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Convergence properties of ab initio calculations of light nuclei in a harmonic oscillator basis
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We study recently proposed ultraviolet and infrared momentum regulators of the model spaces formed by
construction of a variational trial wave function which uses a complete set of many-body basis states based upon
three-dimensional harmonic oscillator (HO) functions. These model spaces are defined by a truncation of the
expansion characterized by a counting number (N ) and by the intrinsic scale (h̄ω) of the HO basis—in short by
the ordered pair (N , h̄ω). In this study we choose for N the truncation parameter Nmax related to the maximum
number of oscillator quanta, above the minimum configuration, kept in the model space. The uv momentum
cutoff of the continuum is readily mapped onto a defined uv cutoff in this finite model space, but there are
two proposed definitions of the ir momentum cutoff inherent in a finite-dimensional HO basis. One definition
is based upon the lowest momentum difference given by h̄ω itself and the other upon the infrared momentum
which corresponds to the maximal radial extent used to encompass the many-body system in coordinate space.
Extending both the uv cutoff to infinity and the ir cutoff to zero is prescribed for a converged calculation. We
calculate the ground-state energy of light nuclei with “bare” and “soft” nucleon-nucleon (NN ) interactions. By
doing so, we investigate the behaviors of the uv and ir regulators of model spaces used to describe 2H, 3H, 4He,
and 6He with NN potentials Idaho N3LO and JISP16. We establish practical procedures which utilize these
regulators to obtain the extrapolated result from sequences of calculations with model spaces characterized by
(N , h̄ω).
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I. INTRODUCTION

It has long been suggested that the three-dimensional (3D)
harmonic oscillator (HO) provides a suitable expansion basis
for a straightforward variational calculation of the properties of
light nuclei. In a traditional variational calculation, a trial wave
function is selected having a form which aims to exploit all of
the important features of the Hamiltonian under investigation,
and its parameters are adjusted to minimize the energy of the
few-body system [1]. It is appealing to generate a trial wave
function in a completely systematic manner without regard
for the details of the Hamiltonian under consideration other
than the implementation of exact symmetries. The goal, then,
is to define a complete set of states for a few-body system
and to construct and diagonalize the Hamiltonian matrix in a
truncated basis of these states. The result of the diagonalization
is an upper bound to the exact eigenvalue of the complete set.
With this method, in contrast to that of a prechosen trial wave
function expected to capture the physics, a reliable estimate of
the accuracy attained can be made with the variational upper
bound [2] provided that the trial function is constructed using
the terms of a systematic expansion set and convergence of
the diagonalization result (such as a ground-state energy) is
observed as the basis is increased.

The algebra appropriate to generating and using trial wave
functions, based on 3D HO eigenfunctions, has been given by
Moshinsky [3] and others [4]. The trial functions take the form
of a finite linear expansion in a set of known functions

�T =
∑

ν

a(N )
ν hν,

where a(N )
ν are the parameters to be varied and hν are

many-body states based on a summation over products of
HO functions. The advantage of a HO basis is that it is
relatively straightforward to construct a complete set of
few-body functions of appropriate angular momentum and
symmetry; examples are given in Refs. [4,5]. The trial function
must have a definite symmetry reflecting the composition of
the bound state: fermions or bosons. This trial function �T

must be quadratically integrable and the expectation value
of the Hamiltonian must be finite. The expansion coefficients
(known as generalized Fourier coefficients in the mathematical
literature) depend on the upper limit (such as an N defined
in terms of total oscillator quanta) and are obtained by
minimizing the expectation value of the Hamiltonian in this
basis. Treating the coefficients a(N )

ν as variational parameters
in the Rayleigh quotient [6], one performs the variation
by diagonalizing the many-body Hamiltonian in this basis.
This is an eigenvalue problem, so the minimum with respect
to the vector of expansion coefficients always exists and
one obtains a bound on the lowest eigenvalue. The basis
functions can also depend upon a parameter (such as the
harmonic oscillator energy h̄ω, which sets a scale) that then
becomes a nonlinear variational parameter additional to the
linear expansion coefficients. Such variational approaches
were the standard for calculating properties of the trinucleon
in the decades following the 1960s [5,7] and have also been
applied to three- and four-body α-particle models of light
nuclei and hypernuclei (see [8–10]). No-core shell model
(NCSM) calculations and no-core full configuration (NCFC)
calculations with a “bare” potential are more recent examples
of a variational calculation with a linear trial wave function.
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Here the basis truncation parameter N and the HO energy
parameter h̄ω are variational parameters [11–13].

In such a calculation one would like not only to obtain
rapid convergence of the eigenvalue and wave function but
one would like this convergence to be to the exact solution.
The functional analysis theorems needed for the discussion
of the convergence properties of a linear trial function are
displayed in Appendix A of Ref. [2]. We quote from Sec.
2.3.5 of the article: “It is shown there [Appendix A] that,
provided the set of expansion functions is suitably complete
[i.e., complete in the energy norm], one will eventually obtain
convergence [of the lowest approximate eigenvalue] to the
exact value [by increasing the basis]. Moreover, if the set is
constructed systematically, then in general one can expect the
convergence to be smooth; indeed, we can often predict the rate
at which the convergence will occur...In these circumstances,
the numerical convergence of the upper bound can provide
a useful estimate of the accuracy of the calculation, and
one which is in practice very much more realistic than that
derived from the direct lower bound calculation.” With a linear
trial function, the expectation value W(N ) of any bounded
operator W will converge provided that the energy converges;
and one may estimate the accuracy obtained by watching the
numerical convergence of W(N ) with increasingN [14]. Such
examinations (albeit for rather small basis size compared to
those used in this study) are displayed in Ref. [15].

The rate of convergence and the number of terms needed
for this eventual asymptotic rate to “start to behave” are
of great practical importance for extrapolation [16]. This
question is discussed at great length by Delves [2] with general
theorems and numerical examples for smooth (e.g., attractive
Gaussian, which is finite everywhere) and nonsmooth (e.g.,
attractive Yukawa, which has a singularity at the origin) local
two-body potentials and a variety of trial functions. As an
example, Delves derives for the harmonic oscillator basis a
convergence rate according to the inverse squared power of N
for “nonsmooth” potentials such as a Yukawa: a convergence
rate expected to be independent of the number of particles. He
then demonstrates that the binding energies in the truncated
expansions of Ref. [5] do follow this power law for both the
deuteron of the Reid soft-core potential [17] (the archetype of
a sum of Yukawas with strong high-momentum components)
and the deuteron and triton of the (separable) Yamaguchi
potential [18]. This is very slow convergence compared to other
sets of expansion functions popular in atomic and molecular
physics and physical chemistry; see Table V of Ref. [2]. Slow
convergence hinders progress either because the amount of
computation needed to reach a desired accuracy is prohibitive
or because too many arithmetic operations cause excessive
round-off error [10,15,19]. Indeed, the slow convergence of
systematic expansions was likely a contributing factor to
the replacement of variational methods by finite-difference
methods (based upon the Faddeev decomposition) in the 1970s
to treat the three-nucleon bound-state problem.

In a parallel application of functional analysis to a varia-
tional calculation by expansion in a basis, specific theorems
about the asymptotic rate of convergence for the three-body
bound state were developed by Schneider for a general basis
[20]. The conclusion was that “In any particular problem the

precise rate will depend on the exact form of the Hamiltonian
and the operators [which determine the set of basis states]
chosen.” The practical application of that paper was to the
hyperspherical harmonics (HH) basis using simple schematic
two-body potentials. The asymptotic rate of convergence of
the three-body binding energy was suggested to converge
as the inverse fourth power of the maximal grand angular
quantum number K for a Yukawa potential and exponentially
fast in K for a Gaussian potential [20]. These theorems were
illustrated by explicit HH calculations of the 1970s [21].
The general expectations of these theorems continue to back-
stop extrapolations in contemporary few-body calculations
with modern potentials using this HH method [22–24]. As
suggested in Ref. [20], the rate of convergence does not
depend on the number of particles in the bound state. (This
analysis was for three- and four-body systems, which have
very high first breakup thresholds; the rate of convergence is,
however, expected to depend on the first breakup threshold
of heavier nuclei.) Indeed, contemporary HH analyses of the
four-nucleon bound state bear out this general expectation,
although additional criteria for selecting a reduced basis have
to be specified, and the authors of [25] demonstrate that
the inverse power law in K can be higher than four for
contemporary “nonsmooth” two- and three-body potentials.

We are unaware of an application of the theorems proved
by Schneider [20] to the HO basis. However, a very up-to-date
discussion of the full configuration-interaction (CI) method
in a HO basis does analyze convergence and gives practical
convergence estimates for many-electron systems trapped in a
harmonic oscillator (a typical model for a quantum dot) [26].
A corresponding investigation of light nuclei with another
CI method, the NCFC approach [12], provides consistent
and tested uncertainty estimates for ground-state energies.
The CI method consists of approximating eigenvalues of the
many-body Hamiltonian with those obtained by projecting the
problem onto a finite-dimensional subspace of the full Hilbert
space and diagonalizing the Hamiltonian in this model space
[27]. Mathematically, this is analogous to a Ritz-Galerkin
method on the model space spanned by the basis functions
and the analysis of the energy error is equivalent to analysis of
the corresponding Raleigh-Ritz calculation sketched earlier.
The projection can either take the form of an N defined
in terms of total oscillator quanta (called “total-energy-cut
space”) or in the single-particle quantum numbers (called
“single-particle-cut space”). The total-energy-cut space is used
in this study (see Sec. II) and the latter single-particle-cut space
lends itself more readily to approximating a full CI calculation
by a coupled cluster approach. The CI approach becomes, in
principle, exact as N → ∞ with either choice of N . For this
reason the CI approach with HO basis functions is sometimes
called “exact diagonalization.” A succinct statement of the
equivalence of large-scale diagonalization and the Rayleigh-
Ritz variational method can be found in the introduction of [28]
and the full discussion is presented in the monograph [29].

As in the nuclear examples [2,20], the asymptotic con-
vergence of the lowest eigenfunction of a quantum dot in
the “total-energy-cut” model space is slow and it is slow
for the analogous reason: the singularity of the Coulomb
interaction at those points where two or more interparticle
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distances are zero (the Kato cusp condition on the many-body
wave function [30]). The convergence rate is dominated by
the singularities in the analytic structure of the solution
[31]: it takes many HO eigenfunctions to approximate the
singularities of the many-body wave function due to the two-
body interaction. The asymptotic convergence of the nuclear
structure problem is not changed by including Jastrow-type
two-body correlation functions in the trial wave function [15].
The onset of asymptotic convergence occurs, however, at
a much smaller value of an N than for the case without
correlation functions and the convergence is to the same final
value of the lowest variational energy [7,10,15]. Therefore
much fewer computational resources are required to get the
answer.

With the HO basis in the nuclear structure problem,
convergence has been discussed, in practice, with an emphasis
on obtaining those parameters which appear linearly in the
trial function (i.e., convergence with N ). Sometimes for each
N the nonlinear parameter h̄ω is varied to obtain the minimal
energy [15] and then the convergence with N is examined.
Sometimes h̄ω is simply fixed at a value which gives the
fastest convergence in N [5]. More recently, in the context
of NCSM calculations and NCFC calculations with smooth
“bare” potentials, one sees figures or tables in which one
of the variational variables of (N , h̄ω) is held fixed and the
variational energy is displayed with respect to the other. This
practice is helpful for the following reason. Optimum values
for the parameters that enter linearly can be obtained by solving
a matrix eigenvalue problem. But the optimum value of the
nonlinear parameter must in principle be obtained by, for
example, numerical minimization, which could be difficult as
the algorithm could easily miss the global minimum and get
trapped in a local minima. The plots one sees in the nuclear
physics literature show that (1) for small bases a change in
the nonlinear parameter h̄ω can make a dramatic change in
the variational estimate of the ground-state energy and (2) the
dependence on the nonlinear parameter decreases as the basis
size increases. These observations seem to vitiate the need
for an extensive numerical minimization by varying h̄ω [32].
These observations have inspired definite (and differing)
prescriptions for convergence and extrapolation. It is the
purpose of this study to suggest that effective field theory (EFT)
concepts of uv and ir cutoffs provide an alternative useful
way to think about convergence and a physically motivated
prescription for extrapolation of (necessarily truncated) results
in the model space (elucidated in Sec. II) of the trial wave
function to the full Hilbert space.

The paper is organized as follows. In Sec. II we briefly
describe expansion schemes in HO functions. This expansion
technique still retains the variational character described
above. We employ realistic smooth nucleon-nucleon potentials
(JISP16 [33] and Idaho N3LO [34]) which have also been used
by other authors without renormalization for A � 6 (Ref. [12]
and Ref. [11], respectively). None of the discussion in Sec. II is
new, but it paves the way for Sec. III in which we suggest a con-
vergence analysis based upon the uv and ir cutoffs introduced
in Ref. [35] in the context of an EFT framework. Section IV is
devoted to tests and examples of this new convergence scheme
and Sec. V contains a summary and outlook.

II. EXPANSION IN A FINITE BASIS OF HARMONIC
OSCILLATOR FUNCTIONS

Here we indicate the workings of the finite HO basis
calculations performed and refer the reader to a very useful
review article [13] on the no-core shell model for further details
and references to the literature. In these no-core approaches,
all the nucleons are considered active, so there is no inert core
as in standard shell-model calculations, hence explaining the
“no-core” in the name. NN potentials with strong short-range
repulsions and the concomitant high-momentum components
do not lend themselves well to a HO basis expansion, as was
well appreciated fifty years ago [5]. A “renormalization” of
the Hamiltonian is often made by constructing an effective
interaction (dependent upon the basis cutoff N and upon
h̄ω) by means of a unitary transformation due to Lee and
Suzuki [36]. This procedure generates effective many-body
interactions that are often neglected [37]. This neglect destroys
the variational nature of a NCSM calculation. We instead
choose “soft” potentials (JISP16 [33] and Idaho N3LO [34])
which have also been used by other authors without renormal-
ization for A � 6 (Ref. [12] and Ref. [11], respectively), so
that we can study convergence and extrapolation issues directly
within a variational framework. NCSM calculations with these
potentials are variational with the HO energy parameter h̄ω and
the basis truncation parameter N as variational parameters
[13]. Nomenclature has diverged somewhat since the advent
of these smooth but still realistic potentials into a framework
(NCSM) which originally included renormalization of the
NN potential. Sometimes one reads about NCSM calculations
with unmodified or “bare” potentials [11,13], or “the no-core
full configuration method” [12], or simply “the basis of the
no-core shell model” [38]. All these phrases refer to retaining
the original interaction (without renormalization) within the
model space. Nor do we renormalize the interaction in our
study.

To study these convergence issues we mostly employ
the Idaho N3LO NN potential, which is inspired by chiral
perturbation theory and fits the two-body data quite well [34].
It is composed of contact terms and irreducible pion-exchange
expressions multiplied by a regulator function designed to
smoothly cut off high-momentum components in accordance
with the low-momentum expansion idea of chiral perturbation
theory. The version we use has the high-momentum cutoff of
the regulator set at 500 MeV/c. The Idaho N3LO potential
is a rather soft one, with heavily reduced high-momentum
components as compared to earlier realistic NN potentials
with a strongly repulsive core. Alternatively, in coordinate
space, the Yukawa singularity at the origin is regulated
away so that this potential would be considered “smooth”
by Delves and Schneider and the convergence in N would
be expected to be exponential [2,20]. Even without the
construction of an effective interaction, convergence with
the Idaho N3LO NN potential is exponential, as numerous
studies have shown [11,38]. Nevertheless, it has been useful
to simplify and reduce the high-momentum components of
this and other phenomenological potentials further by means
of the similarity renormalization group evolution [38]. Such
a softening transformation is imperative for heaver nuclei
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(A > 6) and/or if three-nucleon forces are included in the
Hamiltonian [38–40].

The second NN interaction we employ is JISP16 [33],
a nonlocal separable potential whose form factors are HO
wave functions. It is constructed by means of the J -matrix
version of inverse scattering theory. The matrix of the NN

potential in the oscillator basis is obtained for each partial
wave independently, so the NN interaction is a set of potential
matrices for different partial waves [41]. These matrices
reproduce the experimental NN scattering data and properties
of the deuteron to high precision. Once the inherent ambiguity
of this method is eliminated by a plausible phenomenological
ansatz, the scattering wave functions are very close to the
ones provided by meson exchange “second-generation” NN

potentials [42]. As for the name of this potential, JISP refers to
J -matrix inverse scattering potential and version “16” has had
phase-equivalent unitary transformations applied to selected
partial waves so that the resulting interaction continues to
describe two-body data well. Selected partial waves are tuned
to provide good descriptions of 3H binding, the low-lying
spectra of 6Li, and the binding energy of 16O [33]. The virtue
of this potential is that it is also soft. Although nonlocal and not
really fitting into Delves’s classification, it is not surprising that
variational calculations with this NN interaction also converge
exponentially with N [12] since the HO form factors of this
separable potential are Gaussians multiplied by polynomials
in the radial coordinate. (It is noteworthy that JISP16 in the
HH basis also converges exponentially in K [43], as would be
expected by Schneider [20].)

We use a HO basis that allows preservation of translational
invariance of the nuclear self-bound system. Translational
invariance is automatic if the radial HO wave function
depends on relative, or Jacobi, coordinates as was done in
Refs. [5,7–10]. Antisymmetrization (or symmetrization for
the α-particle models of [7–10]) of the basis is necessary and
described in Refs. [13,44]. Antisymmetrization in a Jacobi
basis becomes analytically and computationally forbidding
as the number of nucleons increases beyond four or five.
For this reason these calculations are alternatively made
with antisymmetrized wave functions constructed as Slater
determinants of single-nucleon wave functions depending on
single-nucleon coordinates. This choice loses translational
invariance since, in effect, one has defined a point in space from
which all single-particle coordinates are defined. Translational
invariance is restored by using the “Lawson method” [45] to
be described shortly. The gain of this choice is that one can
use technology developed and/or adapted for NCSM, such
as the shell-model code ANTOINE [46], the parallel-processor
codes “Many-Fermion Dynamics—nuclear” (MFDn) [47] and
the No-Core Shell Model Slater Determinant code [48]. These
codes set up the many-body basis space, evaluate the many-
body Hamiltonian matrix, obtain the low-lying eigenvalues
and eigenvectors using the Lanczos algorithm, and evaluate a
suite of expectation values using the eigenvectors.

The Slater determinant basis is often defined in the “m
scheme” where each HO single-particle state has its orbital
and spin angular momenta coupled to good total angular
momentum, j , and its magnetic projection, m. The many-body
basis states for a given total number of nucleons, A, are Slater

determinants in this HO basis and are limited by the imposed
symmetries—parity, charge, and total angular momentum
projection (M)—as well as by N . In the natural parity cases,
for even nuclei M = 0 enables the simultaneous calculation of
the entire low-lying spectrum for that parity and the chosen N .

The use of this specially constructed Slater determinant
basis results in eigenstates of a translationally invariant
Hamiltonian (supplemented by a suitable constraint term)
that factorize as products of a wave function depending on
relative coordinates and a wave function depending on the
c.m. coordinates. This is true for a particular truncation of
the basis: a maximum of the sum of all HO excitations, i.e.,∑A

i=1(2ni + li) � Ntotmax, where ni, li are the HO quantum
numbers corresponding to the harmonic oscillators associated
with the single-nucleon coordinates and Ntotmax is an example
of the genericN of the Introduction. Note that this truncation is
on the level of total energy quanta (“total-energy-cut space”),
which is different from the CI calculations used in atomic
and molecular problems, which are often truncated at the
single-particle level (“single-particle-cut space”).

The precise method of achieving the factorization of
the c.m. and intrinsic components of the many-body wave
function follows a standard approach, sometimes referred to
as the “Lawson method” [45]. In this method, one selects
the many-body basis space in the manner described above
with N = Ntotmax and adds a Lagrange multiplier term to the
many-body Hamiltonian β(Hc.m. − 3

2h̄ω), where Hc.m. is the
HO Hamiltonian for the c.m. motion. With β chosen positive
(10 is a typical value), one separates the states of lowest c.m.
motion (0S 1

2
) from the states with excited c.m. motion by

a scale of order βh̄ω. The resulting low-lying states have
wave functions that then have the desired factorized form.
We checked, for the two cases A = 3 and A = 4, that the
codes MANYEFF [44] which uses Jacobi coordinates and the
No-Core Shell Model Slater Determinant code [48] based upon
single-nucleon coordinates gave the same eigenvalues for the
same values ofN = Ntotmax and h̄ω, indicating that the Lawson
method is satisfactory for the calculations in single-particle
coordinates. Some details of this check will be given in Sec. IV,
which gives results.

Now we continue the discussion of the (total-energy-cut
space) truncation parameter N of the HO basis expansion
of the many-body system. Usually, instead of truncating the
sum of all HO excitations N = Ntotmax �

∑A
i=1(2ni + li),

one introduces the truncation parameter Nmax. Nmax is the
maximum number of oscillator quanta shared by all nucleons
above the lowest HO configuration allowed by the Pauli-
exclusion principle for the chosen nucleus. We label the HO
shells by energy quanta N = (2n + l), where n = 0, 1, 2, . . .

and l = 0, 1, 2, . . .. Thus, for example, in 6He a truncation
at Nmax = 4 would allow one neutron to occupy the N = 5
HO shell, the other “valence” neutron would remain in the
N = 1 shell, and the remaining four nucleons remain in
the (filled) first shell labeled by N = 0. Alternatively, the
two valence neutrons could occupy the N = 3 shell and the
remaining four nucleons stay in the N = 0 shell. In both cases
(and for all other combinatorics) in 6He Nmax = Ntotmax − 2.
Similarly for other p-shell nuclei one can work out that
Ntotmax and Nmax differ, e.g., for 12C, Nmax = Ntotmax − 8, etc.

054002-4



CONVERGENCE PROPERTIES OF AB INITIO . . . PHYSICAL REVIEW C 86, 054002 (2012)

However, for the s-shell nuclei 2H, 3H, 3He, and 4He, Nmax =
Ntotmax.

Later on we will want to identify parameters of the model
space (with the dimensions of momenta) which refer, not
to the many-body system, but to the properties of the HO
single-particle states. If the highest HO single-particle (SP)
state of the lowest HO configuration allowed by the Pauli-
exclusion principle has N0 HO quanta, then Nmax + N0 = N .
Since Nmax is the maximum of the total HO quanta above the
minimal HO configuration, we can have at most one nucleon
in such a highest HO SP state with N quanta. Note that Nmax

characterizes the many-body basis space, whereas N is a label
of the corresponding highest single-particle orbital. To find the
value of the single-particle label N , we need to determine the
highest occupied SP state in a given Nmax truncation. One gives
all the available Nmax quanta to a single nucleon. Consider
again a 6He basis truncated at Nmax = 4; both valence neutrons
occupy the 0p (N0 = 1) shell in the lowest energy many-body
configuration. Assigning a single neutron the entire Nmax = 4
quanta means that, as before, the highest occupied SP state is in
the N = 5 shell. On the other hand, the highest occupied orbital
of the closed s-shell nucleus 4He has N0 = 0 so that N = Nmax.

III. CONVERGENCE IN ULTRAVIOLET AND
INFRARED VARIABLES

We begin by thinking of the finite single-particle basis
space defined by N and h̄ω as a model space characterized by
two momenta associated with the basis functions themselves.
In the HO basis, we define � = √

mN (N + 3/2)h̄ω as the
momentum (in units of MeV/c) associated with the energy of
the highest HO level. The nucleon mass is mN = 938.92 MeV.
To arrive at this definition one applies the virial theorem to this
highest HO level to establish kinetic energy as one half the
total energy [i.e., (N + 3/2)h̄ω] and solves the nonrelativistic
dispersion relation for �. This sets one of the two cutoffs
for the model space of a calculation. Energy, momentum, and
length scales are related, according to Heisenberg’s uncertainty
principle. The higher the energy or momentum scale we may
reach, the lower the length scale we may probe. Thus, the
usual definition of an ultraviolet cutoff � in the continuum has
been extended to discrete HO states. It is then quite natural to
interpret the behavior of the variational energy of the system
with addition of more basis states as the behavior of this
observable with the variation of the ultraviolet cutoff �. Above
a certain value of � one expects this running of the observable
with � to “start to behave” so that this behavior can be used
to extrapolate to the exact answer. However, the model space
has another scale which motivates a second cutoff: the energy
scale of h̄ω itself. Because the energy levels of a particle in
a HO potential are quantized in units of h̄ω, the minimum
allowed momentum difference between single-particle orbitals
is λ = √

mNh̄ω and that has been taken to be an infrared
cutoff [35]. That is, there is a low-momentum cutoff λ = h̄/b

corresponding to the minimal accessible nonzero momentum
(where b = √

h̄/mNω plays the role of a characteristic length
of the HO potential and basis functions). Note however that
there is no external confining HO potential in place. Instead
the only h̄ω dependence is due to the scale parameter of the

underlying HO basis. In [35] the influence of the infrared
cutoff is removed by extrapolating to the continuum limit,
where h̄ω → 0 with N → ∞ so that � is fixed. Clearly, one
cannot achieve both the ultraviolet limit and the infrared limit
by taking h̄ω to zero in a fixed-N model space as this procedure
takes the ultraviolet cutoff to zero.

The calculated energies of a many-body system in the
truncated model space will differ from those calculated as the
basis size increases without limit (N → ∞). This is because
the system is in effect confined within a finite (coordinate-
space) volume characterized by the finite value of b intrinsic
to the HO basis. The “walls” of the volume confining the
interacting system spread apart and the volume increases to the
infinite limit as λ → 0 and b → ∞ with � held fixed. Thus
it is as necessary to extrapolate the low-momentum results
obtained with a truncated basis with a given b or h̄ω as it is to
ensure that the ultraviolet cutoff is high enough for a converged
result. These energy level shifts in a large enclosure have
long been studied [49], most recently with the explicit EFT
calculation of a triton in a cubic box allowing the edge lengths
to become large (and the associated ir cutoff due to momentum
quantization in the box going toward zero) [50]. There it was
shown that as long as the infrared cutoff was small compared
to the ultraviolet momentum cutoff appearing in the “pionless”
EFT, the ultraviolet behavior of the triton amplitudes was
unaffected by the finite volume. More importantly, from our
point of view of desiring extrapolation guidance, this result
means that calculations in a finite volume can confidently
be applied to the infinite-volume (or complete-model-space)
limit. Similar conclusions can be drawn from the ongoing
studies of systems of two and three nucleons trapped in a HO
potential with interactions from pionless EFT combined with
this definition of the infrared cutoff (λ = √

mNh̄ω) and this
procedure for its removal: λ → 0 with N → ∞ so that � is
fixed [51].

Other studies define the ir cutoff as the infrared momentum
which corresponds to the maximal radial extent needed to en-
compass the many-body system we are attempting to describe
by the finite basis space (or model space). These studies find it
natural to define the ir cutoff by λsc = √

(mNh̄ω)/(N + 3/2)
[38,52]. Note that λsc is the inverse of the root-mean-square
(rms) radius of the highest single-particle state in the basis:
〈r2〉1/2 = b

√
N + 3/2. We distinguish the two definitions by

denoting the first (historically) definition by λ and the second
definition by λsc because of its scaling properties demonstrated
in the next section. This latter ir variable λsc clearly goes to
zero either (i) as h̄ω goes to zero at fixed N or (ii) as N becomes
large for fixed h̄ω. It is the second limit which corresponds to
the convergence theorems of the Introduction. In this latter
limit λsc → 0. The convergence theorems of the Introduction
are equally well satisfied by taking the ir cutoff defined by λ

to zero at constant � because fixing � demands that N be
simultaneously taken to infinity.

The extension of the continuum ultraviolet cutoff to the
discrete (and truncated) HO basis with the definition � =√

mN (N + 3/2)h̄ω seems unexceptional. An equally plausible
alternative uv cutoff differs from � by only a scale change [53],
in striking contrast to the alternate definitions of the ir cutoff
which have different functional forms. It is a goal of this work
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FIG. 1. (Color online) Schematic view of a finite model space (limited by the basis truncation parameter N as described in the text), in
which the uv and ir momentum cutoffs are arbitrary. To reach the full many-body Hilbert space, symbolized by the complete oval, one needs
to let the uv cutoff → ∞ and the ir cutoff → 0.

to determine the usefulness of the two rival definitions—λ

and λsc—of the infrared regulator (λir ) of the model space
with parameters (N , h̄ω). From the beginning, it is clear that
increasing � by increasing h̄ω in a fixed-N model space is
not sufficient; doing so increases both of the putative infrared
cutoffs as well because � = λ

√
N + 3/2 = λsc(N + 3/2) and

one continues to effectively calculate in an effective confining
volume which is getting smaller rather than larger. This
confining volume is certainly removed by letting N → ∞, at
fixed h̄ω, because HO functions form a basis of the complete
space. In addition, taking N → ∞ simultaneously removes
the uv cutoff defined by � and the ir cutoff defined by either
λ or λsc. But increasing N without limit is computationally
prohibitive. Thus there is a practical issue to address: whether
one must take the ir cutoff to zero by taking h̄ω → 0 at fixed
� (λir ≡ λ) or whether it is sufficient to allow h̄ω to be some
larger value, perhaps near that used in traditional shell-model
calculations, and let an increasing N take λir to small values,
as it does with the definition λir ≡ λsc.

We are interested in the limit of large � and small λir (see
Fig. 1). If one can establish that the cutoff dependencies of
the model space decrease with increasing � and decreasing
λir then one can (i) remove the influence of the ir cutoff by
extrapolating to the infrared limit for selected uv-cutoff values
chosen to be above the uv nature of the potential and (ii) if
needed, extrapolate to the uv limit for selected ir cutoff values
chosen by the size of the system modeled. We will show that
such a program is possible.

IV. RESULTS AND DISCUSSION

We first display in a series of figures the running of
the ground-state eigenvalue of a single nucleus, 3H, on the

truncated HO basis by holding one cutoff of (�,λir ) fixed
and letting the other vary. Then we show that the trends noted
hold for other light nuclei within the range of our computer
resources. Finally, we discuss extrapolation procedures.

These 3H calculations were made for N � 36 and values of
h̄ω as appropriate for the chosen cutoff value. For N � 16, we
used the code MANYEFF [44], which uses Jacobi coordinates,
and the No-Core Shell Model Slater Determinant code [48],
which use single-particle coordinates for smaller N . We
checked that the codes gave the same eigenvalues for overlap-
ping values of N , indicating that the Lawson method satisfac-
torily restores translational invariance to ground-state energy
calculations in single-particle coordinates. For example, the
ground-state energy of 3H with the Idaho N3LO NN potential
at Nmax = 16 and h̄ω = 49.2968 MeV is (−7.3378,−7.3385)
MeV for the (Jacobi, single-particle) basis choice.

In Fig. 2 and the following figures, |	E/E| is defined as
|(E(�,λir ) − E)/E|, where E reflects a consensus ground-
state energy from benchmark calculations with this NN

potential, this nucleus, and different few-body methods. The
accepted value for the ground state of 3H with this potential is
−7.855 MeV from a 34 channel Faddeev calculation [34],
−7.854 MeV from a hyperspherical harmonics expansion
[54], and −7.85(1) MeV from a NCSM calculation [11]. All
|	E/E|, starting with Fig. 2, will follow some trajectory (with
the trajectory’s shape not predicted). For the choice of Fig. 2,
λir ≡ λ = √

mNh̄ω, |	E/E| decreases exponentially at fixed
λ, as � increases for the values of � achieved in this study.
Fixed h̄ω implies N alone increases to drive � → ∞, λsc → 0
simultaneously.

The linear fit on a semilog plot is extracted from
the data. This fit implies |	E/E| ∼ B exp[−�/�ref(λ)],
where B is approximately constant and c�ref(λ) ∼ 30h̄ω for
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FIG. 2. (Color online) Dependence of the ground-state energy of
3H (compared to a converged value; see text) upon the uv momentum
cutoff � = √

mN (N + 3/2)h̄ω for different fixed λ = √
mNh̄ω. The

curves are fit to the calculated points.

h̄ω > 45 MeV. Note that this is �ref(λ) and not �ref(λsc); i.e.,
with fixed λ, �ref is a constant. On the other hand, for fixed
�, a smaller λ implies a smaller |	E/E| since more of the
infrared region is included in the calculation.

In Fig. 3 we hold fixed the uv cutoff of (�,λir ) to display the
running of |	E/E| upon the suggested ir cutoff λ. For fixed
λ, a larger � implies a smaller |	E/E| since more of the
uv region is included in the calculation. But we immediately
see a qualitative change in the curves between the transition
� = 700 MeV and � = 800 MeV; for smaller �, |	E/E|
does not go to zero as the ir cutoff is lowered and more of the
infrared region is included in the calculation. This behavior
suggests that |	E/E| does not go to zero unless � � �NN ,
where �NN is some uv regulator scale of the NN interaction
itself. From this figure one estimates �NN ∼ 800 MeV/c for
the Idaho N3LO interaction.

FIG. 3. (Color online) Dependence of the ground-state energy of
3H (compared to a converged value; see text) upon the ir momentum
cutoff λ = √

mNh̄ω for fixed � = √
mN (N + 3/2)h̄ω.

Yet the description of this interaction in the literature says
that the version we use has the high-momentum cutoff of the
regulator set at �N3LO = 500 MeV/c [34]. This does not mean
that the interaction has a sharp cutoff at exactly 500 MeV/c,
since the terms in the Idaho N3LO interaction are actually
regulated by an exponentially suppressed term of the form

exp

[
−

(
p

�N3LO

)2n

−
(

p′

�N3LO

)2n]
.

In this expression, p and p′ denote the magnitude of the
initial and final nucleon momenta of this nonlocal potential
in the center-of-mass frame and n � 2. Because the cutoff
is not sharp, it should not be surprising that one has not
exhausted the uv physics of this interaction for values of
single-particle � somewhat greater than 500 MeV/c. Note
that this form of the regulator allows momentum transfers
( 
p − 
p′) to achieve values in the range up to 2�N3LO . Can one
make an estimate of the uv regulator scale of the Idaho N3LO
interaction which is more appropriate to the discrete HO basis
of this study? An emulation of this interaction in a harmonic
oscillator basis uses h̄ω = 30 MeV and Nmax = N = 20
[23]. Nucleon-nucleon interactions are defined in the relative
coordinates of the two-body system, so one should calculate
�NN = √

m(N + 3/2)h̄ω with the reduced mass m rather than
the nucleon mass mN appropriate for the single-particle states
of the model space. By taking this factor into account, the
successful emulation of the Idaho N3LO interaction in a HO
basis suggests that �NN ∼ 780 MeV/c, consistent with the
figure.

For � < �NN there will be missing contributions of size
|(� − �NN )/�NN | so “plateaus” develop as λ → 0, revealing
this missing contribution to |	E/E|. We cannot rule out the
possibility of a plateau appearing at the level of 0.0001 or less
for � � 800 MeV/c as λ → 0. This is because the smallest λ

available to our calculations is limited by λ = �/
√

N + 3/2
and the largest N = 36 with our computer resources. That
is, the leftmost calculated points of Fig. 3 move to higher
values of λ as fixed � increases above 800 MeV/c. At
fractional differences of 0.001 or less, the development of
possible plateaus could be masked by round-off errors in the
subtraction of two nearby numbers, each of which may have its
own error. Nevertheless, the “plateaus” that we do see are not
flat as λ → 0 and, indeed, rise significantly with decreasing
� < �NN . This suggests that corrections are needed to �

and λ which are presently defined only to leading order in
λ/�. We hope to learn whether higher-order corrections can
be determined by the data in a future study.

Now we turn to the second pair of cutoffs of (�,λir ) and
display in Fig. 4 the analog of Fig. 2 except that this time
λir ≡ λsc = √

mNh̄ω/(N + 3/2). For fixed λsc, |	E/E| does
not go to zero with increasing �, and indeed it even appears to
rise for fixed λsc � 35 MeV/c and � � 800 MeV/c. Such a
plateau-like behavior was attributed in Fig. 3 to a uv regulator
scale characteristic of the NN interaction. Can the behavior of
Fig. 4 also be explained by a “missing contributions” argument,
i.e., an argument based upon λsc � λNN

sc , where λNN
sc is a

second characteristic ir regulator scale implicit in the NN

interaction itself? One can envisage such an ir cutoff as related
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FIG. 4. (Color online) Dependence of the ground-state energy
of 3H (compared to a converged value; see text) upon the uv
momentum cutoff � = √

mN (N + 3/2)h̄ω for different values of the
ir momentum cutoff λsc = √

(mNh̄ω)/(N + 3/2). Curves are not fits
but simple point-to-point line segments to guide the eye.

to the lowest energy configuration that the NN potential could
be expected to describe. For example, the inverse of the np

triplet scattering length of 5.42 fm corresponds to a low-energy
cutoff of about 36 MeV/c. Realistic NN potentials such as
Idaho N3LO and JISP16 do fit these low-energy scattering
parameters well. The previously mentioned emulation of the
Idaho N3LO interaction in a harmonic oscillator basis [23] has
λNN

sc ∼ 36 MeV/c. As we shall see later, the fit to low-energy
NN data of JISP16 implies λNN

sc ∼ 63 MeV/c. The factor of 2
difference may simply be a reflection of the fitting procedures
and appears to be within the range of uncertainty of our
argument. In any event, the behavior of our results in Fig. 4 is
not inconsistent with this concept of an inherent ir regulator
scale implicit in the NN interaction.

Before going on with the discussion of Fig. 4, let us return to
the striking difference between Figure 4 and its analog Fig. 2.
They differ only by the choice of infrared cutoff: λ or λsc. One
may ask why no residual discrepancy appears in Fig. 2 as λ

is held fixed and � is taken through a sequence of increasing
values. That is, why is there no ir region excluded that would
lead to a feature of a plateau in these curves indicative of
missing ir contributions? The expectation of such a plateau
seems reasonable for an increasing ir cutoff according to the
arguments just made for the ir cutoff λsc of Fig. 4. The lack
of such plateaus suggests that this λ is not an ir cutoff for
calculations of free-space systems like we are performing here.

Having introduced a scale λNN
sc , we continue our discussion

of Fig. 4. As fixed λsc requires h̄ω/N to be constant and
N � 36, small values of fixed λsc are linked with small values
of �. Having said that, we see that that |	E/E| becomes expo-
nentially small (consistent with tending to zero at the level of
precision depicted) with increasing � for λsc = 20 MeV/c and
perhaps λsc = 28 MeV/c for the values of � achieved in this
study. At fixed λsc � λNN

sc and increasing �, once � > �NN ,
a plateau will develop since no new contributions to |	E/E|
exist for � > �NN . In the figure, the plateau appears to start at

� ∼ 700–900 MeV/c, consistent with the estimate of �NN ∼
780 MeV/c for this NN interaction. The curve at the lowest
λsc = 20 MeV/c cannot extend past � ∼ 750 MeV/c because
� = λsc(N + 3/2) and the largest value of N we could use is
36 for the triton. So our computer limitations prevented the
observation of a possible plateau emerging at such a low value
of λsc. The plateau in |	E/E| for larger fixed λsc is higher
than the plateau for small fixed λsc since more contributions
to |	E/E| are missing from the infrared region. Again we
observe that the plateau rises with increasing � and this
behavior may be a sign that corrections are needed to � and
λsc, which are presently defined only to leading order in λsc/�.
However, for λsc � λNN

sc and � < �NN the results converge
to a single curve at the left of this figure. It is remarkable
that this curve persists to quite low � values. This means that
|	E/E| becomes insensitive to λsc for low � if λsc is low
enough. Later on we will demonstrate that this curve can be
quite well described by a Gaussian, a result which persists for
other s-shell nuclei. But we will see in the next figure that one
has not yet captured the uv region at these low values of �.

Figure 5 is the analog to Fig. 3— only the variable on
the x axis changes from λ to λsc = λ2/�. For � < �NN ∼
780 MeV/c the missing contributions and resulting plateaus
are as evident as in Fig. 3. (See the discussion of Fig. 3 for
an account of possible plateaus for larger values of �.) The
tendency of these plateaus to rise as λsc → 0 again suggests a
refinement is needed to this first-order definition of the cutoffs.
Around � ∼ 600 MeV/c and above, the plot of |	E/E|
versus λsc in Fig. 5 begins to suggest a universal pattern,
especially at large λsc. For � ∼ 800 MeV/c and above, the
pattern defines a universal curve for all values of λsc. This
is the region where � � �NN , indicating that nearly all of
the ultraviolet physics set by the potential has been captured.
Such a universal curve suggests that λsc could be used for
extrapolation to the ir limit, provided that � is kept large
enough to capture the uv region of the calculation. Figure 5

FIG. 5. (Color online) Dependence of the ground-state en-
ergy of 3H (compared to a converged value; see text) upon the
ir momentum cutoff λsc = √

(mNh̄ω)/(N + 3/2) for fixed � =√
mN (N + 3/2)h̄ω.
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FIG. 6. (Color online) Dependence of the ground-state energy
of three s-shell nuclei (compared to a converged value; see text)
upon the ir momentum cutoff λsc = √

(mNh̄ω)/(N + 3/2) for � =√
mN (N + 3/2)h̄ω above the �NN ≈ 780 MeV/c set by the NN

potential. The solid curves are fits to the points as described in the
text.

is also the motivation for our appellation λsc, which we read
as “lambda scaling,” since this figure exhibits the attractive
scaling properties of this regulator.

For Fig. 6, we take advantage of the “saturation” of the
uv region by binning all results with � � 800 MeV/c. They
do indeed fall on a universal curve for each nucleus shown,
indicating that one can use this universal behavior for an
extrapolation which is nearly independent of A (consistent
with the extrapolation theorems of the 1970s [2,20] that the
asymptotic rate of convergence does not depend upon the
number of particles). The curves are offset for the three nuclei
but otherwise appear similar (see also the discussion of Fig. 9).
The points can be fit by the function y = a exp(−C/λsc) with
C ≈ 20–40 MeV/c at A = 2, 3, and 4. The increase in the
value of C indicates a higher rate of convergence in the ir
momentum cutoff as the number of particles is increased up
to four. (This trend is readily apparent in an alternate plot of
|	E/E| versus 1/λsc where the straight-line fits to the triton
and α-particle points have a slightly greater slope than that
straight line which fits the deuteron points.) However, drawing
an imaginary horizontal line on Fig. 6 shows that the loosely
bound deuteron requires a smaller ir cutoff to capture the ir
physics and therefore achieve the same |	E/E| as the more
tightly bound triton and even more tightly bound α particle.
The lowest value of λsc available to our calculations is set by
λsc = �/(N + 3/2), where � = 800 MeV/c, the lowest value
which seems to capture the uv physics. These farthest left-hand
points are then λsc ∼ 25 MeV/c for the triton calculation
(largest N = 30) and λsc ∼ 41 MeV/c for the α calculation
(largest N = 18). These values of the ir cutoff can be lowered
(thereby increasing the reliability of the extrapolation to zero)
only by increasing N—a computational challenge which gets
harder the larger the number of particles in the nucleus. For
example, the largest N achievable with our codes which
employ the Idaho N3LO NN interaction for the nuclei 6Li

FIG. 7. (Color online) The ground-state energy of 3H calculated
at five fixed values of � = √

mN (N + 3/2)h̄ω and variable λsc =√
(mNh̄ω)/(N + 3/2). The curves are fits to the points and the

functions fitted are used to extrapolate to the ir limit λsc = 0.

and 6He is 15 (N = Nmax + 1 for these p-shell nuclei). As
the value of � must be 800 MeV/c or greater for this
NN interaction the smallest value of λsc is then ∼48 MeV/c.
Numerical investigation suggests that this is not low enough
for a reliable ir extrapolation and the reason lies entirely in
the inability to calculate with high enough N . For the softer
JISP16 NN potential, which has a lower minimum �, the ir
extrapolation is satisfactory, as demonstrated later by Fig. 11
and subsequent discussion.

Finally, we utilize the scaling behavior displayed on
Figs. 5 and 6 to suggest an extrapolation procedure which
we demonstrate in Fig. 7, again concentrating on 3H and
the Idaho N3LO potential. The extrapolation is performed
by a fit of an exponential plus a constant to each set
of results at fixed �. That is, we fit the ground-state
energy with three adjustable parameters using the relation
Egs(λsc) = a exp(−b/λsc) + Egs(λsc = 0). It should be noted
that our five extrapolations in Fig. 7 employ an exponential
function whose argument 1/λsc = √

(N + 3/2)/(mNh̄ω) is
proportional to

√
N/(h̄ω) and is therefore distinct from the

popular extrapolation with an exponential in Nmax (= N for
this s-shell case) [11–13,38,39,55,56]. The mean and standard
deviation of the five values of Egs(λsc = 0) were −7.8511
and 0.0011 MeV, respectively, as suggested by Fig. 7 in which
the overlap of the five separate curves cannot be discerned. For
calibration of our scheme, we recall that the accepted value for
the ground state of 3H with this potential is −7.855 MeV from
a 34-channel Faddeev calculation [34], −7.854 MeV from a
hyperspherical harmonics expansion [54], and −7.85(1) MeV
from a NCSM calculation [11].

This extrapolation procedure with a large and fixed � =√
mN (N + 3/2)h̄ω and taking λsc = √

mNh̄ω/(N + 3/2) to-
ward the smallest value allowed by computational limitations
treats both N and h̄ω on an equal basis. For example, the
extrapolation at fixed � = 1200 MeV/c employs values of
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h̄ω from 41 to 65 MeV and N = 22–36. The one at fixed
� = 800 MeV/c employs values of h̄ω from 18 to 44 MeV
and N = 14–36. The curves of Fig. 7 encompass values of
λsc between 20 and 52 MeV/c. We attempted to quantify
the spread in extrapolated values by fitting only segments of
the curves of this figure. Recall that the smallest value of
λsc requires the largest N . Fits to the segment from λsc =
20 MeV/c to λsc = 40 MeV/c (always for the five displayed
values of fixed �) resulted in a mean of −7.8523 MeV and a
standard deviation of 0.0008 MeV. Cutting out the left-hand
parts of the curves and fitting only from λsc = 30 MeV/c

to λsc = 55 MeV/c gave a mean of −7.8498 MeV and a
standard deviation of 0.0022 MeV. For both these trials a
rather large N was needed, ranging from 14 to 36, but the
extrapolation is quite stable. In contrast, values of λsc higher
than those shown in Fig. 7, namely, from λsc = 50 MeV/c

to λsc = 85 MeV/c, require fewer computational resources
(N = 8–22). The extrapolations have a mean and standard
deviation of −7.792 and 0.042 MeV, respectively, so the mean
is still not so far away from the accepted value of −7.85 MeV.

In Fig. 8 we return to one of the curves of Fig. 4 to
examine the dependence of the binding energy of three nuclei
upon the uv regulator when the putative ir regulator is held
fixed (λsc = 55 MeV/c). At fixed λsc � λNN

sc ∼ 36 MeV/c,
and increasing �, once � > �NN , a plateau will develop
since no new contributions to |	E/E| exist for � > �NN ∼
780 MeV/c. The new feature of this figure is that the plateau of
the nucleus 2H is above that of 3H (taken from Fig. 4), which
is in turn above that of 4He. This suggests that �NN is not
the only regulator scale needed to explain the dependencies
upon � and λsc. Figure 8 introduces another scale—the
role of binding momentum (Q) of a nucleus. The scale Q

has been used recently in EFT treatments of pion-deuteron
scattering at threshold [57]. The idea is to take the small
binding energy of the deuteron explicitly into account as
one attempts to develop a consistent power counting for an

FIG. 8. (Color online) Dependence of the ground-state energy
of three s-shell nuclei (compared to a converged value; see text)
upon the uv momentum cutoff � = √

mN (N + 3/2)h̄ω for λsc =√
(mNh̄ω)/(N + 3/2) above the λNN

sc ≈ 36 MeV/c set by the NN

potential. Curves are not fits but spline interpolations to guide the eye.

EFT of pion-nucleus scattering lengths. The extension of the
definition of Q to more massive nuclei can take alternate
forms: Q = √

2mN (E/A), where E/A is the binding energy
per nucleon, or Q = √

2με, where μ is the reduced mass
of a single nucleon with respect to the rest of the nucleons
in the nucleus and ε is the binding energy with respect to
the first breakup channel [58]. Clearly the two definitions
coincide for the deuteron, and for the light nuclei considered
here both definitions give similar estimates. For definitiveness,
we calculate Q according to the formula Q = √

2με. This
calculation gives Q(2H) = 46 MeV/c, Q(3H) = 88 MeV/c,
Q(3He) = 83 MeV/c, Q(4He) = 167 MeV/c, and Q(6He) =
39 MeV/c. The binding momentum of 6He is comparable to
that of the deuteron because the first breakup channel into
4He + 2n is only about 1 MeV above the ground state.

The fractional error plotted in Fig. 8 appears to rise slightly
from a minimum at � > �NN ∼ 780 MeV/c as the uv cutoff
� increases for each of the three nuclei. For example, in the
2H calculation the λsc cutoff relative to the deuteron binding
momentum is λsc/Q = 1.2 and the error is rather high, rising
from a minimum of about 25%. The triton is more bound so
that the ratio is λsc/Q = 0.62 and the minimum error is 9%.
The calculation of the tightly bound 4He (λsc/Q = 0.33) has
the smallest error of less than 2%, but even that error appears
to rise as � increases to the limits of the present calculation.
That is, as Q increases at fixed λsc (at high enough �) the error
due to the λsc cutoff is lower. It is natural to expect that the
many-body dynamics enters at some level and sets additional
scales beyond the NN -interaction scales.

A final comparison of three s-shell nuclei selects the low
end of the ir region where λsc is at or below the ir cutoff
suggested by the potential. In Fig. 9 all momenta are scaled
by the binding momentum Q of the considered nucleus in
order to put them on the same plot. For such low momenta λsc,
|	E/E| does go to zero with increasing � because λsc � λNN

sc ,

FIG. 9. (Color online) Dependence of the ground-state energy
of three s-shell nuclei (compared to a converged value; see text)
upon the uv momentum cutoff � = √

mN (N + 3/2)h̄ω for λsc =√
(mNh̄ω)/(N + 3/2) below the λNN

sc ≈ 36 MeV/c set by the NN

potential. The data are fit to Gaussians.
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where λNN
sc is the second regulator scale of the NN interaction

itself. For 3H, λsc/Q ∼ 0.23 corresponds to λsc = 20 MeV/c;
the curve can be directly compared with the analogous curve
(black online) in Fig. 4. Therefore, this curve (and the others)
could have a plateau at the higher values of � that could
not be studied for fixed λsc below the λNN

sc ≈ 36 MeV/c

set by the NN potential because � = λsc(N + 3/2), and
the largest values of N available were 36 for the triton and
18 for the α particle. For 2H λsc = 10 MeV/c and for 4He
λsc = 40 MeV/c, both of which are near or below the second
(ir) regulator scale of the Idaho N3LO potential suggested to be
∼36 MeV/c. The largest values of � plotted are ∼ 861 MeV/c

for 2H, ∼ 746 MeV/c for 3H, and ∼ 780 MeV/c for 4He, all
of which are near or just above the uv regulator of the Idaho
N3LO potential suggested to be ∼ 780 MeV/c. So this is
a plot of low � for all the nuclei portrayed. The “high” �

tails of these curves can be fit by Gaussians (shifted from the
origin) in the variable �/Q. This figure would seem to nicely
illustrate the expectations of the theorems of the 1970s [2,20]
that the asymptotic rate of convergence does not depend upon
the number of particles.

In Figs. 4 through 9 we have displayed the features of
our results as functions of the pair of cutoffs of (�,λir ),
where λir ≡ λsc = √

mNh̄ω/(N + 3/2), and demonstrated an
extrapolation procedure to the uv and ir limits. Yet Fig. 3
suggests that an extrapolation to the infrared limit could
equally well be made by taking λ → 0 for a fixed large �. In
Fig. 10, we demonstrate the features of such an extrapolation
by using published results of the JISP16 interaction for the
halo nucleus 6He [12].1Its binding momentum Q(6He) =
39 MeV/c is comparable to that of the loosely bound deuteron
and should provide a severe test of any infrared extrapolation.

A second reason for considering 6He is that it has been
studied extensively with the JISP16 NN interaction, both
with HO expansion and HH expansion techniques [59]. The
same set of ground-state energy eigenvalues as those plotted in
Fig. 10 yields an extrapolated value of −28.76(9) MeV using
“extrapolation A” of Ref. [12].

In extrapolation A one lets the variable N → ∞ with a
selection procedure for values of h̄ω as explained in Ref. [12].
If one refers to the published results [12] where the largest N is
15 one finds an “extrapolation B” method which lets N → ∞
at fixed h̄ω to obtain −28.69(5) MeV, in good agreement
with the value of −28.68(12) MeV from extrapolation A.
A hyperspherical harmonics expansion calculation of 6He
with the JISP16 potential yields an extrapolated value of
−28.70(13) MeV [43]. This is increased by about 200-300 keV
to −28.96(3) MeV by a “hyperspherical harmonics effective
interaction” technique which requires fewer terms in K to
reach asymptotic convergence but loses variational character
because the induced many-particle interactions are dropped
from the effective interaction [23].

The results of Ref. [12] were obtained with an anti-
symmetrized many-body wave function constructed as a

1We used the original values of h̄ω and extended the data base in
(N,h̄ω) to N = 17, one step of N higher than the published results
in [12].

FIG. 10. (Color online) The ground-state energy of 6He calcu-
lated at five approximate values of � = √

mN (N + 3/2)h̄ω (see text)
and integer values of h̄ω. The curves are fits to the points and the
functions fitted are used to extrapolate to the ir limit λ = √

mNh̄ω = 0
with fixed � as in Fig. 7.

sum of Slater determinants of single-nucleon wave functions
depending on single-nucleon coordinates (and the Lawson
method to isolate c.m. effects) on a mesh of integer (N,h̄ω).
The value of N is, by definition, an integer and values of
the nonlinear variational parameter h̄ω were chosen to be
increments of 2.5 MeV between 10 and 40 MeV. To show
that the familiar integer values of h̄ω from Ref. [12] could be
directly used in the extrapolation procedures suggested here we
mapped the ground-state energy eigenvalues onto the variables
(�,h̄ω = λ2/mN ) rather than onto the variables (�,

√
h̄ω =

λ/
√

mN ). The largest value of N was 17 (Nmax = 16 for this
p-shell nucleus). The extrapolation of Fig. 10 is performed
by a fit of an exponential plus a constant to the set of results
at fixed �. The resulting �’s are not then strictly fixed but
each point plotted corresponds to a value of � constant to
within 2%–5% of the central value indicated on the graph.
The important S-wave parts of the JISP16 potential are fit to
the data in a space of N = 8 and h̄ω = 40 MeV. Therefore this
potential has NN regulator scales of λNN

sc ∼ 63 MeV/c and
�NN ∼ 600 MeV/c. (The value of λNN associated with this
potential is about 200 MeV/c, as can readily be estimated from
the legend of Fig. 2.) But JISP16 seems to be so soft that the
ultraviolet region is already captured with � � 500 MeV/c,
as shown by the top two curves of Fig. 10.

We fit the ground-state energy with three adjustable param-
eters using the relation Egs(h̄ω) = a exp(−c/h̄ω) + Egs(h̄ω =
0) five times, once for each “fixed” value of �. It is readily
seen that one can indeed make an ir extrapolation by sending
h̄ω → 0 with fixed � as first advocated in Ref. [35] and that
the five ir extrapolations are consistent. The spread in the five
extrapolated values is about 500 keV or about 2% about the
mean of −28.78 MeV. The standard deviation is 200 keV.

A second (single) extrapolation of the 6He data with λsc →
0 which uses all calculated energies where � � 510 MeV/c

is shown in Fig. 11. As in Fig. 7, we fit the ground-state
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energy with three adjustable parameters using the relation
Egs(λsc) = a exp(−c/λsc) + Egs(λsc = 0). The extrapolated
value is −28.68 MeV, which agrees well with Fig. 10 and
the other extrapolated results. The extrapolation prescription
used in Fig. 11 employs values of h̄ω from 15 to 40 MeV and a
range of N from 7 to 17. That is, all of the information (at � �
510 MeV/c) available from these calculations is used in the
λsc extrapolation. How can one estimate an uncertainty from
such a single extrapolation? Looking at the scatter of the points
about the fitted curve is instructive but not quantitative. If we
bin the 48 points of Fig. 11 into the same bins of “constant”
� as in Fig. 10, we find (not shown) five extrapolations
with a mean of −28.58 MeV and standard deviation of
0.06 MeV. Another possible way of breaking up this single
extrapolation is more in the spirit of the earlier extrapolations
of Delves and successors. If we map from (N,h̄ω) onto
(�,λsc) holding N fixed we get another set of extrapolations,
those for N = 7, 9, 11, 13, 15, and 17 with concomitant
smallest λsc = 60, 50, 41, 36, 32, and 28 MeV/c. Of these
six extrapolations, only those with N � 13 are consistent with
the extrapolation which uses the full 41 points. This is to
be expected, as one needs a large N before the convergence
“starts to behave.” The mean of the three extrapolations
with N � 13 is −28.54 MeV and the standard deviation is
0.11 MeV. Concentrating only on large N in this naive manner
gives a worse extrapolation compared to accepted extrapolated
ground-state energies. It would appear that it is advantageous
to take advantage of the scaling properties of λsc for all values
of the uv regulator large enough to capture the uv limit. In that
case, as seen in Fig. 11, even results with low N (and therefore
large λsc) can usefully stabilize and bound an extrapolation
to the ir limit. A rough estimate of the uncertainties of this
extrapolation of Fig. 11 would then be −28.68(22) MeV.

In conclusion, our extrapolations in the ir cutoff λ of
−28.78(50) MeV or the ir cutoff λsc of 28.68(22) MeV are con-
sistent with each other and with the independent calculations.

FIG. 11. (Color online) The ground-state energy of 6He calcu-
lated at all values of � � 510 MeV/c [� = √

mN (N + 3/2)h̄ω]
and variable λsc = √

(mNh̄ω)/(N + 3/2). The curve is a fit to the
points and the function fitted is used to extrapolate to the ir limit
λsc = 0.

V. SUMMARY AND OUTLOOK

We reviewed the functional analysis theorems which
describe variational calculations of many-body systems made
with a trial function expanded in a complete set of known
functions. According to these theorems the convergence prop-
erties of such a calculation are determined by the interaction
and by the dimensionless number N which determines the
truncation at a finite number of basis functions. Among basis
sets, harmonic oscillator functions are distinguished by ease
of separation of relative and center-of-mass coordinates and
by the dimensional parameter h̄ω which sets an intrinsic scale.
Motivated by effective field theory studies, one can define
quantities from (N , h̄ω) forming ultraviolet and infrared
momenta that act as cutoffs that characterize the model
space just as does (N , h̄ω). Extending both the uv cutoff to
infinity and the ir cutoff to zero is prescribed for a converged
calculation. There have been two alternate definitions of the ir
cutoff: λ = √

mNh̄ω and λsc = √
mNh̄ω/(N + 3/2). Note that

λsc = λ2/�, where � = √
mN (N + 3/2)h̄ω is the uv cutoff

as usually defined. We calculated the ground-state energy of
light nuclei with the “bare” and “soft” NN interactions Idaho
N3LO and JISP16. We investigated the behaviors of the uv and
ir regulators of model spaces used to describe 2H, 3H, 4He,
and 6He.

We obtained fully converged eigenvalues for 2H and 3H
which were in agreement with other calculations including
those (e.g., using a Faddeev approach) obtained from a direct
finite-difference solution of partial differential equations in
many dimensions. These results could be used to examine the
cutoff dependencies of the model spaces (�,λ) or (�,λsc) as
one cutoff was held fixed and the other approached its limit.
The examination was based upon the ratio |	E/E|, defined
as |(E(�,λir ) − E)/E|, where E is the fully converged
ground-state energy. Both pairs of cutoffs acted as expected
when � was held fixed and λir tended toward zero; |	E/E|
decreases exponentially (for the values of � available to the
calculation) in Figs. 3 and 5 provided � exceeds a threshold set
by the potential. On the other hand, in both figures drawing an
imaginary vertical line at a fixed λir which crosses the curves
shows that the calculation gets better as � increases. It is in
Figs. 2 and 4 that the difference between the two versions of
the λir cutoff becomes evident. For the pair (�,λ) in Fig. 2
|	E/E| decreases exponentially as the uv cutoff increases for
all values of λ investigated. But in Fig. 4 |	E/E| actually
rises as � → ∞ if λsc is larger than another threshold value
evidently set by the potential. As both cutoffs should be sent to
their respective limits for a converged calculation, this behavior
does not invalidate the identification of λsc with λir , but it does
seem a little peculiar. Perhaps this behavior signals a need for
higher-order terms in λ/� in the definition of λsc.

In any event, we have introduced a practical extrapolation
procedure with � → ∞ and λir → 0 which can be used
when the size of the basis needed exceeds the capacity of the
computer resources, as it does for 4He and 6He and certainly
will for any more massive nuclei. Unlike other extrapolation
procedures the ones advocated in this paper treat the variational
parameters N and h̄ω on an equal footing to extract the
information available from sequences of calculations with
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model spaces described by (N , h̄ω). We have established that
� does not need to be extrapolated to ∞ but if � > �NN set
by the potential one can make the second extrapolation to zero
with either ir cutoff λsc (see Figs. 7 and 11) or λ (see Fig. 10).
The choice of the scaling cutoff λsc is especially attractive as
� need not be held constant, but any � large enough can be
used in the ir extrapolation. Values of the ir cutoff λsc can be
lowered (thereby increasing the reliability of the extrapolation
to λsc = 0) only by increasing N—a computational challenge
which gets harder the larger the number of particles in the
nucleus. For example, the largest N achievable with our
calculation which employs the Idaho N3LO NN interaction
for the nuclei 6Li and 6He is 15 (N = Nmax + 1 for these
p-shell nuclei). As the value of � must be 800 MeV/c

or greater for this NN interaction the smallest value of
λsc is then ∼48 MeV/c. Our numerical investigation with the
shell model code ANTOINE [46] suggests that this is not low
enough for a reliable ir extrapolation and the reason lies
entirely in the inability to calculate with high enough N . On
the other hand, the largest N achievable for p-shell nuclei on
current supercomputers using MFDn [47] ranges from N = 17
for 6Li and 6He down to N = 11 for 12C and 14N, so the
smallest value for the ir cutoff would be λsc ∼ 43 MeV/c for
6Li and 6He and λsc ∼ 64 MeV/c for 12C and 14N. It is not
yet known whether a successful ir extrapolation can be made
for these heavier nuclei with present-day capabilities. For the
softer JISP16 NN potential, which has a lower minimum
�, the ir extrapolation is satisfactory, as demonstrated by
the extrapolation for 6He in Fig. 11. Our experience with ir
extrapolations with these two potentials suggests a continuing
role for the similarity renormalization group evolution, which
softens potentials [38–40].

For the future, we can envisage extending this extrapolation
technique to calculating other properties of nuclei, properties
which may or may not be as amenable as are energy
eigenvalues to the uv and ir regulators. The rms point matter
radii and the Gamow-Teller (GT) matrix element (relevant to
β decay) of light nuclei are important quantities to calculate
reliably for these (and more massive nuclei) [43,60]. In the
nuclear structure folklore, r2 and Dz (the z component of
the electric-dipole operator) are of long range and the full
GT matrix element, including meson-exchange currents, is
of medium range. The electric dipole polarizabilities of light
nuclei are necessary in order to obtain accurate nuclear-
polarization corrections for precisely measured transitions
involving S waves in one-and two-electron atoms. The defining
relation for the polarizability can be converted into a procedure
which needs only bound-state quantities and involves the
long-range dipole operator D [61]. A convergence analysis of
a HO expansion, which lets N → ∞ at fixed h̄ω, for electric
dipole polarizabilities of 3H, 3He, and 4He obtained faster con-
vergence for lower h̄ω than for the binding energy itself [62]. It
would be interesting to learn how the procedure advocated here
would work for these problems. These latter problems often
require not only converged ground-state energies but energies
which agree with experiment. For that, NNN interactions are
considered necessary [63], thereby leading to a need for more
studies of the convergence and extrapolation concepts of this
paper.

Note added. After submission of this manuscript, Furnstahl,
Hagen, and Papenbrock posted an investigation of uv and ir
cutoffs in finite oscillator spaces [64]. They assume that λsc

(scaled by a factor of
√

2 from the λsc of this paper) is the ir
cutoff. They derive an explicit extrapolation formula in their ir
cutoff which is the same (exponential) as the one of this paper
and is used in the same way: establish that the uv cutoff is large
enough and then extrapolate in the ir variable. In addition, they
suggest a first-order (higher-order) correction to both the uv
and ir regulators. These results are a useful advance on the
exponential form of convergence in N shown less concretely
by the forty-year-old theorems of [2,20]. Their final formula
contains exponentials with arguments proportional to Nh̄ω

from the uv regulator and to
√

N/(h̄ω) from their ir regulator.
They caution, as have we, that results such as these should be
expected only for the “smooth” potentials of [2,20] (or, in their
momentum-space characterization, “super-Gaussian falloff in
momentum space”) such as those inspired by chiral EFT or
obtained by renormalization group transformations.
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102502 (2009).

[61] I. Stetcu, C.-P. Liu, J. L. Friar, A. C. Hayes, and P. Navrátil,
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