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We report no-core solutions for properties of light nuclei with three different approaches in order to assess the
accuracy and convergence rates of each method. Full configuration interaction (FCI), Monte Carlo shell model
(MCSM), and no core full configuration (NCFC) approaches are solved separately for the ground state energy
and other properties of seven light nuclei using the realistic JISP16 nucleon-nucleon interaction. The results are
consistent among the different approaches. The methods differ significantly in how the required computational
resources scale with increasing particle number for a given accuracy.
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I. INTRODUCTION AND MOTIVATION

Ab initio approaches to nuclear structure and reactions for
p-shell nuclei have advanced significantly in the last few
years [1–3]. At the same time, fundamental approaches to
the nucleon-nucleon (NN ) and three-nucleon (NNN ) interac-
tions, such as meson-exchange theory and chiral effective field
theory, have yielded major advances [4–8]. Successful realistic
NN interactions from inverse scattering have also emerged [9].
These advances in microscopic nuclear theory combine to
place serious demands on available computational resources
for achieving converged properties of p-shell nuclei. In order
to access a wider range of nuclei and experimental observables,
while retaining predictive power, we require additional major
advances in many-body methods.

These considerations motivate us to investigate the no-core
Monte Carlo shell model (MCSM) which has advantageous
scaling properties for accessing larger basis spaces and heavier
nuclei. The MCSM was first introduced in Ref. [10] and
we extend it here to treat systems without a core. In the
present work we evaluate properties of a set of p-shell nuclei
using the no-core MCSM and compare with exact results
in the same single-particle basis from the full configuration
interaction (FCI) method when feasible. We also compare with
representative results from the full space ab initio no core full
configuration (NCFC) [11] method. We adopt the JISP16 NN

interaction [9] without renormalization and without any NNN

interactions.
For each of the three many-body methods, all A nucleons

in the nucleus are treated on the same footing. Experimental
observables are obtained from A-nucleon wave functions
resulting from Hamiltonian diagonalization in the chosen
many-body basis space. To perform the comparisons among
the methods, we focus on ground state properties of seven
nuclei as well as the properties of two low-lying narrow excited
states.

For each method, we adopt the harmonic oscillator (HO)
single-particle basis. We obtain eigensolutions of the nuclear

intrinsic Hamiltonian expressed as a superposition of Slater
determinants in the HO basis (FCI and NCFC) or the total
angular momentum projected and parity projected deformed
Slater determinants (MCSM). Neutron and proton orbitals are
treated independently. The resulting calculated ground state
energy is a rigorous upper bound on the exact result at any
truncation. This upper bound character applies to the lowest
calculated state of each total angular momentum and parity.

A major distinction among the methods is the definition
of the cutoff that defines the finite many-body basis space
in which the calculations are performed. All three methods
should approach the exact solutions as the cutoffs are removed.
Both the MCSM and the FCI methods employ a cutoff in
the single-particle basis Nshell which is the highest shell of
the symmetric three-dimensional HO that is included. All
many-body basis states consistent with that cutoff are retained
(FCI) or stochastically sampled (MCSM). On the other hand,
the NCFC approach represents an extrapolation to the infinite
matrix limit of a sequence of calculations in many-body
basis spaces defined by a many-body basis cutoff Nmax, the
maximum number of HO quanta included in a many-body
basis state above the minimum for that nucleus.

A further distinction among the methods emerges from
these different truncations—the NCFC approach may, in
principle (though this is not used in the present benchmark),
guarantee the factorization of the total wave function into an
intrinsic (translationally invariant) part times a pure 0s HO for
the center-of-mass (c.m.) motion whereas the MCSM and FCI
approaches do not guarantee this factorization. The method
of analysis introduced for the coupled cluster method [12]
implies that MCSM and FCI may factorize reasonably well at
an optimally chosen oscillator parameter so that observables
may be evaluated with minimal influence from spurious c.m.
motion effects. All other known symmetries of the intrinsic
Hamiltonian are retained in the many-body basis by each
method.

The main motivation for the no-core MCSM approach is its
superior scaling properties with increasing nucleon number.
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We estimate that, for a fixed Nshell value and a fixed level of
accuracy the MCSM scales as N2

b × N3∼4
sp where Nb is the

number of Monte Carlo basis states generated in the sampling
and Nsp is the number of HO single-particle states included
by Nshell. To obtain a fixed accuracy with increasing nucleon
number A, Nb will have to increase as some low power of
A, estimated at 1.5∼2.5 from the results we present below.
Assuming Nb dominates the A dependence for fixed accuracy,
which seems reasonable, we estimate that MCSM scales as
A3∼5. On the other hand, the NCFC scales as A12∼14 for a fixed
Nmax value and the maximum Nmax value roughly fixes the
accuracy of the final NCFC result. Since the MCSM scaling for
fixed accuracy is far less dependent on the number of nucleons
A, it will be the superior approach once A increases to the point
where the NCFC fails to generate a sufficiently converged
result. Nevertheless, the truncated calculations within NCFC
will continue to produce a valid upper bound to the exact
answer.

Since the MCSM approximates the FCI calculation by
stochastically sampling the FCI many-body basis space, we
provide comparisons between these two methods in smaller
basis spaces and for lighter systems where we can still perform
the FCI calculations. For these test problems, we find that the
MCSM provides an accurate approximation to the FCI results.
The sequence of MCSM results with increasing Nshell and
for heavier nuclei may also be compared with the sequence
of results as a function of Nmax that underlie the NCFC
result in order to assess convergence rates and uncertainties
in extrapolated results.

The outline of this paper is as follows. After the Introduction
and Motivation of Sec. I, many-body basis space truncations
and quantum many-body methods adopted for the benchmark
in this paper are briefly described in Sec. II. The selections
of the NN interaction and nuclear states are summarized
in Sec. III. The benchmark comparisons are presented and
discussed in Sec. IV. The summary and outlook can be found
in Sec. V. In the Appendix we present additional details for the
energy variance and the extrapolation of the no-core MCSM
results to the FCI basis.

II. QUANTUM MANY-BODY METHODS ADOPTED

A long-standing goal of nuclear physics is to obtain the
exact solutions of a realistic Hamiltonian (i.e., one that
describes well the few-body data) for finite nuclei and to
compare those results with experiment where available. Once
validated, the same methods with the same Hamiltonian will
be very useful for predicting properties of nuclei that cannot
be studied experimentally but may be of great importance
in understanding astrophysical phenomena or for practical
applications such as energy generation. This is the physics
program we aim to empower by developing and testing new
many-body methods.

We begin by introducing the elements that the three methods
we study here have in common. The translationally invariant
nonrelativistic nuclear plus Coulomb interaction Hamiltonian
is taken to consist of

H = Trel + VNN + VNNN + · · · + VCoulomb, (1)

where Trel is the internal (“relative”) kinetic energy of the
nucleons and the NN and NNN interactions are included
along with the Coulomb interaction between the protons.
The Hamiltonian may include additional terms such as
multinucleon interactions among more than three nucleons
simultaneously and higher-order electromagnetic interactions
such as magnetic dipole-dipole terms.

The JISP16 NN interaction adopted here produces a
high-quality description of the NN scattering data and the
deuteron [9] as well as a good description of a range of
properties of light nuclei [11]. For the present effort we neglect
all other interaction terms such as the NNN , higher-body
strong interactions and the Coulomb interaction though the
three methods are capable of including them. These additional
terms will be required for precision descriptions of nuclear
properties but are not expected to alter the conclusions from
our benchmarks here.

All calculations are performed in an M-scheme basis where
the many-body basis states are constructed with good total
magnetic projection M . The MCSM projects out states of
fixed total angular momentum and parity Jπ . The basis states
used in the FCI and NCFC calculations are constructed with a
fixed parity (as well as fixed M). The eigensolutions of the FCI
and NCFC methods will also possess good J up to numerical
errors. Evaluating the value of J for any eigensolution serves
as a crosscheck on the precision of the calculations.

In all applications here, we seek to obtain only the lowest
few eigenvalues and eigenfunctions. For the NCFC and the FCI
calculations we employ the code “Many-Fermion Dynamics
- nuclear” or “MFDn” [13] which has been optimized for
leadership-class parallel computers [14]. For the MCSM cal-
culations, we employ a new MCSM code that runs efficiently
on parallel computers [15].

All solutions will have a dependence on the cutoff (either
Nshell for FCI and MCSM or Nmax for truncated NCFC) and
dependence on the HO energy h̄ω. The MCSM results also
depend, in principle, on the number of Monte Carlo basis states
Nb and we employ an extrapolation based on energy-variance
to estimate the Nb-independent solution. The degree to which
we obtain results independent of the cutoff and of the HO
energy is a measure of the convergence of the results—
fully converged results are independent of all basis space
parameters.

A. Many-body basis space truncations

The methods we investigate employ one of two different
truncation schemes as mentioned above. The MCSM and FCI
employ an Nshell cutoff while the NCFC employs Nmax to define
the finite basis spaces in which the Hamiltonian is evaluated
and diagonalized. We work in a neutron-proton scheme rather
than a basis of good isospin. We now discuss some additional
features of those truncation schemes.

1. Nshell

For the MCSM and FCI methods, all single-particle states
for neutrons and protons in HO shells up to and including
Nshell are included (Nshell = 1 for the lowest shell). Then, all
many-body states consistent with that cutoff and the selected
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TABLE I. Dimensions of the M scheme (top) and J scheme (bottom) many-body basis spaces for selected nuclei
with the Nshell truncation. The dimensions are for the natural parity states with M and J taken to be the lowest allowed
value (M = 0 for even nuclei except for 6Li and 10B where M = 1; M = 1/2 for odd nuclei, and similarly for J ).

Nshell 2 3 4 5 6 7

M scheme
4He 98 3.06 × 103 3.98 × 104 3.14 × 105 1.77 × 106 7.84 × 106

6He 216 6.51 × 104 3.86 × 106 9.80 × 107 1.45 × 109 1.47 × 1010

6Li 293 8.59 × 104 5.08 × 106 1.29 × 108 1.91 × 109 1.94 × 1010

7Li 400 3.60 × 105 4.51 × 107 2.05 × 109 4.91 × 1010 7.50 × 1011

8Be 518 1.47 × 106 3.96 × 107 3.24 × 1010 1.26 × 1012 2.91 × 1013

10B 293 1.34 × 107 1.82 × 1010 5.02 × 1011 5.22 × 1014 2.78 × 1016

12C 98 8.22 × 107 5.87 × 1011 5.50 × 1014 1.54 × 1017 1.90 × 1019

16O 1 8.12 × 108 2.10 × 1014 2.51 × 1018 5.32 × 1021 3.59 × 1024

J scheme
4He 20 2.72 × 102 2.10 × 103 1.12 × 104 4.58 × 104 1.54 × 105

6He 35 3.93 × 103 1.37 × 105 2.35 × 106 2.52 × 107 1.93 × 108

6Li 97 1.42 × 104 5.19 × 105 9.05 × 106 9.79 × 107 7.57 × 108

7Li 89 3.63 × 104 2.73 × 106 8.40 × 107 1.46 × 109 1.69 × 1010

8Be 70 6.89 × 104 1.08 × 107 5.92 × 108 1.66 × 1010 2.90 × 1011

10B 43 2.20 × 106 1.21 × 109 2.21 × 1011 1.65 × 1013 6.67 × 1014

12C 20 2.94 × 106 1.14 × 1010 6.94 × 1012 1.38 × 1015 1.28 × 1017

16O 1 2.54 × 107 3.26 × 1012 2.46 × 1016 3.66 × 1019 1.84 × 1022

symmetries are enumerated. Thus, for example, we include
basis states where all nucleons occupy the highest HO shell if
that shell can accommodate all of them. Table I presents many-
body basis space dimensions in the M scheme and J scheme
over a range of Nshell values for the nuclei we investigate. We
also include 16O for illustrative purposes. An FCI calculation
involves evaluating the Hamiltonian with that dimension and
diagonalizing it—at least to obtain the low-lying solutions of
interest.

2. Nmax

For the NCFC method, we employ the many-body Nmax

truncation where we enumerate all many-body states, with the
selected symmetries, possessing total HO quanta less than or
equal Nmax above the lowest allowed configuration for that
nucleus. Each single-particle state in a basis state contributes
2n + l to the total HO quanta (n is the radial quantum number
and l is the orbital angular momentum quantum number) for
that basis state and then the minimum sum for that nucleus
is subtracted to give the total quanta above the minimum for
that basis state. The basis space for each nucleus begins with
Nmax = 0 and increases in units of 2 for the natural parity
states. Odd values of Nmax cover the unnatural parity states.
Thus, for example, we include basis states where one nucleon
occupies the highest HO shell accessed. Table II presents
many-body basis space dimensions in the M scheme over a
range of Nmax values for the nuclei we investigate, again with
16O added for illustrative purposes. A no-core shell model
(NCSM) calculation involves evaluating the Hamiltonian with
that dimension and diagonalizing it—at least to obtain the
low-lying solutions of interest. A sequence with increasing
Nmax of NCSM calculations using a Hamiltonian defined for
the infinite basis will converge from above to the exact solution.

The NCFC approach uses that sequence to extrapolate to the
infinite basis limit.

B. FCI

An FCI calculation involves solving the Hamiltonian
eigenvalue problem in a many-body basis space with the Nshell

truncation described above. We have performed sets of these
calculations in the present effort to provide the exact results
for comparison with the MCSM approach and to compare
with the Nmax-truncated results of the NCFC approach. For
the FCI results reported here, we employ the M-scheme basis
whose dimensions are indicated in Table I and use the Lanczos
algorithm in a manner similar to a NCSM calculation. Unlike
the NCFC approach, we do not perform an extrapolation to the
infinite matrix limit of the FCI results as a function of Nshell.

C. MCSM

The MCSM approach [10,15] proceeds through a sequence
of diagonalization steps within the Hilbert subspace spanned
by the selected importance-truncated bases, beginning with,
in principle, any initial trial solution for the system. Until
now, the deformed Hartree-Fock (Hartree-Fock-Bogoliubov)
states in the HO single-particle basis defined by the Nshell

cutoff have been adopted as an initial state for the shell-model
calculations with a core in light (medium-heavy) nuclei.
These deformed single-particle states in a canonical basis
are constructed as a linear combination of spherical HO
single-particle states up to and including those in the Nshell

cutoff. One then stochastically samples all possible many-body
basis states around the mean field solutions with the aid of
the auxiliary fields and diagonalizes the Hamiltonian matrix
within the subspace spanned by these bases. An accept/reject
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TABLE II. Dimensions of the M-scheme many-body basis spaces for selected nuclei with Nmax truncation. The dimensions are for the
natural parity states with M taken to be the lowest allowed value (M = 0 for even nuclei except for 6Li and 10B where M = 1; M = 1/2 for odd
nuclei). The sequence of dimensions for unnatural parity states (odd values of Nmax) lie intermediate the neighboring natural parity dimensions.

Nmax 0 2 4 6 8 10 12 14

4He 1 5.9 × 101 9.52 × 102 7.92 × 103 4.48 × 104 1.96 × 105 7.14 × 105 2.25 × 106

6He 5 5.11 × 102 1.17 × 104 1.40 × 105 1.14 × 106 7.06 × 106 3.58 × 107 1.56 × 108

6Li 8 7.11 × 102 1.58 × 104 1.87 × 105 1.51 × 106 9.36 × 106 4.75 × 107 2.06 × 108

7Li 21 1.96 × 103 4.89 × 104 6.64 × 105 6.15 × 106 4.36 × 107 2.52 × 108 1.24 × 109

8Be 51 5.10 × 103 1.44 × 105 2.22 × 106 2.33 × 107 1.87 × 108 1.22 × 109 6.77 × 109

10B 73 1.35 × 104 5.51 × 105 1.16 × 107 1.60 × 108 1.65 × 109 1.40 × 1010 9.63 × 1010

12C 51 1.77 × 104 1.12 × 106 3.26 × 107 5.94 × 108 7.83 × 109 8.08 × 1010 6.88 × 1011

16O 1 1.25 × 103 3.45 × 105 2.65 × 107 9.97 × 108 2.37 × 1010 4.06 × 1011 5.43 × 1012

process of a stochastically sampled basis is performed by
minimizing the energy variationally, not by the importance
sampling in quantum Monte Carlo methods implemented by
the Metropolis algorithm. The MCSM is thus not the usual
“quantum” Monte Carlo, but can evade the so-called negative
sign problem, which is the fundamental issue that cannot be
avoided in quantum Monte Carlo methods.

In the MCSM, a many-body state |�Jπ M〉 is constructed
from the linear combination of non-orthogonal angular-
momentum (J ) and parity (π ) projected deformed Slater de-
terminants |�〉 with good total angular momentum projection
(M) as a stochastically selected basis,

|�Jπ M〉 =
Nb∑
n=1

fn

∣∣�Jπ M
n

〉
, (2)

where the angular-momentum and parity projected basis,

|�Jπ M〉 =
J∑

K=−J

gKP J
MKP π |φ〉, (3)

and the deformed Slater determinant,

|φ〉 =
A∏

i=1

a
†
i |−〉, (4)

with the vacuum |−〉 and the creation operator a
†
i =∑Nsp

α=1 c†αDαi . The coefficient Dαi is stochastically sampled
by the auxiliary-field Monte Carlo technique around the
Hartree-Fock solutions.

With increasing Monte Carlo basis dimension, the ground
state energy of a MCSM calculation converges from above
to the exact value—the value that would be obtained by
diagonalization of the corresponding FCI basis space. The
energy, therefore, always gives the variational upper bound in
this framework.

An exploratory no-core MCSM investigation of the proof-
of-the principle type has been done for the low-lying states
of the Berylium isotopes by applying the existing MCSM
algorithm with a core to a no-core problem [22]. Recent
improvements on the MCSM algorithm have enabled signifi-
cantly larger calculations [15,16]. In addition energy variance
extrapolation methods have been introduced and tested in
order to obtain precise results at each Nshell cutoff [17]. We

adopt these improvements in the present work, and extend
our earlier investigations [18]. A similar work by the hybrid
multideterminant method is also proposed [19].

D. NCFC

The NCFC approach [11] aims to achieve the solution
of the nuclear many-body problem by diagonalization in
a sufficiently large basis space that converged energies are
accessed—either directly or by simple extrapolation. Conver-
gence is assessed in the two-dimensional parameter space of
the basis space (h̄ω, Nmax) and is defined as independence
of both parameters within estimated uncertainties. Each
observable is studied independently to obtain its converged
value and its assessed uncertainty.

The NCFC is both related to and distinct from the NCSM
[2] that features a finite matrix truncation and an effective
Hamiltonian renormalized to that finite space. The Nmax

regulator appears in both the NCFC, where it is taken to
infinity, and in the NCSM, where it also appears in the
definition of the effective Hamiltonian. In both the NCFC
and the NCSM, the Nmax cutoff in the HO basis is needed to
preserve Galilean invariance—to factorize all solutions into
a product of internal motion and c.m. motion components.
With Nmax as the regulator, both the NCFC and the NCSM are
distinguished from the FCI and the MCSM approaches where
such factorization is not guaranteed but may be approximately
valid [12]. In the NCFC approach the ground state energies
at any finite truncation are strict upper bounds, and converge
monotonically to the exact result. This facilitates a simple
extrapolation. The approach to the exact result is in general
not monotonic in the NCSM.

E. Snapshot comparison

For convenience, we present simple comparisons among
the methods we employ in Fig. 1 and in Table III. In Fig. 1 we
show, for the specific example of 12C, how the many-body basis
spaces both overlap and differ from each other as a function
of increasing cutoff. To indicate an area of complete overlap,
the red curve in Fig. 1 borders the Nshell space included as a
function of increasing Nmax. On the other hand, the blue curve
borders the region of Nmax space included as a function of
increasing Nshell.
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FIG. 1. (Color online) Overview of the basis spaces covered with
the many-body methods discussed here for the case of 12C. Nmax

is defined as the number of oscillator quanta above lowest possible
number of quanta. Nshell is the number of oscillator shells counting
the 0s shell as the first shell. The MCSM incorporates an FCI space.
That is, all single-particle states in the included shells are available
to all particles without additional restrictions except for symmetry
constraints.

Table III presents a simple set of comparisons and contrasts
between the methods. Since Nshell and Nmax roughly signify
respective accuracies of the methods we hold them fixed
to facilitate these comparisons. We emphasize that these
are the current features and limitations of these approaches.
Additional developments underway are aimed at improving
each method, especially the MCSM and NCFC approaches.

The main advantage of the MCSM approach is that,
at fixed Nshell, the increase in computational needs with
increasing nucleon number (“scaling” in Table III) of the
MCSM approach is much slower than that of the FCI appoach.
In addition, the increase in computational needs with A of the
MCSM approach at fixed Nshell is significantly slower than
that of NCFC at fixed Nmax. Note that the MCSM algorithm
is CPU bound, and may be suitable for implementation on
general purpose graphical processing units (GPGPUs).

TABLE III. Overview of the current features of the three no-core
many-body methods employed in this work. The estimates of the
scaling with the number of nucleons A are very crude and based on
applications to light (p-shell) nuclei for a fixed accuracy. The last two
lines in the table present overall characteristic features of the codes
used for this work.

Snapshot comparison FCI MCSM NCFC

c.m. motion approx. approx. exact
Spectra OK some OK
wfns → observables � � �
Matrix dimension �1010 �1020 �1010

Scaling with A A18∼20 A3∼5 A12∼14

No. parallel cores 105 105 105

Comp’l bottleneck Memory CPU time Memory

Before progressing to the detailed comparisons among the
results from the methods we investigate here, it is worth
noting that there are additional efforts aimed at accelerating
the convergence of ab initio no-core many-body methods
using basis function techniques. The “Importance-Truncated”
no-core shell model (IT-NCSM) [20] attempts to estimate the
contributions of the many-body configurations above the Nmax

cutoff using sequences of perturbative contributions to the en-
ergy of low-lying states. The symmetry-adapted no-core shell
model (SA-NCSM) [21] aims to augment the basis space above
the Nmax cutoff by adding basis states of selected symmetry
character that are preferred by low-lying nuclear collective
motion. Both methods are producing impressive results. It
remains to be seen which method, among the many under
investigation, will be more efficient and for which systems
and which observables. Outstanding challenges include the
fully microscopic description of clustering phenomena and
extensions to ab initio nuclear reaction theory.

III. SELECTIONS OF INGREDIENTS

We have outlined above the many-body methods selected
for these benchmark comparisons (FCI, MCSM, and NCFC).
All results are obtained in a HO basis of single-particle states
characterized by the oscillator energy h̄ω in MeV and the cutoff
of the basis space (Nshell or Nmax) defined above. We adopt
the JISP16 NN interaction [9] without renormalizing it to a
lower momentum scale and we neglect Coulomb and all other
interactions. The contributions of spurious c.m. excitations are
not discussed here in any detail. Such contributions are absent
in conventional NCFC results for ground state observables
where we would include the standard Lagrange multiplier
term that constrains the c.m. motion to the 0s HO state.
However, for the present benchmark comparisons, we have
dropped the Lagrange multiplier term in the Hamiltonian for
simplicity. We do not expect that spurious c.m. effects play a
significant role in our benchmark comparisons.

A. Interaction

The JISP16 NN interaction is determined by inverse
scattering techniques from the np phase shifts and is taken
to be charge independent. JISP16 is available in a relative HO
basis [9] and can be written as a sum over partial waves

VNN =
∑

S,J ,T

PS,J ,T

∑
n,�,n′,�′

|n�〉 A
S,J ,T
n�,n′�′ 〈n′�′|, (5)

where h̄ω = 40 MeV and �J = �� + �s. The HO basis state
of relative motion is signified by |n�〉 and the projector
onto the specified channel is represented by PS,J ,T . A small
number of coefficients {AS,J ,T

n�,n′�′ } are sufficient to describe
the phase shifts in each partial wave. Note that the JISP16
interaction is nonlocal and its off-shell properties have been
tuned by phase-shift equivalent transformations to produce
good properties of light nuclei. For example, JISP16 is tuned
in the 3S1 −3D1 channel to give a high precision description of
the deuteron’s properties. Other channels are tuned to provide
good descriptions of 3H binding, the low-lying spectra of 6Li
and the binding energy of 16O. With these off-shell tunings to
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FIG. 2. (Color online) Comparisons of the energies between the MCSM and FCI along with the fully converged NCFC results where
available. The NCFC result for the 10B(1+) state has a large uncertainty indicated by the grey band. The MCSM (FCI) results are shown as the
solid (dashed) lines that nearly coincide where both are available. The extrapolated MCSM results are illustrated by bands. From top to bottom,
the truncation of the model space is Nshell = 2 (red), 3 (green), 4 (blue), and 5 (purple). Note that the MCSM results are extrapolated by the energy
variance with the second-order polynomials [17]. Also note that all of the results of 10B and 12C at Nshell = 4 were obtained only with MCSM.

nuclei with A � 3 one may view JISP16 as simulating, to some
approximation, what would appear as NNN interaction con-
tributions (as well as higher-body interactions) in alternative
formulations of the nuclear Hamiltonian.

B. Nuclear states evaluated

For this benchmark process, we select nine states of light
nuclei that includes seven ground states and two excited states;
4He (0+), 6He (0+), 6Li (1+), 7Li (1/2−, 3/2−), 8Be (0+),
10B (1+, 3+), and 12C (0+). We compare results for the energy,
the point-particle root-mean-square (rms) matter radius, and
the electric quadrupole and magnetic dipole moments.

Our goal here is to compare the methods at fixed finite
cutoffs. To achieve convergence of the quantities we evaluate
will require a much larger effort than the present undertaking.
For the benchmark process, we simply proceed through a
sequence of cutoffs for each state and each method and obtain
results as a function of the oscillator energy, h̄ω. Then, since
all our methods retain the variational principle, we select the
optimal h̄ω that minimizes the energy for that state and basis
space cutoff. We compare the observables for that optimal h̄ω.

The MCSM results are compared with those of FCI which
gives the exact results in the chosen single-particle model
space. The FCI results are obtained by the MFDn code [13,14]
and the MCSM results by the newly developed code [15,16].
Note that the FCI results are not available for all the cases
presented here due to computational limitations of the FCI
approach as indicated by the “Matrix dimension” entry in
Table III.

IV. BENCHMARK COMPARISONS

A. Results for energies

We present the energies obtained by MCSM and FCI
in Fig. 2 through a sequence of Nshell truncations. For the
A = 4 and 6 systems we obtain results with both MCSM
and FCI through Nshell = 5. For the systems with A = 7
and A = 8 we obtain results with both MCSM and FCI
through Nshell = 4. Finally, for 10B (1+, 3+) and 12C (0+)
we are not able to obtain the FCI results beyond Nshell = 3
due to computational limitations so the MCSM results at
Nshell = 4 represent predictions. That is, the FCI M-scheme
matrix dimensions are 18.2 billion and 587 billion as shown
in Table I for 10B and 12C, respectively, at Nshell = 4 and these
dimensions exceed our current FCI capabilities.

The MCSM and FCI nearly coincide in all cases where both
are available. In fact, for Nshell = 2 they are identical to within
machine precision. This can easily be understood because the
dimension of the complete FCI basis in the J scheme is below
100 (except for the Jπ = 3

2
−

basis space of 7Li, see Table I),
the number of Monte Carlo states used in most of the
calculations presented here.1 Indeed, the MCSM results tend
to become independent of the number of Monte Carlo states Nb

once Nb is of the order of 10% to 20% of the dimension D of
the underlying FCI basis in the J scheme. Also for Nshell = 3
the MCSM and FCI results are virtually indistinguishable in

1The Monte Carlo basis states do not form an orthogonal basis, and
can be overcomplete.
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TABLE IV. Energies in MeV calculated for the seven ground states and two excited states within the MCSM and FCI methods using the
JISP16 NN interaction. The entries of the MCSM indicate the MCSM results before the energy variance extrapolation, while the those of
the “extrp” line denote the MCSM results after the extrapolations. The number of Monte Carlo vectors evaluated in the MCSM approach is
indicated by Nb. The value cited for h̄ω (units are MeV) represents the value at which the energy for that state reaches its minimum value in
that Nshell basis. Uncertainties in extrapolated results are quoted in parenthesis.

E (MeV)

Nuclei Method Nshell = 2 h̄ω D Nshell = 3 h̄ω Nb Nshell = 4 h̄ω Nb Nshell = 5 h̄ω Nb NCFC

4He (0+) MCSM −25.956 30 20 −27.914 30 100 −28.737 30 100 −29.011 25 50 −29.164(2)
extrp −28.738(1) −29.037(1)
FCI −25.956 −27.914 −28.738 −29.036

6He (0+) MCSM −13.343 20 35 −19.186 20 100 −23.480 25 100 −25.080 25 50 −29.51(5)
extrp −19.196(1) −23.687(4) −26.086(76)
FCI −13.343 −19.196 −23.684 −26.079

6Li (1+) MCSM −14.218 20 97 −21.549 20 100 −26.757 25 100 −28.410 25 50 −33.22(4)
extrp −21.581(1) −27.166(16) −29.873(83)
FCI −14.218 −21.581 −27.168 −29.893

7Li (1/2−) MCSM −14.459 20 89 −24.073 20 100 −30.904 25 100 −39.8(1)
extrp −24.167(2) −31.780(51)
FCI −14.458 −24.165 −31.748

7Li (3/2−) MCSM −17.232 20 130 −25.978 25 100 −32.494 25 100 −40.4(1)
extrp −26.061(4) −33.272(89)
FCI −17.232 −26.063 −33.202

8Be (0+) MCSM −28.435 20 70 −41.242 25 100 −50.222 25 100 −59.1(1)
extrp −41.293(1) −50.753(32)
FCI −28.435 −41.291 −50.756

10B (1+) MCSM −29.755 25 43 −41.965 25 100 −52.239 25 100 −68.5(1.5)
extrp −42.357(46) −54.89(16)
FCI −29.755 −42.338

10B (3+) MCSM −34.221 25 97 −46.263 25 100 −56.346 25 100 −69.8(2)
extrp −46.618(22) −58.41(13)
FCI −34.221 −46.602

12C (0+) MCSM −62.329 30 20 −76.413 30 100 −90.158 30 100
extrp −76.621(4) −91.957(43)
FCI −62.329 −76.621

Fig. 2. After the extrapolation of the MCSM results using
the energy variance [17], as discussed below and indicated by
shaded regions in Fig. 2, we obtain also very good agreement
with the FCI results (where available) for Nshell � 4.

In Fig. 2 we also present the NCFC results for the energies of
the A = 4 through 10 nuclei (black solid lines) for comparison.
The NCFC results are obtained from calculations up through
Nmax = 14 for A = 4 and 6, and up through Nmax = 12 for
A = 7 and 8, using an exponential extrapolation to the infinite
basis space. In these cases, the extrapolation uncertainties in
the fully converged NCFC results are less than the width of the
black line. For A = 10 we employ results up through Nmax =
10 to obtain the NCFC results. The extrapolation of the 1+ state
in 10B to obtain the quoted NCFC result has a significantly
greater uncertainty due to the occurrence of two close-lying
1+ states in the calculated spectrum

In order to stimulate future comparisons with other many
body methods, we present detailed results in tables for selected
values of Nshell. For the energies we present results according
to the method and the basis space cutoff in Table IV. All
results are presented for the value of h̄ω where that state
is a minimum in that Nshell basis, except for the NCFC

results, which are, within the estimated numerical uncertainty,
independent of any basis parameters. Here, we observe that
the differences between the MCSM and FCI results is at most
a few hundred keV for Nshell = 3, which is why they are barely
distinguishable at the energy scale of Fig. 2. For Nshell > 3, this
difference can be of the order of an MeV or more. However,
extrapolated MCSM results agree with the FCI results to within
the estimated extrapolation error, with only one case in which
the difference is larger than the estimated extrapolation error in
Table IV. That case is 8Be at Nshell = 4 where the uncertainty
is 1 keV and the difference is 2 keV.

The energies converge uniformly from above as expected
with increasing Nshell. We obtain significant increases in
binding with each increment in Nshell and this encourages us
to develop the MCSM further in order to access larger Nshell

bases. At the present time, our limited results do not indicate
a pattern that we can extrapolate to the infinite Nshell limit.
However, the expected outcomes of such extrapolations should
be the NCFC results shown in Fig. 2 and in the last column of
Table IV. Larger Nshell results and extrapolations to the infinite
Nshell limit constitute goals for future efforts since our main
goal here is to benchmark the MCSM approach through the
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FIG. 3. (Color online) Comparisons of the ground state energies of 4He (left) and 6Li (right) between the FCI with Nshell truncation and
NCFC with Nmax truncation as a function of the HO frequecy h̄ω. The FCI (NCFC with cutoff) results are shown as the solid (dashed) lines.
From top to bottom, the truncation of the model space increments by unity for Nshell up to Nshell = 7 (cyan) for 4He up to Nshell = 5 (orange)
for 6Li, and by two for Nmax up to Nmax = 14 (purple) for both 4He and 6Li.

range of Nshell values accessible by FCI and to compare with
the fully converged NCFC where available.

The detailed convergence pattern for ground state energy
for 4He is shown for the FCI and NCFC methods in the left
panel of Fig. 3 as a function of h̄ω and the basis space cutoff
(Nshell for FCI; Nmax for the approach to NCFC). We define
convergence as independence of both h̄ω and the basis space
cutoff. We note that FCI at Nshell = 8 and the NCFC truncated
at Nmax = 10 both yield almost the same ground state energy of
−29.15 MeV, even though the dimensions are quite different:
the full Nshell = 8 basis space dimension of 4He is 29 031 044,
whereas the Nmax = 10 basis space dimension is only 196 438,
more than two orders of magnitude smaller. The NCFC result
for 4He is −29.164(2) MeV. For comparison the MCSM results
at Nshell = 5 (the largest MCSM space reported here) and h̄ω =
25 MeV, once extrapolated with the energy-variance method,
produces −29.037(1) MeV which agrees to within 1 keV of
the FCI result for that space.

We also show the detailed convergence patterns for the
ground state energy of 6Li in the right panel of Fig. 3 for FCI
and NCFC at various truncations as a function of h̄ω and the
basis space cutoff. We note that the convergence trends of the
Nshell = 2 → 5 results for 6Li shown in the right panel of Fig. 3
has both similarities and differences from the pattern for 4He
seen in the left panel. Both exhibit the “U”—shaped patterns
for each truncation with the bottom of the “U” becoming flatter
as the cutoff increases. However, for 4He, the minimum with
respect to h̄ω for Nshell � 1 remains at nearly a constant h̄ω

value as the cutoff is removed while for 6Li that minimum
shifts to higher values of h̄ω.

For 6Li, the ground state energy increments by about the
same amount from Nshell = 3 → 4 as for Nshell = 2 → 3.
However, there is a significant decrease in the energy increment
for the step Nshell = 4 → 5. Furthermore, we observe that
the energy increment for Nshell = 4 → 5 is approximately
the difference between the Nshell = 5 result and the fully
converged result given by NCFC. It will be valuable to extend

the Nshell cutoff further in a future effort in order to determine
the full convergence pattern for 6Li. Note that the results
obtained in the FCI Nshell = 5 basis space, with a dimension
of 129 million, are very close to the Nmax = 6 results, with
a basis space dimension of less than 0.2 million. On the
other hand, with only 50 Monte Carlo basis states, the MCSM
produces a ground state energy that is within 0.5 MeV of the
FCI result at Nshell = 5. With extrapolation, the ground state
energy is within 20 keV of the FCI result with an extrapolation
uncertainty of 83 keV.

B. Convergence of MCSM calculations

In top panel of Fig. 4 we show the convergence of the ground
state energy of 4He as function of the number of the Monte
Carlo basis states, Nb. At every value of Nb the MCSM gives
a variational upper bound for the energy, and as Nb increases,
the energy approaches the exact FCI result from above. In
the bottom panel we show the relative difference between the
MCSM and the FCI result, not only for the energy but also for
the rms radius.

Both the ground state energy and the radius of 4He converge
to within 1% of the exact FCI result with less than ten Monte
Carlo basis states, at least up to Nshell = 5. However, in general,
as the number of shells increases, so does the number of Monte
Carlo basis states that is needed in order to achieve a fixed level
of accuracy: at Nshell = 4 we need about 20 basis states in order
to reach an agreement of 0.1%, but at Nshell = 5 we need about
50 basis states to reach the same level of accuracy, as can be
seen from the bottom panel of Fig. 4.

The number of the Monte Carlo basis states needed for a
given level of accuracy depends not only on Nshell, but also on
the number of nucleons A, the quantum numbers of the state
under consideration, and the observable, as can be seen from
Fig. 5.

In general, the convergence with Nb to the exact FCI result
starts out very rapidly, but slows down as Nb increases. The
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FIG. 4. (Color online) The convergence of the MCSM ground
state energy of 4He to the FCI result for several Nshell values as
function of the number of Monte Carlo basis states, Nb. Top: ground
state energy; Bottom: relative difference between MCSM and FCI
calculations of the energy (black) and rms matter radius (red).

energy always converges monotonically (at least for the lowest
states of a given spin and parity), because of the variational
principle, but other observables such as the rms radii and
the magnetic moments do not converge monotonically. On
average, however, the difference between the MCSM results
and the FCI results decreases with increasing Nb, as one
would expect.

Furthermore, the average convergence rate with increasing
Nb for different observables of a particular state at fixed Nshell

tends to be the same. That is, if the MCSM energy converges
rapidly to the FCI energy, then so do the rms radius and
magnetic moments of that state, but if the MCSM energy
converges slowly, then the other observables converge slowly
as well, as one can see from Figs. 4 and 5. This suggests that the
wave function obtained with the MCSM converges to the FCI
wave function in a systematic manner that can be measured by
different observables.

In Fig. 6 we show the number of Monte Carlo basis states
Nb that are needed in order to achieve a specified level of
accuracy for the energy as function of A for the four nuclei

under consideration that have a 0+ ground state. Clearly, the
convergence for 4He is much faster than for any of the other
nuclei, and its convergence rate is (unfortunately) not a good
indicator for the convergence rate that can be expected for
heavier nuclei. For the other three nuclei we see that at Nshell =
3 a doubling of the MCSM basis dimension leads to a reduction
of the difference with the FCI results by (approximately) a
factor of two. However, at Nshell = 4 one needs to more than
double the MCSM basis dimension in order to improve the
accuracy by a factor of two.

Naively, one might expect that the number of Monte Carlo
states needed for a given level of accuracy increases with
A (and with Nshell) proportional to the dimension of the
underlying FCI basis space. However, in practice it turns
out that the number of required Monte Carlo states increases
much slower with A than the FCI dimension. Note that as A

increases, the number of pairwise correlations grows as A2

and one might expect to require a similar increase in Monte
Carlo basis states in order to achieve a given level of accuracy
with strong NN interactions. Hence one could expect a much
more modest increase in the number of required Monte Carlo
states for a given accuracy than the dramatic growth with A

of the dimension of the underlying FCI basis at fixed Nshell,
see Table I. Indeed, for Nshell = 3 this dependence seems to
be roughly between linear and quadratic in A, though for
Nshell = 4 the trend is not very clear. Also, so far we have
only looked at p-shell nuclei, and it is as of yet unclear how
convergence behaves in the sd shell.

C. Extrapolation to FCI

To obtain the converged energy at fixed Nshell we extrapolate
the MCSM results by using the energy variance, which is a new
ingredient of the MCSM approach [17]. The energy variance
	E2 is defined as

	E2 = 〈�|H 2|�〉 − (〈�|H |�〉)2. (6)

For an eigenstate of H , the energy variance is zero, but if �

is not an exact eigenstate of H the energy variance is larger
than zero. As we increase Nb, the number of Monte Carlo
states in the MCSM calculations, we get a better and better
approximation of the (lowest) eigenstates of H . Therefore,
	E2 approaches zero from above as Nb increases. We use this
to obtain an estimate of the exact FCI answer.

We plot the MCSM results for the ground state energy of
6Li at different values of Nb as a function of the evaluated
energy variance 	E2, see Fig. 7. For Nshell = 2 and 3 (red
and green symbols), the MCSM energy converges rapidly to
the FCI result (top panel), and the energy variance goes to
zero (bottom panel). For Nshell = 4 and 5 (blue and purple
symbols), the energy variance does decrease with increasing
Nb, but does not reach zero in our calculations. For comparison,
the open symbols at 	E2 = 0 are the results of our (exact) FCI
calculations.

The behavior of energy as function of the energy variance
is monotonic and can be extrapolated to zero energy variance
(which corresponds to the exact energy) by quadratic fitting
functions as was done in Ref. [17],

E(	E2) = c0 + c1	E2 + c2(	E2)2 (7)
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FIG. 5. (Color online) The relative difference between MCSM and FCI calculations of the energy (black), rms matter radius (red), and
magnetic moment (blue) for several Nshell values as function of the number of MC basis states, Nb. Top to bottom on the left: 6He(J π = 0+),
6Li(1+), 7Li( 1

2

−
), and 7Li( 3

2

−
); Top to bottom on the right: 8Be(0+), 10B(1+), 10B(3+), 12C(0+).

with the fit parameters, c0, c1, and c2. Here, c0 gives the
exact energy, E(	E2 = 0). Indeed, the extrapolations for
Nshell = 4 and 5 reproduce the exact FCI results to within
a few tens of keV, well within the numerical uncertainty in
the extrapolation. The numerical uncertainty for the extrap-
olation is estimated based on the uncertainties δci in each
of the three fit parameters ci of the quadratic fit. We treat
these three uncertainties as independent, and combine them
at the MCSM result with minimum energy variance, x =
min(	E2), to produce an overall estimate of the extrapolation

uncertainty

δE =
√(

δE

δc0

∣∣∣∣
x

δc0

)2

+
(

δE

δc1

∣∣∣∣
x

δc1

)2

+
(

δE

δc2

∣∣∣∣
x

δc2

)2

.

(8)

The FCI and the MCSM results for the energies with and
without the energy variance extrapolation are all summarized
in Table IV. Note that we also quote the estimated uncertainty
from extrapolation in Table IV.
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FIG. 6. (Color online) Number of MC basis states, Nb, required
for a given accuracy of the MCSM energy for (a) Nshell = 3 and
(b) Nshell = 4 for 4He(J π = 0+), 6He(0+), 8Be(0+), and 12C(0+).

We use a similar extrapolation for the rms matter radii
and, if possible, also for the magnetic dipole and electric
quadrupole moments. However, the approach of these
observables to the exact FCI result is generally not monotonic,
and therefore not as easy to extrapolate. In practice we use a
linear extrapolation for these observables, and apply the
extrapolation only if the energy variance plot appears to be
linear. The detailed dependence of both the energy and the
other observables on the energy variance is presented in
the Appendix.

D. Point-particle rms radii

We present the point-nucleon rms matter radii in Fig. 8
and Table V calculated with the wave functions of the MCSM
and FCI methods. For this comparison, we evaluate the rms
radius of the internal degrees of freedom—that is we use the
radius operator that depends only on the coordinates with
respect to the c.m. of the system. Thus, although the nuclear
wave functions contain mixtures of various components of
c.m. motion, the use of the internal coordinates for the radial
operator will provide a more accurate rms radius for eventual
comparison with experiment. In addition, at the present level of
benchmark effort this is sufficient to compare results between
these approaches. As mentioned above, the exact separation
of the c.m. motion from the internal motion is a nontrivial
challenge for the MCSM and FCI approaches while that
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FIG. 7. (Color online) The convergence of the MCSM ground
state energy of 6Li to the FCI result; circles (red), triangles (green),
squares (blue), and diamonds (purple) indicate the results at Nshell =
2, 3, 4, and 5, respectively. (a) Ground state energy as function of the
number of Monte Carlo basis states, Nb; (b) Energy variance 	E2

and extrapolation to zero energy variance.

separation may be assured in the NCFC approach by use of a
constraint on the c.m. motion.

The MCSM results in Fig. 8 and those in Table V
labelled “extrp” are obtained by extrapolation with first-order
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FIG. 8. (Color online) Comparisons of the point-particle rms
matter radii between the MCSM and FCI. Circles (red), triangles
(green), squares (blue) and diamonds (purple) indicate the results at
Nshell = 2, 3, 4 and 5, respectively; solid (open) symbols stand for the
MCSM (FCI) results. The MCSM results are those after extrapolation
as described in the text. Note that the 10B and 12C results at Nshell = 4
were obtained only within the MCSM.
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TABLE V. Point-particle rms matter radii (in fm) evaluated
relative to the nuclear c.m. The entries labeled “MCSM” indicate
the MCSM results before the energy variance extrapolation, while
the those of the “extrp” line denote the MCSM results after the
extrapolations. See Table IV for Nb and h̄ω values.

√
〈r2〉 (fm)

Nuclei Method Nshell = 3 Nshell = 4 Nshell = 5

4He (0+) MCSM 1.355 1.379 1.409
extrp 1.410(1)
FCI 1.355 1.379 1.410

6He (0+) MCSM 1.843 1.811 1.864
extrp 1.843(1) 1.813(1)
FCI 1.843 1.813 1.881

6Li (1+) MCSM 1.871 1.842 1.889
extrp 1.871(1) 1.846(1)
FCI 1.871 1.846 1.913

7Li (1/2−) MCSM 1.958 1.921
extrp 1.959(1) 1.925(1)
FCI 1.959 1.926

7Li (3/2−) MCSM 1.931 1.895
extrp 1.932(1) 1.900(1)
FCI 1.932 1.901

8Be (0+) MCSM 1.831 1.958
extrp 1.831(1) 1.960(1)
FCI 1.831 1.960

10B (1+) MCSM 1.834 1.936
extrp 1.836(1) 1.967(2)
FCI 1.836

10B (3+) MCSM 1.829 1.909
extrp 1.830(1) 1.926(1)
FCI 1.830

12C (0+) MCSM 1.722 1.820
extrp 1.723(1) 1.833(1)
FCI 1.723

polynomials using their dependence on the energy variance
(see the Appendix for more details). We find the differences
between the extrapolated MCSM and FCI rms matter radii to
be less than 0.1%, and within the estimate of the extrapolation
uncertainty. As a consequence, the open symbols for FCI lie
nearly on top of the solid symbols for the extrapolated MCSM
so that they are not separately visible in Fig. 8. However, the
MCSM results for 6He and 6Li in Nshell = 5 with only 50
Monte Carlo basis states are not sufficient for an extrapolation
to the exact FCI result; more Monte Carlo states are needed
for a reliable extrapolation for these cases. Note that the rms
results for 10B and 12C at Nshell = 4 were obtained only within
the MCSM approach.

E. Dipole and quadrupole moments

In Fig. 9 we plot the MCSM results for the magnetic
moment of 6Li as function of Nb (top) and as function of
the evaluated energy variance 	E2. For Nshell = 2 and 3 (red
and green symbols), the MCSM results converge rapidly to
the FCI result (top panel), and the energy variance goes to
zero (bottom panel). For Nshell = 4 (blue symbols), the MCSM
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FIG. 9. (Color online) The convergence of the MCSM magnetic
moment of 6Li to the FCI result; circles (red), triangles (green),
squares (blue), and diamonds (purple) indicate the results at Nshell =
2, 3, 4, and 5, respectively. (a) Magnetic moment as function of the
number of Monte Carlo basis states, Nb; (b) Energy variance and
extrapolation to zero energy variance. For comparison, the dashed
lines (top) and open symbols at 	E2 = 0 (bottom) are the results of
our (exact) FCI calculations.

results do seem to converge to the FCI results, and with a linear
extrapolation on the energy variance we get good agreement
with the FCI results. However, just as for the rms radius, the
MCSM results for μ at Nshell = 5 with only 50 Monte Carlo
basis states are not sufficient for an extrapolation to the exact
FCI result; more Monte Carlo states are needed for a reliable
extrapolation for this case.

We summarize our comparison of MCSM and FCI results
for the magnetic dipole moments and electric quadrupole
moments in Table VI, both with and without the extrapolations
of the MCSM results. We use a linear extrapolation using
the energy variance, see the Appendix for more details. As
mentioned above, we cannot perform a reliable extrapolation
from the MCSM results to the exact FCI result for the dipole
and quadrupole moments of 6Li at Nshell = 5 with only 50
Monte Carlo states. The only other case for which we could
not perform a reliable extrapolation is the magnetic moment
of the (lowest) 1+ state of 10B. This is likely to be related
to the fact that there are two 1+ states relatively close to
each other (experimentally their energies differ by about
1.5 MeV).
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TABLE VI. Dipole (top) and quadrupole moments (bottom)
calculated using the wave functions obtained within the MCSM
and FCI methods. The entries of the MCSM indicate the MCSM
results before the energy variance extrapolation, while the those of
the “extrp” line denote the MCSM results after the extrapolations.
See Table IV for Nb and h̄ω values.

μ (μN )

Nuclei Method Nshell = 3 Nshell = 4 Nshell = 5

6Li (1+) MCSM 0.836 0.834 0.836
extrp 0.835(1) 0.833(1)
FCI 0.835 0.832 0.830

7Li (1/2−) MCSM −0.842 −0.816
extrp −0.840(1) −0.806(2)
FCI −0.840 −0.807

7Li (3/2−) MCSM 3.061 3.025
extrp 3.057(1) 2.995(2)
FCI 3.056 2.993

10B (1+) MCSM 0.503 0.533
extrp 0.508(1)
FCI 0.509

10B (3+) MCSM 1.820 1.814
extrp 1.818(1) 1.819(1)
FCI 1.818

Q (efm2)
6Li (1+) MCSM −0.259 −0.282 −0.276

extrp −0.259(1) −0.285(1)
FCI −0.259 −0.285 −0.302

7Li (3/2−) MCSM −1.766 −2.006
extrp −1.750(1) −1.958(3)
FCI −1.750 −1.940

10B (1+) MCSM −1.712 −2.417
extrp −1.703(2) −2.436(8)
FCI −1.698

10B (3+) MCSM 3.532 5.222
extrp 3.503(1) 5.250(11)
FCI 3.503

We again find the differences between the MCSM and the
exact FCI results to be small, typically 1% or less with 100
Monte Carlo states, both for the magnetic dipole moments
and for the electric quadrupole moments. The exception is the
quadrupole moment of the ground state of 6Li: at Nshell = 5, the
difference between the MCSM and FCI calculations is almost
10% with 50 Monte Carlo basis states. Note however that
this quadrupole moment is exceptionally small in magnitude:
although the relative difference between the NCSM and
the FCI result is significantly larger than for most other
observables we have looked at, the absolute difference is rather
small.

A linear extrapolation using the energy variance brings the
MCSM results even closer to the FCI results, see the Appendix
for more details. However, the results after 50 Monte Carlo
states for 6Li at Nshell = 5 are not sufficiently close to the FCI
result to do such an extrapolation.

The magnetic dipole moments, top panel of Fig. 10, depend
only very weakly on the basis space truncation parameters
Nshell and h̄ω—much weaker than the quadrupole moments,
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FIG. 10. (Color online) Comparisons between the extrapolated
MCSM and FCI results for (a) the magnetic dipole moments, and
(b) electric quadrupole moments. The conventions for the symbols
are same as in Fig. 8; crosses indicate the experimental values for the
ground states from Ref. [23].

bottom panel of Fig. 10, and than the rms radii, Fig. 8. The
differences are less than 2% and are not visible on this scale.
Furthermore, the dipole moments are in very good agreement
with the NCFC results, which means that they are converged to
within a few percent with respect to the basis space truncation.
Our results with JISP16 are also in good agreement with the
available data for the ground states.

On the other hand the quadrupole moments do depend
significantly on the basis space truncation parameters Nshell

and h̄ω, as can be seen from the bottom panel of Fig. 10 and
from Table VI. This is not surprising, given the dependence of
the rms radius on the truncation parameters, and given the fact
that the quadrupole moment receives significant contributions
from the asymptotic tail of the wave function, which is not
very well represented in a HO basis. One needs to include
(much) higher HO shells in order to build up a realistic
tail for the wave functions. Nevertheless, our results are
in qualitative agreement with the available data: small and
negative for the ground state of 6Li, large and negative for
the ground state of 7Li, large and positive for the ground state
of 10B.
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V. SUMMARY AND OUTLOOK

We have performed benchmark calculations of the energies,
point-particle rms matter radii, and electromagnetic moments
for nine states in light nuclei ranging from 4He to 12C.
Where possible, we have solved for these properties using
the FCI, MCSM and NCFC approaches. The energies and
the point-particle rms matter radii calculated by MCSM were
extrapolated as a function of energy variance. All results
are found to be consistent with each other to within quoted
uncertainties when they could be quantified. Where we could
not obtain quantified uncertainties, the results were found to
differ typically by a few percent among the available methods
with very few exceptions. The MCSM and FCI results are
very close to each other with small differences (of a few
percent in most cases) arising mainly from the limited number
of MCSM basis sampled stochastically for diagonalization
and from MCSM energy variance extrapolation uncertainties.
We include selected NCFC results in order to gauge the
increases in basis spaces needed to better approach the fully
converged results (basis space cutoff independence) in future
efforts.

Since the MCSM computational effort scales more fa-
vorably with increasing basis space and increasing nucleon
number, we expect that the MCSM will further develop into
a powerful tool for ab initio nuclear theory. To reach this
goal, we will need to expand the basis space, treat the role
of c.m. motion and include the Coulomb interaction as well
as NNN interactions. These challenges will be addressed in
future efforts.

ACKNOWLEDGMENTS

This work was supported in part by the SPIRE Field
5 from MEXT, Japan. We also acknowledge Grants-in-Aid
for Young Scientists (Nos. 20740127 and 21740204), for
Scientific Research (Nos. 20244022 and 23244049), and
for Scientific Research on Innovative Areas (No. 20105003)
from JSPS, and the CNS-RIKEN joint project for large-scale
nuclear structure calculations. This work was also supported
in part by the US DOE Grants No. DE-FC02-07ER41457,
DE-FC02-09ER41582 (UNEDF SciDAC Collaboration), and
DE-FG02-87ER40371, and through JUSTIPEN under Grant
No. DE-FG02-06ER41407. A part of the MCSM calculations
was performed on the T2K Open Supercomputer at the
University of Tokyo and University of Tsukuba, and the BX900
Supercomputer at JAEA. Computational resources for the
FCI and NCFC calculations were provided by the National
Energy Research Supercomputer Center (NERSC), which is
supported by the Office of Science of the U.S. Department
of Energy under Contract No. DE-AC02-05CH11231, and
by the Oak Ridge Leadership Computing Facility at the Oak
Ridge National Laboratory, which is supported by the Office
of Science of the U.S. Department of Energy under Contract
No. DE-AC05-00OR22725.

APPENDIX: EXTRAPOLATION OF MCSM RESULTS

With increasing Monte Carlo basis dimension Nb, the
MCSM results converge to the FCI results. In order to obtain

an estimate of that exact FCI answer, we extrapolate the energy
and other observables evaluated by MCSM using the energy
variance. That is, the MCSM results are plotted as a function
of the evaluated energy variance

	E2 = 〈�|H 2|�〉 − (〈�|H |�〉)2 (A1)

and then extrapolated to zero variance as we show below.
We also investigate the uncertainties of this extrapolation and
report those uncertainties in Tables IV–VI.

Figure 11 shows the energies as function of the energy
variance for 6He, 6Li, 7Li, 8Be, 10B, and 12C. For Nshell = 2
and 3 there is no need for any extrapolation: with 100 Monte
Carlo states, there is very good agreement between the MCSM
results and the FCI results. For Nshell = 4 and 5 we use
a quadratic polynomial fit to extrapolate 	E2 to zero. We
also make an estimate of the numerical uncertainty in this
extrapolation. These extrapolated MCSM results are in good
agreement with the available FCI results (indicated by the
open symbols at 	E2 = 0). In Table IV we give both the
MCSM results, and the extrapolated results with extrapolation
uncertainty.

Figure 12 shows the rms matter radii as function of the
energy variance for 6He, 6Li, 7Li, 8Be, 10B, and 12C. For
Nshell = 2 and 3 there is no need for any extrapolation:
with 100 Monte Carlo states, there is very good agreement
between the MCSM results and the FCI results. For Nshell =
4 we use a linear fit to extrapolate 	E2 to zero. We
also make an estimate of the numerical uncertainty in this
extrapolation. These extrapolated MCSM results are in good
agreement with the available FCI results (indicated by the
open symbols at 	E2 = 0). In Table V we give both the
MCSM results, and the extrapolated results with extrapolation
uncertainty.

Unfortunately, 50 Monte Carlo states is not sufficient to
extrapolate the radii of 6Li and 6He at Nshell = 5: the purple
diamonds in the upper left figures cannot be extrapolated
reliably to 	E2 = 0. This is also the case for the magnetic
dipole moment, see Fig. 10, and the electric quadrupole
moment, see Fig. 13 below.

Figure 13 shows the electric quadrupole moments as
function of the energy variance for the states that have
J � 1. For Nshell = 2 there is no need for any extrapolation.
However, both the Nshell = 3 and the Nshell = 4 MCSM results
with 100 Monte Carlo states can be improved by a linear
extrapolation. As already mentioned, 50 Monte Carlo states is
not sufficient to extrapolate the quadrupole moment of 6Li at
Nshell = 5.

Finally, in Fig. 14 we show the magnetic dipole moments
as function of the energy variance for the 7Li and 10B states
that have J � 1. Again, for Nshell = 2 there is no need for any
extrapolation. Both the Nshell = 3 and the Nshell = 4 MCSM
results with 100 Monte Carlo states can be improved by a
linear extrapolation. However, the dependence of the magnetic
moment of the (lowest) 1+ state of 10B does not seem to
converge as the energy variance decreases. This is possibly
caused by the proximity of a second 1+.
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FIG. 11. (Color online) The energy variance and extrapolation to the FCI result for the energies. Circles (red), triangles (green), squares
(blue), and diamonds (purple) indicate the results at Nshell = 2, 3, 4 and 5, respectively; the open symbols at 	E2 = 0 are the exact FCI
energies. Top to bottom on the left: 6He(J π = 0+), 6Li(1+), 7Li( 1
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−
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FIG. 12. (Color online) The energy variance and extrapolation to the FCI result for the rms radii. Symbols are the same as in Fig. 11. Top
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The extrapolated MCSM results for both the magnetic
moments and the quadrupole moments are in good agree-
ment with the available FCI results (indicated by the open

symbols at 	E2 = 0). In Table VI we give both the
MCSM results, and the extrapolated results with extrapolation
uncertainty.
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[4] E. Epelbaum, W. Glöckle, and Ulf-G. Meissner, Nucl. Phys. A
637, 107 (1998); 671, 295 (2000).

[5] D. R. Entem and R. Machleidt, Phys. Rev. C 68, 041001(R)
(2003).

[6] R. B. Wiringa, V. G. J. Stoks, and R. Schiavilla, Phys. Rev. C
51, 38 (1995).

[7] S. C. Pieper, V. R. Pandharipande, R. B. Wiringa, and J. Carlson,
Phys. Rev. C 64, 014001 (2001).

[8] S. C. Pieper, AIP Conf. Proc. No. 1011, 143 (2008).
[9] A. M. Shirokov, J. P. Vary, A. I. Mazur, and T. A. Weber, Phys.

Lett. B 644, 33 (2007); A. M. Shirokov, J. P. Vary, A. I. Mazur,
S. A. Zaytsev, and T. A. Weber, ibid. 621, 96 (2005); subroutines
to generate this interaction in the relative-center-of-mass HO
basis are available at nuclear.physics.iastate.edu.

[10] M. Honma, T. Mizusaki, and T. Otsuka, Phys. Rev. Lett. 75, 1284
(1995); 77, 3315 (1996); T. Otsuka, M. Honma, and T. Mizusaki,
ibid. 81, 1588 (1998); for review and further references, see T.
Otsuka, M. Honma, T. Mizusaki, N. Shimizu, and Y. Utsuno,
Prog. Part. Nucl. Phys. 47, 319 (2001).

[11] P. Maris, J. P. Vary, and A. M. Shirokov, Phys. Rev. C 79,
014308 (2009); P. Maris, A. M. Shirokov, and J. P. Vary, ibid.
81, 021301(R) (2010); C. Cockrell, J. P. Vary, and P. Maris, ibid.
86, 034325 (2012).

[12] G. Hagen, T. Papenbrock, and D. J. Dean, Phys. Rev. Lett. 103,
062503 (2009).

[13] J. P. Vary, The Many Fermion Dynamics Shell Model Code,
Iowa State University, 1992 (unpublished); J. P. Vary and
D. C. Zheng, ibid., 1994 (unpublished); P. Sternberg, E. G.
Ng, C. Yang, P. Maris, J. P. Vary, M. Sosonkina, and H. V.
Le, in Proceedings of the 2008 ACM/IEEE Conference on
Supercomputing (IEEE Press, Piscataway, NJ, 2008), pp. 15:1–
15:12.

[14] P. Maris, M. Sosonkina, J. P. Vary, E. G. Ng, and C. Yang,
International Conference on Computer Science, ICCS 2010,
Procedia Computer Science 1, 97 (2010).

[15] N. Shimizu, Y. Utsuno, T. Abe, and T. Otsuka, RIKEN Accel.
Prog. Rep. 43, 46 (2010).

[16] Y. Utsuno, N. Shimizu, T. Otsuka, and T. Abe, Comput. Phys.
Comm. 184, 102 (2013).

[17] N. Shimizu, Y. Utsuno, T. Mizusaki, T. Otsuka, T. Abe, and
M. Honma, Phys. Rev. C 82, 061305(R) (2010); AIP Conf.
Proc. No. 1355, 138 (2011).

[18] T. Abe, P. Maris, T. Otsuka, N. Shimizu, Y. Utsuno, and J. P.
Vary, AIP Conf. Proc. No. 1355, 173 (2011).

[19] G. Puddu, J. Phys. G G39, 085108 (2012).
[20] R. Roth, Phys. Rev. C 79, 064324 (2009).
[21] T. Dytrych, K. D. Sviratcheva, C. Bahri, J. P. Draayer, and J. P.

Vary, Phys. Rev. Lett. 98, 162503 (2007); J. Phys. G 35, 095101
(2008); T. Dytrych, K. D. Sviratcheva, J. P. Draayer, C. Bahri,
and J. P. Vary, ibid. 35, 123101 (2008).

[22] L. Liu, T. Otsuka, N. Shimizu, Y. Utsuno, and R. Roth, Phys.
Rev. C 86, 014302 (2012).

[23] N. J. Stone, At. Data Nucl. Data Tables 90, 75 (2005).

054301-18

http://dx.doi.org/10.1103/PhysRevC.70.054325
http://dx.doi.org/10.1103/PhysRevC.70.054325
http://dx.doi.org/10.1103/PhysRevLett.99.022502
http://dx.doi.org/10.1103/PhysRevLett.99.022502
http://arXiv.org/abs/arXiv:0711.1500
http://dx.doi.org/10.1103/PhysRevLett.84.5728
http://dx.doi.org/10.1103/PhysRevLett.84.5728
http://dx.doi.org/10.1103/PhysRevC.62.054311
http://dx.doi.org/10.1103/PhysRevLett.101.092501
http://dx.doi.org/10.1103/PhysRevC.79.044606
http://dx.doi.org/10.1103/PhysRevC.79.044606
http://dx.doi.org/10.1103/PhysRevLett.104.182501
http://dx.doi.org/10.1103/PhysRevLett.104.182501
http://dx.doi.org/10.1016/S0375-9474(98)00220-6
http://dx.doi.org/10.1016/S0375-9474(98)00220-6
http://dx.doi.org/10.1016/S0375-9474(99)00821-0
http://dx.doi.org/10.1103/PhysRevC.68.041001
http://dx.doi.org/10.1103/PhysRevC.68.041001
http://dx.doi.org/10.1103/PhysRevC.51.38
http://dx.doi.org/10.1103/PhysRevC.51.38
http://dx.doi.org/10.1103/PhysRevC.64.014001
http://dx.doi.org/10.1063/1.2932280
http://dx.doi.org/10.1016/j.physletb.2006.10.066
http://dx.doi.org/10.1016/j.physletb.2006.10.066
http://dx.doi.org/10.1016/j.physletb.2005.06.043
http://dx.doi.org/10.1103/PhysRevLett.75.1284
http://dx.doi.org/10.1103/PhysRevLett.75.1284
http://dx.doi.org/10.1103/PhysRevLett.77.3315
http://dx.doi.org/10.1103/PhysRevLett.81.1588
http://dx.doi.org/10.1016/S0146-6410(01)00157-0
http://dx.doi.org/10.1103/PhysRevC.79.014308
http://dx.doi.org/10.1103/PhysRevC.79.014308
http://dx.doi.org/10.1103/PhysRevC.81.021301
http://dx.doi.org/10.1103/PhysRevC.81.021301
http://dx.doi.org/10.1103/PhysRevC.86.034325
http://dx.doi.org/10.1103/PhysRevC.86.034325
http://dx.doi.org/10.1103/PhysRevLett.103.062503
http://dx.doi.org/10.1103/PhysRevLett.103.062503
http://dx.doi.org/10.1016/j.cpc.2012.09.002
http://dx.doi.org/10.1016/j.cpc.2012.09.002
http://dx.doi.org/10.1103/PhysRevC.82.061305
http://dx.doi.org/10.1063/1.3584057
http://dx.doi.org/10.1063/1.3584057
http://dx.doi.org/10.1063/1.3584062
http://dx.doi.org/10.1088/0954-3899/39/8/085108
http://dx.doi.org/10.1103/PhysRevC.79.064324
http://dx.doi.org/10.1103/PhysRevLett.98.162503
http://dx.doi.org/10.1088/0954-3899/35/9/095101
http://dx.doi.org/10.1088/0954-3899/35/9/095101
http://dx.doi.org/10.1088/0954-3899/35/12/123101
http://dx.doi.org/10.1103/PhysRevC.86.014302
http://dx.doi.org/10.1103/PhysRevC.86.014302
http://dx.doi.org/10.1016/j.adt.2005.04.001



