles in black), change smoothly with Z

and N , respectively. We denote their average values by using

δV
(2)
pp and δV

(2)
nn and obtain their empirical formulas:

δV
(2)
pp (Z,Z − 1) = 442 + 1924 exp(−0.0520Z) keV (6)

and

δV
(2)
nn (N,N − 1) = 154 + 1840 exp(−0.0626N ) keV. (7)

One sees δV (2)
pp is more repulsive than δV (2)

nn ; for heavy nuclei
the difference is ∼290 keV.

As pointed out in Refs. [18,20], the anomalous results
of δV (2)

pp and δV (2)
nn are fingerprints of shells and subshells,

as well as phase transitions. Below we summarize these
anomalous δV (2)

pp and δV (2)
nn and list the corresponding shells

and/or subshells and phase transitions.

(i) New magic numbers Z = 16 and N = 16 discovered
in Refs. [22,23]. δV (2)

pp with Z = 16 and δV (2)
nn with

N = 16 are anomalous [see Figs. 1(a) and 1(b)].

FIG. 1. (Color online) Nonpairing interactions between the last
two protons and that between the last two neutrons. (a) δV (2)

pp versus Z.

(b) δV (2)
nn versus N . (c) Two-dimensional contour of (δV (2)

pp − δV
(2)
pp ) in

the Z − N chart. (d) Contour of (δV (2)
nn − δV

(2)
nn ) in the Z − N chart. In

panels (a) and (b) open squares and triangles correspond to those with
|Z − N | = 1 or 2; solid diamonds in red correspond to those affected
by shell or subshell effects, or phase transitions; and solid circles in
black correspond to the usual cases. The curves in panels (a) and (b)

are plotted to best fit their average values (denoted by δV
(2)
pp and δV

(2)
nn )

by using empirical formulas: δV (2)
pp = 442 + 1924exp(−0.052Z), and

δV
(2)
nn = 154 + 1840exp(−0.0626N ) (both in kev). One sees large

deviations arise for nuclei with either N � Z, shell or subshell
closures, or phase transitions.

(ii) The Z = 40 subshell (which disappears if neutron num-
ber N � 60) [24–26]. Here δV (2)

pp with Z = 40, N ∼ 56
are anomalous [see Fig. 1(c)], indicating the Z = 40
subshell.

(iii) The Z = 64 subshell (which disappears if neutron num-
ber N � 90) [26–28]. Here δV (2)

nn with N = 90, Z ∼
64, are anomalous [see Fig. 1(d)]. However we do not
see sharp anomalies for δV (2)

pp with Z = 64, N < 90 in
Fig. 1(c).

(iv) The phase transition at N = 60, Z ∼ 40 [see Fig. 1(d)].

These δV (2)
nn are much smaller than δV

(2)
nn , indicating

the phase transitions for low-lying states of nuclei with
N = 60, Z ∼ 40.

The pairing interactions, δV (1)
pp and δV (1)

nn , are strongly
attractive. In Fig. 2 we show δV (1)

pp of even-Z nuclei and δV (1)
nn

of even-N nuclei in the nuclide charts, separately. Their values
range from −4 to −1 MeV as mass number A increases. The
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systematics of δV (1)
pp and δV (1)

nn are complicated; their values
are strongly influenced by shell structures.

Now let us come to the proton-neutron interaction between
the last proton and the last neutron,

−δV1p−1n(Z,N) = B(Z,N ) + B(Z − 1, N − 1)

−B(Z − 1, N ) − B(Z,N − 1). (8)

Let us suppose the odd-even staggering of δV1p−1n in
Refs. [9,29,30] is given by the pairing interaction, denoted

as δV (1)
pn , and the residual part, the nonpairing interaction, is

denoted as δV (2)
pn . We have

δV (1)
pn (Z,N)

=
{

0 if N + Z is odd
δV1p−1n(Z,N) − δV (2)

pn (Z,N) if N + Z is even,

(9)

where

δV (2)
pn (Z,N )

=
{
δV1p−1n(Z,N ) if N + Z is odd
1
4 [δV1p−1n(Z,N − 1) + δV1p−1n(Z,N + 1) + δV1p−1n(Z − 1, N) + δV1p−1n(Z + 1, N )] if N + Z is even.

(10)

Thus δV1p−1n is rewritten by

δV1p−1n(Z,N )

= 1 + (−)Z+N

2
δV (1)

pn (Z,N ) + δV (2)
pn (Z,N). (11)

In Fig. 3 we present δV (1)
pn and δV (2)

pn extracted by experi-
mental binding energies versus mass number A. One sees the
abrupt enhancement of empirical proton-neutron interactions
δV1p−1n with Z = N (open triangles in red) given by the
Wigner energy. δV (1)

pn for Z �= N and δV (2)
pn follow compact

trajectories. For A � 70, we assume two simple formulas:

δV (1)
pn (Z,N ) = 3.512A − 1042 keV (12)

and

δV (2)
pn (Z,N ) = −82 keV. (13)

δV (2)
pn is strong (the absolute value equals a few MeV) for

A < 20, and drops down rapidly with A and saturates at ∼ −
82 keV when A � 70. δV (1)

pn changes smoothly from −1 MeV
to −200 keV as A increases from 5 to 200. Comparing panel (a)
with panel (b) in Fig. 3 very carefully, one sees δV (1)

pn stronger
than δV (2)

pn for A > 20. The anomaly of shell closures is not as
striking in δV (1)

pn or δV (2)
pn as in δV (2)

pp and δV (2)
nn .

We note that δV (1)
pn (the pairing interaction of a proton-

neutron type) presents an additionally attractive interaction in

FIG. 2. (Color online) Pairing interactions δV (1)
pp (even-Z) and

δV (1)
nn (even-N ) in units of MeV.

odd-odd nuclei which is usually neglected in the conventional
pairing force. This effect was discussed in terms of config-
uration mixing in Ref. [31], and in terms of proton-neutron
correlation in Ref. [32]. However, further investigation of this
effect is warranted.

It is also worthy to note that the root-mean-square devi-
ations of δV (2)

pp (with Z > 30), δV (2)
nn (with N > 40), δV (1)

pn

(with A > 60), and δV (2)
pn (with A > 60) obtained by using the

empirical formulas in Eqs. (6), (7), (12), and (13) from those
extracted from experimental data by using Eqs. (4), (5), (9), and
(10) are very small (116, 85, 228, and 128 keV, respectively,
for these four quantities), if we exclude those affected by the
Wigner effect or shells. Therefore they would be very useful
in constructing local mass relations.

III. ONE-NUCLEON SEPARATION ENERGIES

In this section we discuss one-nucleon separation energies,
Sp and Sn. We begin our discussion with the definition of

FIG. 3. (Color online) Pairing interaction δV (1)
pn and nonpairing

interaction δV (2)
pn versus mass number A. (a) Open circles in black

correspond to δV (1)
pn with Z �= N and open triangles in red correspond

to δV (1)
pn with Z = N ; (b) open circles in black correspond to δV (2)

pn

of all nuclei. Line in panel (a): δV (1)
pn = 3.512A − 1042 keV; line in

panel (b): δV (2)
pn = −82keV.
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binding energy:

−B(Z,N ) =
[Z/2]∑
i=1

δV (1)
pp (2i − 1, 2i) +

∑
1�i<j�Z

δV (2)
pp (i, j )

+
[N/2]∑
i=1

δV (1)
nn (2i − 1, 2i) +

∑
1�i<j�N

δV (2)
nn (i, j )

+
Z∑

i=1

N∑
j=1

1 + (−)i+j

2
δV (1)

pn (i, j )

+
Z∑

i=1

N∑
j=1

δV (2)
pn (i, j ), (14)

where [Z/2] is, respectively, Z/2 or (Z − 1)/2 for even
or odd Z. However, it is not known how to extract the
values of δV (1,2)

pp (2i − 1, 2i), δV (1,2)
nn (2i − 1, 2i) with small i,

or δV (1,2)
pn (i, j ) with small i and j with a reasonable precision

for heavy nuclei. Therefore Eq. (14) is not useful in practice.
Now let us treat an arbitrary nucleus with Z protons and

N neutrons as an even-even “core” (with Z0 protons and
N0 neutrons) and additional (Z − Z0) protons and (N − N0)
neutrons outside the core. Z0 and N0 are not necessarily magic

numbers. The “binding energy” of the core is as follows:

V (Z0, N0) ≡ V (1)
pp (Z0) + V (2)

pp (Z0) + V (1)
nn (N0) + V (2)

nn (N0)

+V (1)
pn (Z0, N0) + V (2)

pn (Z0, N0),

where

V (1)
pp (Z0) =

Z0/2∑
i=1

δV (1)
pp (2i − 1, 2i),

V (2)
pp (Z0) =

∑
1�i<j�Z0

δV (2)
pp (i, j ),

V (1)
nn (N0) =

N0/2∑
i=1

δV (1)
nn (2i − 1, 2i),

V (2)
nn (N0) =

∑
1�i<j�N0

δV (2)
nn (i, j ),

V (1)
pn (Z0, N0) =

Z0∑
i=1

N0∑
j=1

1 + (−)i+j

2
δV (1)

pn (i, j ),

V (2)
pn (Z0, N0) =

Z0∑
i=1

N0∑
j=1

δV (2)
pn (i, j ).

Equation (14) is rewritten in the following form:

−B(Z,N ) = V (Z0, N0) +
Z∑

i=Z0+1

V (0)
p (i) +

[Z/2]∑
i=Z0/2+1

δV (1)
pp (2i − 1, 2i) +

∑
Z0+1�i<j�Z

δV (2)
pp (i, j ) +

N∑
i=N0+1

V (0)
n (i)

+
[N/2]∑

i=N0/2+1

δV (1)
nn (2i − 1, 2i) +

∑
N0+1�i<j�N

δV (2)
nn (i, j ) +

Z∑
i=Z0+1

N∑
j=N0+1

1 + (−)i+j

2
δV (1)

pn (i, j )

+
Z∑

i=Z0+1

N∑
j=N0+1

δV (2)
pn (i, j ), (15)

where

V (0)
p (i) =

Z0∑
k=1

δV (2)
pp (k, i) +

N0∑
k=1

[
δV (1)

pn (i, k) + δV (2)
pn (i, k)

]
,

V (0)
n (i) =

N0∑
k=1

δV (2)
nn (k, i) +

Z0∑
k=1

[
δV (1)

pn (k, i) + δV (2)
pn (k, i)

]
.

Now we make very crude approximations as follows.

V (0)
p (i) ≈ V (0)

p , δV (1)
pp (2i − 1, 2i) ≈ δV (1)

pp ,

δV (2)
pp (i, j ) ≈ δV (2)

pp , δV (1)
pn (i, j )|i+j is even ≈ δV (1)

pn ,

V (0)
n (i) ≈ V (0)

n , δV (1)
nn (2i − 1, 2i) ≈ δV (1)

nn ,

δV (2)
nn (i, j ) ≈ δV (2)

nn , δV (2)
pn (i, j ) ≈ δV (2)

pn .

Some of the above assumptions were taken in Refs. [33,34] in
constructing the integrated empirical valence proton-neutron

interactions. Under these assumptions, Eq. (15) becomes

−B(Z,N ) ≈ V (Z0, N0) + N ′
pV (0)

p +
[
N ′

p

2

]
δV (1)

pp

+ N ′
p(N ′

p − 1)

2
δV (2)

pp + N ′
nV

(0)
n +

[
N ′

n

2

]
δV (1)

nn

+ N ′
n(N ′

n − 1)

2
δV (2)

nn + N ′
pN ′

n

(
1

2
δV (1)

pn + δV (2)
pn

)

+ 1 − (−)N
′
pN ′

n

4
δV (1)

pn , (16)

where N ′
p = Z − Z0 and N ′

n = N − N0. This formula is very
similar to Eq. (10) of Ref. [14]. The last term of Eq. (16)
indicates the extra binding of odd-odd nuclei. From Eq. (16),
we obtain

Sp(Z,N) ≈ (
δV (2)

pp − V (0)
p

) − N ′
pδV (2)

pp

−N ′
n

(
1

2
δV (1)

pn + δV (2)
pn

)
− 1 + (−)N

′
p

2
δV (1)

pp

054303-4



PAIRING INTERACTIONS AND ONE-NUCLEON . . . PHYSICAL REVIEW C 86, 054303 (2012)

− (−)N
′
pN ′

n

4
[(−)N

′
n − 1]δV (1)

pn

≈ αZ + βN + γ, (17)

Sn(Z,N ) ≈ (
δV (2)

nn − V (0)
n

) − N ′
nδV

(2)
nn

−N ′
p

(
1

2
δV (1)

pn + δV (2)
pn

)
− 1 + (−)N

′
n

2
δV (1)

nn

− (−)N
′
pN ′

n

4
[(−)N

′
p − 1]δV (1)

pn

≈ α′Z + β ′N + γ ′, (18)

with

α = −δV (2)
pp ,

β = −1

2
δV (1)

pn − δV (2)
pn ,

γ =
[
δV (2)

pp (Z0 + 1) +
(

1

2
δV (1)

pn + δV (2)
pn

)
N0 − V (0)

p

]

− 1 + (−)Z

2
δV (1)

pp − (−)Z×N

4
[(−)N − 1]δV (1)

pn , (19)

and

α′ = −1

2
δV (1)

pn − δV (2)
pn ,

β ′ = −δV (2)
nn ,

γ ′ =
[
δV (2)

nn (N0 + 1) +
(

1

2
δV (1)

pn + δV (2)
pn

)
Z0 − V (0)

n

]

− 1 + (−)N

2
δV (1)

nn − (−)Z×N

4
[(−)Z − 1]δV (1)

pn . (20)

First we discuss Sp and Sn versus Z and N . α and β

in Eq. (19) and α′ and β ′ in Eq. (20) are given in terms
of δV (2)

pp , δV (2)
nn , δV (1)

pn , and δV (2)
pn . All these quantities are

assumed invariable in a local region (unless there are the
Wigner effect, the shell or subshell effect, and the phase
transition). On first sight, the first term of γ , [δV (2)

pp (Z0 +
1) + ( 1

2δV (1)
pn + δV (2)

pn )N0 − V (0)
p ], and the first term of γ ′,

[δV (2)
nn (N0 + 1) + ( 1

2δV (1)
pn + δV (2)

pn )Z0 − V (0)
n ], seem sensitive

to Z0 and N0; it seems to suggest that the values of γ and γ ′ are
highly relevant to the choice of the core (with Z0 protons and
N0 neutrons). However, this is not the case in a local region.
For example, if we replace Z0 and N0 by Z′

0 and N ′
0 in the first

term of γ , then we have

δV (2)
pp (Z′

0 + 1) +
(

1

2
δV (1)

pn + δV (2)
pn

)
N ′

0 − V (0)
p

′

≈ δV (2)
pp (Z′

0 + 1) +
(

1

2
δV (1)

pn + δV (2)
pn

)
N ′

0 −
⎧⎨
⎩

Z′
0∑

k=1

δV (2)
pp (k, i) +

N ′
0∑

k=1

[
δV (1)

pn (i, k) + δV (2)
pn (i, k)

]⎫⎬⎭
≈ δV (2)

pp (Z0 + 1) + δV (2)
pp (Z′

0 − Z0) +
(

1

2
δV (1)

pn + δV (2)
pn

)
N0 +

(
1

2
δV (1)

pn + δV (2)
pn

)
(N ′

0 − N0)

−
{

Z0∑
k=1

δV (2)
pp (k, i) + δV (2)

pp (Z′
0 − Z0) +

N0∑
k=1

[
δV (1)

pn (i, k) + δV (2)
pn (i, k)

] +
(

1

2
δV (1)

pn + δV (2)
pn

)
(N ′

0 − N0)

}

= δV (2)
pp (Z0 + 1) +

(
1

2
δV (1)

pn + δV (2)
pn

)
N0 − V (0)

p . (21)

Thus in a local region, γ is approximately invariable for nuclei
of each of the even-even, even-odd, odd-even, and odd-odd
types. Similarly one sees that γ ′ is approximately invariable
too.

Second, there are two types of odd-even staggering reported
in Ref. [15]. For convenience we exemplify them by using Sp

and Sn of nuclei in the A ∼ 130 region in Fig. 4. Nice linear
correlations are seen for even-even, odd-even, even-odd, and
odd-odd nuclei, with odd-even staggerings.

Let us concentrate our attention on Sp. One sees first that Sp

of even-Z nuclei are much larger than those of odd-Z nuclei.
This is easily explained by (− 1+(−)Z

2 δV (1)
pp ) in γ of Eq. (19).

For an even-Z value, (− 1+(−)Z

2 δV (1)
pp ) = −δV (1)

pp ∼ 2.875 MeV
in this region; and for an odd Z this term is zero. Second, Sp

of even-even nuclei is slightly larger than those of even-odd
nuclei, and Sp of odd-odd nuclei is slightly larger than those

of odd-even nuclei. These two small differences are given by
(− (−)Z×N

4 [(−)N − 1]δV (1)
pn ) in γ of Eq. (19). It is equal to 0 for

p n

FIG. 4. (Color online) Experimental data of (a) Sp versus αZ +
βN , and (b) Sn versus α′Z + β ′N for nuclei with A ∼ 130. See the
first row of Table I for values of α, β, α′, and β ′. Here we use squares in
black, circles in red, triangles in blue, and nablas in green to represent
even-even, even-odd, odd-even, and odd-odd nuclei, respectively.
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TABLE I. Comparison of two sets of parameters α, β, α′, β ′,
γ , and γ ′, one set obtained by χ 2 fitting of experimental data and
denoted by “(1)”, and the other by using Eqs. (19) and (20) and
empirical pairing and nonpairing interactions, denoted by “(2)”, for
nuclei with A ∼ 130 (the same set of nuclei as in Fig. 4). Because the
first terms in γ and γ ′ are unknown constants, we calculate the relative
values for even-even, even-odd, odd-even, and odd-odd nuclei, �γ =
γ − γo-e and �γ ′ = γ ′ − γ ′

e-o. We use abbreviations “e-e,” “e-o,”
“o-e,” and “o-o” to represent even-even, even-odd, odd-even, and
odd-odd, respectively. One sees that the two sets of parameters are in
good consistency.

α β α′ β ′

(1) −0.523 0.340 0.308 −0.204
(2) −0.527 0.374 0.374 −0.177

e-e e-o o-e o-o

�γ (1) 2.687 2.385 0 0.269
�γ (2) 2.875 2.583 0 0.292
�γ ′ (1) 2.715 0 2.410 0.260
�γ ′ (2) 2.755 0 2.463 0.292

even-even nuclei, δV (1)
pn /2 for even-odd, −δV (1)

pn /2 for odd-odd,
and 0 for odd-even, where δV (1)

pn ≈ −0.585 MeV in this region.
We note without details that the odd-even staggering of Sn in
Fig. 4(b) can be explained in the same way.

It is interesting to compare two sets of coefficients (α, β, γ ,
α′, β ′, and γ ′), one obtained by the χ2 fitting to experimental
data in Fig. 4 for A ∼ 130 and the other calculated by Eqs. (19)
and (20) for the same set of nuclei. Our parameters in Eqs. (19)
and (20) are fixed as follows. The four parameters δV (2)

pp ,
δV (2)

nn , δV (1)
pn , and δV (2)

pn are calculated by using Eqs. (6),
(7), (12), and (13). For Z ≈ 60, N ≈ 70, and A ≈ 130,
δV (2)

pp , δV (2)
nn , δV (1)

pn , and δV (2)
pn are 0.527, 0.177, −0.585, and

−0.082 MeV, respectively. The other two parameters are
obtained by using average values of experimental data in
Fig. 2: δV (1)

pp ∼ − 2.875 MeV, and δV (1)
nn ∼ −2.755 MeV. A

comparison of α, β, γ , α′, β ′, and γ ′ calculated by using
Eqs. (19) and (20) and those extracted by experimental data of
Fig. 4 are given in Table I, where good consistency is easily
seen.

Finally we note that β in Eq. (19) is equal to α′ in Eq. (20).
This relation holds reasonably well for realistic nuclei. For
example, β = 0.340 MeV and α′ = 0.308 MeV for nuclei
with A ∼ 130, according to Table I.

IV. SUMMARY

In this paper we studied proton-neutron, proton-proton,
and neutron-neutron paring interactions, and nonpairing in-
teractions, extracted from experimental binding energies. The
anomalies in the nonpairing part of proton-proton and neutron-
neutron interactions provide us very useful fingerprints of the
shell evolution and the phase transition, as pointed out in
Refs. [18–20]. In Fig 1, the anomalies correspond to nuclei
with conventional magic numbers (8, 20, 28, 50, 82, and 126),
with Z = N , with the Z = 40 and 64 subshells, or phase
transitions near N = 60 and 90.

We construct formulas of one-neutron and one-proton
separation energies in terms of these empirical interactions. In
a given local region, separation energies, Sp ≈ αZ + βN +
γ , and Sn ≈ α′Z + β ′N + γ ′, with two types of odd-even
staggering. The coefficients α, β, α′, and β ′ are given in
terms of these empirical interactions, whose strength changes
very slowly. γ and γ ′ show the odd-even staggerings, which
correspond very well to those presented by experimental
data. In Ref. [15] the staggerings were attributed to pairing
interaction between like nucleons and symmetry energy in
the modified Bethe-Weizsäcker formula; in this paper they
were further explained in terms of three types of pairing
interactions, i.e., proton-proton, neutron-neutron, and proton-
neutron pairing interactions.
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