Symmetries in the $g_{9/2}$ shell

L. Zamick and A. Escuderos

Department of Physics and Astronomy, Rutgers University, Piscataway, New Jersey 08854, USA (Received 18 July 2012; published 15 October 2012)

We consider symmetries which arise when two-body interaction matrix elements with isospin T = 0 are set equal to a constant in a single-*j*-shell calculation. The nucleus ⁹⁶Cd is used as an example.

DOI: 10.1103/PhysRevC.86.047306

PACS number(s): 21.60.Cs, 21.10.Pc, 21.30.Fe, 27.60.+j

The recent discovery of a $J = 16^+$ isomer in 96 Cd by Nara Singh *et al.* [1] was noted in a work on symmetries in the $g_{9/2}$ shell by Zamick and Robinson [2]. In a previous work by these authors [3], the main emphasis was on the $f_{7/2}$ shell, although the equations were written in a general way so as to apply to any shell. In this work we elaborate on the work in Ref. [2] by giving detailed wave functions and energies.

First, however, we would like to point out that the $g_{9/2}$ shell has, in recent years, been a beehive of activity both experimentally and theoretically. For example, in contrast to the $f_{7/2}$ shell, where the spectrum of three identical particles would be identical to that of five particles (or three holes) in the single-*j*-shell approximation, one can have different spectra in the $g_{9/2}$ shell. It was noted by Escuderos and Zamick [4] that, with a seniority-conserving interaction, the $(J = 21/2^+)$ - $(J = 3/2^+)$ splitting (maximum and minimum spins for three identical particles) was the same for five identical particles as for three. However, with a $Q \cdot Q$ interaction (which does not conserve seniority), the splittings were equal in magnitude but opposite in sign.

Even more interesting, it was noted in Ref. [4] that for four identical particles (or holes, e.g., ${}^{96}Pd$) there are three $J = 4^+$ states—two with seniority 4 and one with seniority 2. In general, seniority is not conserved in the $g_{9/2}$ shell. Despite this fact, it was found that no matter what interaction was used, one eigenstate emerged that was always the same for all interactions—this was a seniority-4 state. The other two states were a mix of seniorities 2 and 4. A unique state also emerged for $J = 6^+$. This observation led to considerable activity with an intent to explain this behavior as seen in Refs. [5–11].

Another recently emerging topic has to do with T = 0 pairing in which the pairs are coupled to the maximum angular momentum, which for the $g_{9/2}$ shell is $J = 9^+$ (see Refs. [12–15]). In the *Nature* article [12], an experiment is presented in which an almost equal-spaced spectrum is found in N = Z ⁹²Pd for $J = 0^+, 2^+, 4^+$, and 6^+ . This is well reproduced by the shell model but also by T = 0 pairing with maximum alignment of pairs. The 2^+ state is lower in ⁹²Pd than in ⁹⁶Pd, which is not surprising because the latter is semi-magic. An interesting observation in Ref. [13] is that, although the spectrum looks vibrational, the B(E2)s might obey a rotational formula rather than vibrational. It would be of interest to have experimental verification.

Recently the current authors addressed a different problem [16], but one that has some implications for the above topic. We studied the question of isomerism for systems of three protons

and one neutron, e.g., ⁹⁶Ag. We found that for the upper half of a *j* shell, be it $f_{7/2}$ or $g_{9/2}$ shell, the $J = J_{max}$ two-body matrix element is much more attractive than in the lower half. The states in question have $J = 7^+$ and 9^+ , respectively. This was necessary to explain the isomeric behaviors of states in various nuclei, e.g., why the lifetime of the $J = 12^+$ state in ⁵²Fe is much longer than in ⁴⁴Ti, or why the $J = 16^+$ states in ⁹⁶Cd and the $J = 15^+$ states in ⁹⁶Ag are isomeric. In that work, we also used the previously determined two-body matrix elements of Coraggio *et al.* [17] as well as our own. With regards to the works of Refs. [12–15], this suggests the $J = J_{max}$ pairing is a better approximation in the upper half of a *j* shell rather than the lower half.

It should be added that one of us had previously studied the problem of the effects of varying two-body matrix elements in the $f_{7/2}$ region [18] and that one can learn a lot by studying the explicit $f_{7/2}$ wave functions in Ref. [6], which are based on previous works in Refs. [19,20].

But let us not lose sight of what this Brief Report is about—partial dynamical symmetries (PDS) in ⁹⁶Cd. One obvious distinction of our work relative to that of Refs. [12–15] is that we are dealing with higher spins than the ones that they consider. In the *Nature* article [12], they measure J = 0, 2, 4, and 6 and also discuss J = 8, whereas the PDS that we consider occur for $J = 11^+$ and beyond. Thus, our work may be regarded as different but complimentary to theirs.

At the time of this writing, the 16^+ isomer is the only known excited state of 96 Cd [1]. It decays to a 15^+ isomer in 96 Ag. In previous work by Escuderos and Zamick [4], it was noted that the single-*j* approximation for a few holes relative to Z = 50, N = 50 works fairly well. However, they cautioned that this approximation does not work at all for a few particles relative to Z = 40, N = 40. The relevant shell is, of course, $g_{9/2}$.

The symmetry in question mentioned above comes from setting two-body interaction matrix elements with isospin T = 0 to be constant, whilst keeping the T = 1 matrix elements unchanged [2]. It does not matter what the T = 0 constant is as far as symmetries are concerned, but it does affect the relative energies of states of different isospins. Briefly stated, for the four-hole system ${}^{96}Cd$, we then have a PDS, one which involves T = 0 states with angular momenta that do not exist for T = 2 states in a pure $g_{9/2}$ configuration. That is to say, the PDS will not occur for states with angular momenta which can occur in the $(g_{9/2})^4$ configuration of four identical particles (${}^{96}Pd$). Although many 6-*j* and 9-*j* relations were used in Refs. [2,3] to describe why these symmetries are

partial, one simple argument is illuminating. If a given angular momentum can occur for, say, four $g_{9/2}$ neutron holes (T = 2), then there is a constraint on the T = 0 states with the same angular momentum—namely their wave functions have to be orthogonal to the T = 2 states. This constraint prevents the occurrence of a PDS.

For qualifying T = 0 states, the PDS consists of J_p and J_n being good dual quantum numbers. That is to say, the wave function of a state will have only one (J_p, J_n) and (J_n, J_p) . Another way of saying this is that $J_p \cdot J_n$ is a good quantum number. Furthermore, states with different total angular momentum J but with the same (J_p, J_n) will be degenerate.

We have given a physical argument for the PDS. We can also explain it mathematically. There are both off-diagonal

and diagonal conditions. The former is needed to explain why (J_p, J_n) are good dual quantum numbers. The reason is the vanishing of the 9*j*-symbol:

$$\begin{cases} j & j & (2j-1) \\ j & j & (2j-1) \\ (2j-1) & (2j-3) & (4j-4) \end{cases} = 0$$
(1)

Next we need diagonal conditions to explain why states with the same (J_p, J_n) are degenerate. These are given by

$$\begin{cases} j & j & (2j-3) \\ j & j & (2j-1) \\ (2j-3) & (2j-1) & I \end{cases} = \frac{1}{4(4j-5)(4j-1)}$$
(2)

J = 11							
		5.5640	5.6482	6.4693	6.6384	6.9319	8.1822
J_{n}	J_n			T = 1	T = 1	T = 1	T = 1
4	8	0.4709	-0.6359	-0.2463	0.3092	-0.4544	0.1051
6	6	0.2229	0.0000	0.8712	0.0000	-0.3121	-0.3065
6	8	0.4607	-0.3092	-0.0631	-0.6359	0.4432	-0.2956
8	4	0.4709	0.6359	-0.2463	-0.3092	-0.4544	0.1051
8	6	0.4607	0.3092	-0.0631	0.6359	0.4432	-0.2956
8	8	0.2869	0.0000	0.3343	0.0000	0.3110	0.8421
J = 12							
		5.0303	5.8274	6.1835	6.7289	6.8648	9.0079
J_p	J_n				T = 1	T = 1	T = 2
4	8	0.4364	0.3052	-0.3894	-0.3592	-0.5903	0.2957
6	6	0.7797	-0.4079	0.0000	0.2927	0.0000	-0.3742
6	8	0.0344	0.5602	-0.5903	0.2078	0.3894	-0.3766
8	4	0.4364	0.3052	0.3894	-0.3592	0.5903	0.2957
8	6	0.0344	0.5602	0.5903	0.2078	-0.3894	-0.3766
8	8	0.0940	0.1402	0.0000	0.7550	0.0000	0.6337
J = 13							
		5.8951	6.1898	7.5023			
J_p	J_n		T = 1	T = 1			
6	8	0.7071	0.6097	-0.3581			
8	6	-0.7071	0.6097	-0.3581			
8	8	0.0000	0.5065	0.8623			
J = 14							
		5.1098	6.4980	6.7036			
J_p	J_n			T = 1			
6	8	0.6943	-0.1339	-0.7071			
8	6	0.6943	-0.1339	0.7071			
8	8	0.1894	0.9819	0.0000			
J = 15							
		6.2789					
J_p	J_n	T = 1					
8	8	1.0000					
J = 16							
		4.9371					
J_p	J_n						
8	8	1.0000					

TABLE I. Wave functions and energies (in MeV, at the top) of selected states of ⁹⁶Cd calculated with the INTd interaction (see text).

TABLE II. Wave functions and energies (in MeV, at the top) of selected states of 96 Cd calculated with the INTd interaction (see text) with T = 0 matrix elements set to zero.

• •							
		5.0829	5.3798	6.8295	7.4699	7.5178	7.8842
J_p	J_n			T = 1	T = 1	T = 1	T = 1
4	8	0.7071	0.0000	0.2933	-0.5491	0.3351	-0.0121
6	6	0.0000	0.0000	0.2913	0.5605	0.6482	-0.4253
6	8	0.0000	0.7071	0.5350	0.0396	-0.4111	-0.2079
8	4	-0.7071	0.0000	0.2933	-0.5491	0.3351	-0.0121
8	6	0.0000	-0.7071	0.5350	0.0396	-0.4111	-0.2079
8	8	0.0000	0.0000	0.4130	0.2822	0.1319	0.8558
J = 12							
		5.1165	5.2336	5.4865	7.5293	7.5959	12.4531
J_p	J_n				T = 1	T = 1	T = 2
4	8	0.5699	0.2803	-0.0961	-0.4783	0.5208	0.2957
6	6	0.5712	-0.7151	0.1498	0.0000	0.0000	-0.3742
6	8	0.0925	0.3679	0.4629	-0.5208	-0.4783	-0.3766
8	4	0.5699	0.2803	-0.0961	0.4783	-0.5208	0.2957
8	6	0.0925	0.3679	0.4629	0.5208	0.4783	-0.3766
8	8	-0.0846	-0.2465	0.7284	0.0000	0.0000	0.6337
J = 13							
		5.3798	7.6143	7.8873			
J_p	J_n		T = 1	T = 1			
6	8	0.7071	0.5265	-0.4721			
8	6	-0.7071	0.5265	-0.4721			
8	8	0.0000	0.6676	0.7445			
J = 14							
		5.3798	5.6007	7.8515			
J_p	J_n			T = 1			
6	8	0.7071	0.0000	-0.7071			
8	6	0.7071	0.0000	0.7071			
8	8	0.0000	1.0000	0.0000			
J = 15							
		7.9251					
J_p	J_n	T = 1					
8	8	1.0000					
J = 16							
		5.6007					
J_p	J_n						
8	8	1.0000					

for I = (4j - 4), (4j - 5), (4j - 7) and

$$\begin{cases} j & j & (2j-1) \\ j & j & (2j-1) \\ (2j-1) & (2j-1) & I \end{cases} = \frac{1}{2(4j-1)^2}$$
(3)

for I = (4j - 4), (4j - 2).

How the partial dynamical symmetry manifests itself is best illustrated by examining Tables I and II. Here we use the twobody INTd matrix elements from Zamick and Escuderos [16] to perform single-*j*-shell calculations of the energies and wave functions of 96 Cd. Actually, it does not matter what chargeindependent interaction is used to illustrate the symmetry that will emerge.

Let us first focus on the $J = 11^+$ and $J = 12^+$ states. Relative to Table I, we see certain simplicities for the $J = 11^+$ states in Table II (where the T = 0 two-body interaction matrix elements are set to a constant). For the lowest state, the only non-zero components are $(J_p, J_n) = (4, 8)$ and (8, 4); for the second state, they are (6, 8) and (8, 6). This confirms what we said above: (J_p, J_n) are good dual quantum numbers. Nothing special happens to $J = 11^+$, T = 1 states.

We show results for $J = 12^+$ as a counterpoint. We see that nothing special happens as we go from Table I to Table II—no PDS. The reason for this is, as discussed above, that four identical $g_{9/2}$ nucleons can have $J = 12^+$, but, because of the Pauli principle, they cannot couple to $J = 11^+$.

The other states with J = 13, 14, 15, 16 cannot occur for four identical nucleons and are therefore subject to the PDS. Note certain degeneracies, e.g., J = 11, 13, and 14 states, all with $(J_p, J_n) = (6, 8)$ and (8, 6), have the same energy E = 5.3798 MeV. The proof of all these properties are contained in Refs. [2,3].

The $J = 16^+$, which was experimentally discovered by Nara Singh *et al.* [1] is correctly predicted to be isomeric in Table I. It lies below the lowest 15^+ or 14^+ states. In

- [1] B. S. Nara Singh et al., Phys. Rev. Lett. 107, 172502 (2011).
- [2] L. Zamick and S. J. Q. Robinson, Phys. Rev. C 84, 044325 (2011).
- [3] S. J. Q. Robinson and L. Zamick, Phys. Rev. C 63, 064316 (2001).
- [4] A. Escuderos and L. Zamick, Phys. Rev. C 73, 044302 (2006).
- [5] L. Zamick, Phys. Rev. C 75, 064305 (2007).
- [6] A. Escuderos, L. Zamick, and B. F. Bayman, arXiv:nucl-th/0506050, (2005).
- [7] P. Van Isacker and S. Heinze, Phys. Rev. Lett. 100, 052501 (2008).
- [8] L. Zamick and P. Van Isacker, Phys. Rev. C 78, 044327 (2008).
- [9] Chong Qi, Phys. Rev. C 83, 014307 (2011).
- [10] Chong Qi, Z. X. Xu, and R. J. Liotta, Nucl. Phys. A 884–885, 21 (2012).

Table II, however, the $J = 16^+$ state lies above the lowest $J = 14^+$ state and is degenerate with the second $J = 14^+$ state (E = 5.6007 MeV). Clearly, fluctuations in the T = 0 matrix elements are responsible for making the $J = 16^+$ isomeric.

- [11] I. Talmi, Nucl. Phys. A 846, 31 (2010).
- [12] B. Cederwall et al., Nature (London) 469, 68 (2011).
- [13] S. Zerguine and P. Van Isacker, Phys. Rev. C 83, 064314 (2011).
- [14] C. Qi, J. Blomqvist, T. Bäck, B. Cederwall, A. Johnson, R. J. Liotta, and R. Wyss, Phys. Rev. C 84, 021301(R) (2011).
- [15] Z. X. Xu, C. Qi, J. Blomqvist, R. J. Liotta, and R. Wyss, Nucl. Phys. A 877, 51 (2012).
- [16] L. Zamick and A. Escuderos, Nucl. Phys. A 889, 8 (2012).
- [17] L. Coraggio, A. Covello, A. Gargano, and N. Itaco, Phys. Rev. C 85, 034335 (2012).
- [18] L. Zamick and S. J. Q. Robinson, Phys. At. Nucl. 65, 740 (2002).
- [19] B. F. Bayman, J. D. McCullen, and L. Zamick, Phys. Rev. Lett. 11, 215 (1963).
- [20] J. N. Ginocchio and J. B. French, Phys. Lett. 7, 137 (1963).