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Relating pseudospin and spin symmetries through chiral transformation with tensor interaction
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We address the behavior of the Dirac equation with scalar (S), vector (V ), and tensor (U ) interactions under
the γ 5 discrete chiral transformation. By using this transformation, in a simple way, we can obtain solutions for
the Dirac equation with spin (� = V − S = 0) and pseudospin (� = V + S = 0) symmetries, which includes a
tensor interaction. As an application, the Dirac equation with scalar, vector, and tensor Cornell radial potentials
is considered, and the correct solution to this problem is obtained.
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Introduction. The pseudospin symmetry was introduced
in nuclear physics many years ago [1,2] to account for
the degeneracies of orbitals in single-particle spectra. It is
known that the spin and pseudospin symmetries correspond
to SU(2) symmetries of a Dirac Hamiltonian with vector
(V ) and scalar (S) potentials. Also, it is known that the spin
symmetry occurs in the spectrum of a meson with one heavy
quark [3] and antinucleon bound in a nucleus [4], and the
pseudospin symmetry occurs in the spectrum of nuclei [5,6].
In Refs. [7–10], it was reported that pseudospin and spin
symmetries were connected by charge conjugation. This was
shown explicitly for harmonic oscillator potentials in (1 + 1)
dimensions [9]. Also, in Ref. [9], a connection of pseudospin
and chiral symmetries in (1 + 1) dimensions is shown. In
recent years, some authors have extended the research field
for pseudospin and spin symmetries by including a tensor
interaction. The tensor interaction has been used in studies of
nuclear properties with effective Lagrangians, which include
relativistic mean-field theories [11], and in the relativistic
Hartree approach model [12]. Those papers suggest that the
tensor interaction could have a significant contribution to
pseudospin splittings in nuclei. In Ref. [13], the authors show
that the tensor interaction can strongly change the spin-orbit
term. The connection of pseudospin and spin symmetries
by charge conjugation, which includes a tensor interaction,
has also been studied in Refs. [14,15]. However, a clear
connection between pseudospin and spin symmetries, obtained
by a discrete chiral transformation, which includes a tensor
interaction, has not been established. Therefore, we believe
that this connection deserves to be explored.

The main motivation of this Rapid Communication is
inspired by the results obtained in Ref. [9]. As a natural
extension, we address the behavior of the Dirac equation with
scalar (S), vector (V ), and tensor (U ) interactions under the γ 5

discrete chiral transformation. By using this transformation,
in a simple way, we can obtain solutions for the Dirac
equation with spin (� = V − S = 0) and pseudospin (� =
V + S = 0) symmetries that include a tensor interaction. As an
application, the Dirac equation with scalar, vector, and tensor
Cornell radial potentials is considered. The radial equation
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for this problem is mapped into a Schrödinger-like equation
embedded in a three-dimensional harmonic oscillator plus a
Cornell potential. We use this opportunity to present the correct
solution to this problem in a more transparent way.

Dirac equation with scalar, vector, and tensor interactions.
The time-independent Dirac equation for a fermion with scalar
(S), vector (V ), and tensor (U ) interactions is given by (h̄ =
c = 1)

H� = Eψ, (1)

where

H = �α · �p + β[m + S(r)] + V (r) − iβ �α · r̂U (r). (2)

By using the combinations � = V + S and � = V − S, we
can rewrite the Hamiltonian (2) as

H = �α · �p + βm + I + β

2
� + I − β

2
� − iβ �α · r̂U (r).

(3)

Chiral transformation. The chiral operator is the matrix
γ 5 = iγ 0γ 1γ 2γ 3, and therefore, under the discrete chiral
transformation, the spinor is transformed as �χ = γ 5�, and
the transformed Hamiltonian Hχ = γ 5Hγ 5 is

Hχ = �α · �p − β[m + S(r)] + V (r) + iβ �α · r̂U (r). (4)

We can see that the discrete chiral transformation changes the
sign of the mass and of the scalar and tensor potentials because
γ 5 commutes with �α and anticommutes with β. In term of the
combinations � and �, this means that � turns into � and
vice versa.

Equation of motion. Now, we follow the same procedure of
Ref. [15] and use the projectors P± = (I ± β)/2. By applying
P± to the left of the Dirac equation (1) and by defining �± =
P±�, we obtain

�α · �p�∓ + {V (r) ± [m + S(r)]}�± ∓ i �α · r̂U (r)�∓ = E�±,

(5)

or

[�α · �p − i �α · r̂U (r)]�− = (E − m − �)�+, (6)

[�α · �p + i �α · r̂U (r)]�+ = (E + m − �)�−. (7)
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If S, V , and U are radial functions, the Dirac spinor is
considered as

�km(�r) =
(

�+
�−

)
=

(
ifk(r)

r
Ykm(r̂)

gk(r)
r

Y−km(r̂)

)
, (8)

where fk and gk are the radial wave functions of the upper and
lower components, respectively. Ykm are the so-called spinor
spherical harmonics. Here, k is the quantum number of the
total angular momentum j , and it is related to the orbital
momentum l by k = −(l + 1) = −(j + 1/2) for j = l + 1/2
and k = l = +(j + 1/2) for j = l − 1/2.

As shown in Ref. [14], by using the following property
�σ · r̂Ykm = −Y−km, Eqs. (6) and (7) can be reduced to two
coupled first-order ordinary differential equations for the radial
upper (fk) and lower (gk) components,[

d

dr
+ k

r
− U (r)

]
fk(r) = [E + m − �]gk(r), (9)[

d

dr
− k

r
+ U (r)

]
gk(r) = −[E − m − �]fk(r). (10)

Under the discrete chiral transformations, the spinor (8)
becomes

�χ = γ 5� =
(

�−
�+

)
. (11)

This last result means that γ 5 interchanges the upper and lower
components, thus, f turns into −ig, g turns into if , and k

turns into −k.
Spin and pseudospin symmetries. By using the expression

for gk obtained from Eq. (9) with � = 0 and E �= −m and by
inserting it in Eq. (10), we obtain[

d2

dr2
− k(k + 1)

r2
+ 2k

U (r)

r
− U ′(r) − U 2(r)

]
fk(r)

= −(E − m − �)(E + m)fk(r). (12)

In a similar way, by using the expression for fk obtained from
Eq. (10) with � = 0 and E �= m and inserting it in Eq. (9), we
obtain[

d2

dr2
− k(k − 1)

r2
+ 2k

U (r)

r
+ U ′(r) − U 2(r)

]
gk(r)

= −(E + m − �)(E − m)gk(r). (13)

Therefore, either for � = 0 with E �= −m or for � = 0 with
E �= m, the solutions for this problem can be found by solving
a Schrödinger-like problem.

As discussed in the previous section, the discrete chi-
ral transformation performs the changes � → �, � →
�, m → −m, U → −U, f → −ig, g → if , and k →
−k. At this stage, note that, by applying these changes in
Eq. (9) [or Eq. (12)], we obtain Eq. (10) [or Eq. (13)]. This
means that we can take advantage of this kind of transformation
and can obtain the solutions for � = 0 from the � = 0
case. For instance, we can focus the discussion on this case
� = 0, � = c1F1(r), and U = c2F2(r), and the results for
the case when � = c1F1(r), � = 0, and U = c2F2(r) can be
obtained easily by just changing the signs of m, c2, and k in
the relevant expressions.

Dirac equation with Cornell potentials. In the first instance,
let us consider

� = 0, � = a1r + b1

r
, U = a2r + b2

r
. (14)

By substituting Eq. (14) into Eq. (12), we get

d2fk(r)

dr2
+

[
E2 + a

r
− br − cr2 − λ(λ + 1)

r2

]
fk(r) = 0,

(15)

where

E2 = E2 − m2 + 2a2
(
k − b2 − 1

2

)
, (16)

a = −b1(E + m), (17)

b = a1(E + m), (18)

c = a2
2, (19)

λ = − 1
2 + 1

2 |2k + 1 − 2b2|. (20)

The solution for Eq. (15), with c necessarily real and positive,
is the solution of the Schrödinger equation for the three-
dimensional harmonic oscillator plus a Cornell potential. This
novel potential was considered in Refs. [16,17], but the authors
misunderstood the full meaning of the potential and made a
few erroneous calculations. We use this opportunity to present
the correct solution to this problem in a more transparent way.

The solution close to the origin, valid for all values of λ,
can be written as being proportional to rλ+1. By setting

f (r) = rλ+1 exp

(
−

√
c

2
r2 − b

2
√

c
r

)
φ(r), (21)

and by introducing the following new variable and parameters:

x = 4
√

cr, ω = 2λ + 1, ρ = b
4
√

c3
, τ = b2 + 4cε2

4
√

c3
,

(22)

one finds that the solution for all r can be expressed as a
solution of the biconfluent Heun differential equation [17],

x
d2φ

dx2
+ (ω + 1 − ρx − 2x2)

dφ

dx

+ [(τ − ω − 2)x − �]φ = 0, (23)

with

� = 1
2 [δ + ρ(ω + 1)], (24)

where δ = − 2a
4√c

. The expressions for ω, τ , and δ are very
different from that given in Refs. [16,17]. The reason for
this disagreement is the mistakes in those references. The
biconfluent Heun differential equation has a regular singularity
at x = 0 and an irregular singularity at x = ∞. The solution,
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which is regular at the origin, is given by

N (ω, ρ, τ, δ; x) =
∞∑

j=0

�(ω + 1)

�(ω + 1 + j )

Aj

j !
xj , (25)

where �(z) is the γ function, A0 = 1, A1 = � and the
remaining coefficients of the series expansion for ρ �= 0 satisfy

the three-term recurrence relation,

Aj+2 = [(j + 1)ρ + �]Aj+1

− (j + 1)(j + ω + 1)(τ − ω − 2 − 2j )Aj . (26)

The series is convergent for x in the range [0,∞) and tends
to ex2

as x → ∞. In fact, φ presents polynomial solutions of
degree n when τ = ω + 2 + 2n and An+1 = 0. Therefore, by
using the condition τ = ω + 2 + 2n, we obtain

E2 = (2n + 2λ + 3)|a2| − b2

4a2
2

. (27)

By substituting Eqs. (16) and (18) into Eq. (27), we obtain the spectrum for � = 0,

E = −mE

aE

± mE

aE

√
1 − aE

m2
E

[
2a2

(
k − b2 − 1

2

)
− (2n + 2λ + 3)|a2| + (aE − 2)m2

]
, (28)

where mE = ma2
1

4a2
2

and aE = 1 + a2
1

4a2
2
. Note that, at first view, Eq. (28) is independent of the value of b1. Now, we focus attention

on the condition An+1 = 0; this condition provides a constraint on the value of b1. For instance, n = 0 implies that A1 = � = 0.
In this specific case, we obtain

b1 = − a1

2|a2| (1 + |1 − 2b2 + 2k|), (29)

where the constraint (29) involves specific values of a1, a2, b2, and the quantum number of the total angular momentum. At
this stage, we can see a peculiar behavior of the parameter b1. Initially, b1 is arbitrary, but during the procedure to obtain the
quantization condition, the value of b1 is restricted by Eq. (29). This last result implies that the parameter b1 in Eq. (14) should
satisfy the constraint (29) to obtain the quantization condition. Therefore, we can conclude that the spectrum (28) depends
implicitly on b1 due to the fact that there is a link between the parameters a1, a2, b1, b2, and k.

Now, let us consider the case,

� = a1r + b1

r
, � = 0, U = a2r + b2

r
. (30)

As referred to before, we can take advantage of the discrete chiral transformation. We recall that this case can be obtained easily
by just the changes m → −m, U (r) → −U (r), and k → −k in the relevant expressions. We can see that the change in U (r)
implies that a2 → −a2 and b2 → −b2. Therefore, the spectrum for � = 0 is given by

E = mE

aE

± mE

aE

√
1 − aE

m2
E

[
2a2

(
k − b2 + 1

2

)
− (2n + 2λ + 3)|a2| + (aE − 2)m2

]
, (31)

where λ = − 1
2 + 1

2 |1 − 2k + 2b2|.
Conclusions. We have addressed the behavior of the

Dirac equation with scalar (S), vector (V ), and tensor (U )
interactions under the γ 5 discrete chiral transformation. We
showed that, in a simple way, it was possible to obtain solutions
of the Dirac equation for � = 0 (pseudospin symmetry)
from the � = 0 (spin symmetry) case by using symmetry
arguments. As an application, we have considered scalar,
vector, and tensor Cornell radial potentials. For this case, the
radial equation was mapped into a Scrödinger-like equation

embedded in a three-dimensional harmonic oscillator plus
a Cornell potential. We found the correct solution for this
problem. Our results are definitely useful because they shed
some light on this issue. Additionally, the correct solution for
the Cornell potential may be useful due to wide applications
in several physical problems.
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