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Proton Compton scattering cross section in different variants of chiral effective field theory
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We compare the predictions of different variants of chiral effective field theory for the γp elastic scattering
differential cross section. We pay particular attention to the role of pion loops, and the impact that a heavy-baryon
expansion has on the behavior of those loops. We also correct erroneous results for these loops that were published
by Pascalutsa and Phillips [Phys. Rev. C 67, 055202 (2003)].
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Experiments to measure Compton scattering from the pro-
ton are presently being pursued at a number of facilities around
the world, including MAMI (Mainz) and HIγ S at TUNL. Chi-
ral effective field theory (χEFT) is one of the main theoretical
techniques used to analyze γp scattering data in the energy
range ωlab � 350 MeV. χEFT generates the most general
Compton amplitude that is consistent with electromagnetic
gauge invariance, the pattern of chiral-symmetry breaking in
QCD, and Lorentz covariance, to any given order of the small
parameter P ≡ {ω,mπ }/�, with ω the photon energy, mπ the
pion mass and � the breakdown scale of the theory.

By now, χEFT calculations of the γp amplitude exist in
several different variants of the theory. Two key choices must
be made: whether to include the �(1232) resonance explicitly,
and whether to maintain exact Lorentz covariance or not. The
pioneering calculations of Compton scattering in χEFT [1,2]
were performed in a theory with only nucleons and pions as
explicit degrees of freedom: the effects of the � were encoded
in a string of contact operators. This reduces the breakdown
scale � from its nominal value around the mass of the ρ meson
to the energy at which the � is excited, i.e., M� − MN ≈
300 MeV. In addition, this work employed the heavy-baryon
(HB) expansion for the nucleon propagators, which amounts to
making an expansion in 1/MN , alongside the EFT expansion
in P . In these calculations the polarizabilities α

(p)
E1 and β

(p)
M1 are

predicted at order P 3, and these predictions are in remarkably
good agreement with present extractions from data [3,4]. The
corresponding results for γp observables agree moderately
well with data for ω,

√|t | � 150 MeV [5–7]. Beyond this
domain the absence of the � significantly affects the ability of
this χEFT variant to describe the physics, at least at this low
order in the expansion.

Subsequent work [8–13] showed how to incorporate the
� as an explicit degree of freedom. In particular, Pascalutsa
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and Phillips [8] showed how to consistently resum the effects
that generate the �’s finite width within χEFT, and performed
calculations of γp scattering from threshold up to 350 MeV.
It should be noted that adding the � as an explicit degree
of freedom in χEFT means that the ratio (M� − MN )/�
becomes one of the expansion parameters of the theory.
Reference [8] pointed out that this is numerically rather similar
to the actual expansion parameter in �-less calculations,
mπ/(M� − MN ), and denoted both as δ; clearly δ ∼ P 1/2. In δ

counting powers of the electronic charge e are shown explicitly,
whereas the χEFT of Refs. [1,2] counts e ∼ P . Thus the
Thomson amplitude is O(P 2) ∼ O(e2δ0) and structure effects
start with πN loops at O(P 3) ∼ O(e2δ2) in the low-energy
region (the counting changes in the resonance region; for
details see Ref. [8]).

More recently, Lensky and Pascalutsa [14] repeated and
extended the calculations of Ref. [8] in a framework in
which full Lorentz covariance in the Compton amplitude was
maintained. They also incorporated additional effects such as
π� loops, thereby extending the results to a higher order in the
χEFT expansion. Since MN > � the HB expansion should
not harm the accuracy of the predictions, but it has been
pointed out that the differences between HB and covariant
calculations can be marked—even at low energies—if both
are only carried out to a low order in the expansion. In
particular, the computation of loops with the full nucleon Dirac
propagator can soften the ultraviolet behavior of the integrand,
leading to somewhat different predictions than those obtained
in HB. Therefore in what follows we pay particular attention
to how the HB expansion affects the predictions for the πN

loops for ωlab � 350 MeV.
The imminence of the aforementioned experimental data

makes it timely to examine this issue, as well as other
differences between these variants of χEFT, all of which are
based on the same low-energy symmetries of QCD. Thus, in
this brief report we collect the predictions of these different
variants (with and without an explicit �, with and without
the 1/MN expansion) for proton Compton cross sections.
Readers who wish to learn more about χEFT in general, or the
specifics of the different γp calculations we are discussing,
should consult the recent review [3], and note that a number
of misprints present in Ref. [8] are corrected there. There is
also a discussion of the fact that the amplitude used in Ref. [8]
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TABLE I. Common parameters used by all calculations [15]. The
π 0 mass is only used for the computation of the t-channel pion-pole
graph. The πN� coupling constant hA is fit to the experimental �

width and the magnetic and electric γN� coupling constants gM and
gE are taken from the pion photoproduction study of Ref. [16]. For
definitions of all these symbols see Ref. [3].

αEM 1/(137.04) fπ 92.21 MeV
m±

π 139.57 MeV m0
π 134.98 MeV

MN = Mp 938.27 MeV gA 1.270
κ (p) 1.793
M� 1232 MeV hA ≡ 2gπN� 2.85
gM 2.97 gE − 1.0

for πN loops had an incorrect analytic continuation above the
πN threshold, so that the cross sections given there above that
energy are in error.

The calculations of the γp differential cross section
presented below have the following ingredients. All contain the
nucleon Born graph (calculated with Dirac nucleons) and the t-
channel π0 pole graph (again covariant in all approaches). The
�-full variants contain the �-pole graphs (s- and u-channel)
calculated as described in Ref. [3,8,14]—covariantly and with
a finite width stemming from πN loops. When Compton
pion-loop graphs are also added, the amplitude includes effects
which are of leading or next-to-leading order throughout
the kinematic region 0 � ωlab � 350 MeV (apart from the
loop correction to the γN� vertices), and all effects up to
next-to-next-to-leading order—O(e2δ3)—in the low-energy
region ωlab ∼ mπ .

Pion-loop graphs in the Compton amplitude may be calcu-
lated covariantly or in the heavy-baryon (1/MN ) expansion,
and will include π� loops if the � is included. Our aim is
to highlight the effects of the heavy-baryon expansion on the
loop pieces of the amplitudes. The different approaches make
differing predictions for the polarizabilities at this order in
the χEFT expansion; in particular the � pole makes a large
contribution to β

(p)
M1.

At next order, O(e2δ4), α(p)
E1 and β

(p)
M1 have counterterm con-

tributions. We include these in all the calculations presented
here. In each case they are adjusted to yield the best-fit values of
Ref. [3]: α(p)

E1 = 10.5 × 10−4 fm3, β(p)
M1 = 2.7 × 10−4 fm3. The

corresponding values of the counterterms when dimensional
regularization and the MS scheme are used are displayed in
Table II. (The scale μ is chosen as MN , where necessary.) The
reader is referred to Ref. [3] for a fuller explanation of all these

TABLE II. Values for the counterterm contributions to α
(p)
E1 and

β
(p)
M1 in the different variants of χEFT considered here.

δα
(p)
E1 (10−4 fm3) δβ

(p)
M1 (10−4 fm3)

Tree 10.5 2.7
+� 10.6 − 4.4
+πHB − 2.1 1.4
+π 3.6 4.5
+πHB, � − 9.8 − 7.1
+π,� − 0.8 − 1.2

different parts of the calculation. The values of the parameters
in all calculations are defined by the values given in Table I.

The calculations presented here are as follows.

(i) Tree: the results for Compton scattering with nucleon
and pion Born graphs, plus polarizabilities; all other
calculations build on this one.

(ii) +�: Tree graphs plus the effects of the (dressed) � s-
and u-channel pole graphs.

(iii) +πHB: Tree graphs plus πN loops: the O(e2δ2)
calculation in heavy-baryon χEFT without an explicit
� degree of freedom.

(iv) +π : as point (iii), but with relativistic nucleon propa-
gators in πN and π� loops.

(v) +πHB,�: the O(e2δ3) calculation in heavy-baryon
χEFT with an explicit �, including tree graphs, �

poles and HB πN and π� loops.
(vi) +π,�: as point (v), but with relativistic nucleon

propagators in πN and π� loops.

Clearly only the last two are realistic calculations which
can be compared with data in the resonance region (and indeed
some way below). For completeness we note that once α

(p)
E1 and

β
(p)
M1 are readjusted our cross sections with and without π�

loops contributions are so close as to be not worth displaying
separately.

The HB calculations depend on the frame chosen to define
the pion-loop amplitudes while the covariant ones do not. The
Breit frame has been chosen here, but in order to show the
uncertainty this introduces, a grey band denotes the difference
between the Breit and c.m. frame choices. Two caveats should
be noted. First, this is only an indication of the size of the
omitted 1/MN contributions; in particular the two frames
coincide at 180◦. Second, the lack of a band on other curves
should not be taken to mean that they are somehow more
precise; all are low-order calculations for which higher-order
contributions of at least this relative size are expected.

The results of these calculations for the differential cross
section at laboratory angles of 60◦, 90◦, 110◦, and 135◦ and for
energies from threshold to the � peak are shown in Fig. 1. The
insets show, in detail, the behavior of the predictions around
the πN threshold. There is very little difference between
the “+π,�” and “+πHB,�” results at backward angles and
higher energies. This is because the πN loops themselves
are small in this regime. The πN loops are larger at forward
angles for ωlab = 300–350 MeV, and the difference between
the two calculations is more noticeable there: the “+πHB,�”
calculation overshoots the forward-angle data markedly. (We
used the same gM in all calculations and this overshoot could
partly be compensated by choosing a smaller value for gM ; in
Ref. [3] gM = 2.85 was found to give the best fit to Compton
data.) These forward- and backward-angle trends continue if
one examines cross sections at angles less than 60◦ or greater
than 135◦.

One feature that is rather independent of angle is that
the cusp that results from the opening of the πN channel
is significantly stronger in the HB calculation. Measured
relative to the “ + �” calculation, the cusp from the HB πN

loops at this order is approximately twice as strong as in the
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FIG. 1. (Color online) Unpolarized differential cross section (in nb/sr) as a function of laboratory energy (in MeV) at fixed laboratory
angles. Data from within ±6◦ of the quoted angle is shown in each panel. Our main results are the +πHB, � (blue dash-dotted) and +π,�

(red dashed) curves. For comparison, we also show: +� (black solid), +πHB (red dot-double dashed), +π (blue dash-double dotted) and Tree
(black dotted) calculation—for explanation of these terms and of the grey band, see the text. The magenta/purple diamonds are data from
Refs. [17] and [18] as well as other experiments at MAMI, while the black squares are the data of Hallin et al. [19], and the yellow stars are
from Ref. [20]. For the definition of other symbols see Ref. [3].

covariant calculation. The insets in Fig. 1 show that the present
experimental database cannot discriminate between the two
calculations. The difference in the vicinity of the πN threshold
continues into the region ωlab ≈ 200 MeV, where a noticeable
difference between the two predictions can be seen, essentially
independent of angle. However, the data are sparser there. The
lesser prominence of pions in the covariant calculation reflects
the fact that the relativistic baryon propagator gives the loops a
softer high-energy behavior than in the HB case. (In actuality,
the difference between the calculations with and without HB
in the vicinity of the πN threshold is drastically reduced
when the γp πN loops are calculated to O(e2δ4) in HBχ

EFT [21,22].)
In Fig. 2 we examine the cross section as a function

of c.m. angle at three energies. The highest energy shown
in Fig. 2 corresponds to

√
s = M�, and the trends already

discussed in regard to the forward- and backward-angle
cross sections are observed again there. (The rise of the
“+πHB,�” cross section at forward angles at this energy is
tamed when the πN loops are computed to O(e2δ4) [3].) The
situation is somewhat reversed at ωlab = 149 MeV (left panel),
where the forward-angle predictions of the HB and covariant
calculations agree well with each other and with the trend

of the data, but there is about a 10% difference at backward
angles.

Overall then, the differential cross sections obtained in
the two variants of χEFT that both include the leading πN

loop effects and an explicit � are quite similar, provided
the counterterms δα

(p)
E1 and δβ

(p)
M1 are included and adjusted

to yield identical values for these scalar dipole polarizabilities.
However, the values found for these counterterms in the
χEFT variants considered here are rather different. They are
particularly large in the “+πHB�” calculation—especially
as compared to the “+π,�” one— which could be taken
as evidence that the former χEFT expansion has less rapid
convergence than does the latter [23].

Coming back to the cross sections, the differences be-
tween the heavy-baryon and manifestly covariant results are
consistent with the fact that the latter calculation includes a
number of mechanisms which would be higher-order in the HB
calculation. Since MN ∼ � the results obtained in these two
variants of χEFT differ by amounts which are representative
of the size of higher-order effects in the EFT expansion,
provided α

(p)
E1 and β

(p)
M1 are adjusted to the same value in

both calculations. Once this is done χEFT makes predictions
for the Compton cross section which are independent—up to
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FIG. 2. (Color online) Unpolarized differential cross section (in nb/sr) as a function of c.m. angle (in degrees) at fixed energies. Data from
within ±5 MeV of the quoted energy are shown are each panel. In this figure only three theory curves—“+�”, “+π, �”, and “+πHB, �”—are
shown. For legend see caption of Fig. 1.

corrections of the expected, higher-order, size—of whether the
heavy-baryon expansion is invoked or not. In light of this it
will be interesting to examine the χEFT predictions for the
asymmetries which are the focus of ongoing experiments at
MAMI [24] and HIGS [25].
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