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Symmetries in the g9/2 shell
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We consider symmetries which arise when two-body interaction matrix elements with isospin T = 0 are set
equal to a constant in a single-j -shell calculation. The nucleus 96Cd is used as an example.
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The recent discovery of a J = 16+ isomer in 96Cd by Nara
Singh et al. [1] was noted in a work on symmetries in the g9/2

shell by Zamick and Robinson [2]. In a previous work by these
authors [3], the main emphasis was on the f7/2 shell, although
the equations were written in a general way so as to apply to
any shell. In this work we elaborate on the work in Ref. [2] by
giving detailed wave functions and energies.

First, however, we would like to point out that the g9/2

shell has, in recent years, been a beehive of activity both
experimentally and theoretically. For example, in contrast to
the f7/2 shell, where the spectrum of three identical particles
would be identical to that of five particles (or three holes) in the
single-j -shell approximation, one can have different spectra
in the g9/2 shell. It was noted by Escuderos and Zamick [4]
that, with a seniority-conserving interaction, the (J = 21/2+)–
(J = 3/2+) splitting (maximum and minimum spins for three
identical particles) was the same for five identical particles as
for three. However, with a Q · Q interaction (which does not
conserve seniority), the splittings were equal in magnitude but
opposite in sign.

Even more interesting, it was noted in Ref. [4] that for
four identical particles (or holes, e.g., 96Pd) there are three
J = 4+ states—two with seniority 4 and one with seniority 2.
In general, seniority is not conserved in the g9/2 shell. Despite
this fact, it was found that no matter what interaction was
used, one eigenstate emerged that was always the same for all
interactions—this was a seniority-4 state. The other two states
were a mix of seniorities 2 and 4. A unique state also emerged
for J = 6+. This observation led to considerable activity with
an intent to explain this behavior as seen in Refs. [5–11].

Another recently emerging topic has to do with T = 0
pairing in which the pairs are coupled to the maximum
angular momentum, which for the g9/2 shell is J = 9+(see
Refs. [12–15]). In the Nature article [12], an experiment is
presented in which an almost equal-spaced spectrum is found
in N = Z 92Pd for J = 0+, 2+, 4+, and 6+. This is well
reproduced by the shell model but also by T = 0 pairing
with maximum alignment of pairs. The 2+ state is lower in
92Pd than in 96Pd, which is not surprising because the latter
is semi-magic. An interesting observation in Ref. [13] is that,
although the spectrum looks vibrational, the B(E2)s might
obey a rotational formula rather than vibrational. It would be
of interest to have experimental verification.

Recently the current authors addressed a different problem
[16], but one that has some implications for the above topic. We
studied the question of isomerism for systems of three protons

and one neutron, e.g., 96Ag. We found that for the upper half of
a j shell, be it f7/2 or g9/2 shell, the J = Jmax two-body matrix
element is much more attractive than in the lower half. The
states in question have J = 7+ and 9+, respectively. This was
necessary to explain the isomeric behaviors of states in various
nuclei, e.g., why the lifetime of the J = 12+ state in 52Fe is
much longer than in 44Ti, or why the J = 16+ states in 96Cd
and the J = 15+ states in 96Ag are isomeric. In that work, we
also used the previously determined two-body matrix elements
of Coraggio et al. [17] as well as our own. With regards to the
works of Refs. [12–15], this suggests the J = Jmax pairing is a
better approximation in the upper half of a j shell rather than
the lower half.

It should be added that one of us had previously studied the
problem of the effects of varying two-body matrix elements in
the f7/2 region [18] and that one can learn a lot by studying
the explicit f7/2 wave functions in Ref. [6], which are based
on previous works in Refs. [19,20].

But let us not lose sight of what this Brief Report is
about—partial dynamical symmetries (PDS) in 96Cd. One
obvious distinction of our work relative to that of Refs. [12–15]
is that we are dealing with higher spins than the ones that they
consider. In the Nature article [12], they measure J = 0, 2, 4,
and 6 and also discuss J = 8, whereas the PDS that we
consider occur for J = 11+ and beyond. Thus, our work may
be regarded as different but complimentary to theirs.

At the time of this writing, the 16+ isomer is the only known
excited state of 96Cd [1]. It decays to a 15+ isomer in 96Ag. In
previous work by Escuderos and Zamick [4], it was noted that
the single-j approximation for a few holes relative to Z = 50,
N = 50 works fairly well. However, they cautioned that this
approximation does not work at all for a few particles relative
to Z = 40, N = 40. The relevant shell is, of course, g9/2.

The symmetry in question mentioned above comes from
setting two-body interaction matrix elements with isospin T =
0 to be constant, whilst keeping the T = 1 matrix elements
unchanged [2]. It does not matter what the T = 0 constant
is as far as symmetries are concerned, but it does affect
the relative energies of states of different isospins. Briefly
stated, for the four-hole system 96Cd, we then have a PDS,
one which involves T = 0 states with angular momenta that
do not exist for T = 2 states in a pure g9/2 configuration.
That is to say, the PDS will not occur for states with angular
momenta which can occur in the (g9/2)4 configuration of four
identical particles (96Pd). Although many 6-j and 9-j relations
were used in Refs. [2,3] to describe why these symmetries are

047306-10556-2813/2012/86(4)/047306(4) ©2012 American Physical Society

http://dx.doi.org/10.1103/PhysRevC.86.047306


BRIEF REPORTS PHYSICAL REVIEW C 86, 047306 (2012)

partial, one simple argument is illuminating. If a given angular
momentum can occur for, say, four g9/2 neutron holes (T = 2),
then there is a constraint on the T = 0 states with the same
angular momentum—namely their wave functions have to be
orthogonal to the T = 2 states. This constraint prevents the
occurrence of a PDS.

For qualifying T = 0 states, the PDS consists of Jp and
Jn being good dual quantum numbers. That is to say, the
wave function of a state will have only one (Jp, Jn) and
(Jn, Jp). Another way of saying this is that Jp · Jn is a
good quantum number. Furthermore, states with different total
angular momentum J but with the same (Jp, Jn) will be
degenerate.

We have given a physical argument for the PDS. We can
also explain it mathematically. There are both off-diagonal

and diagonal conditions. The former is needed to explain why
(Jp, Jn) are good dual quantum numbers. The reason is the
vanishing of the 9j -symbol:

⎧⎪⎨
⎪⎩

j j (2j − 1)

j j (2j − 1)

(2j − 1) (2j − 3) (4j − 4)

⎫⎪⎬
⎪⎭

= 0 (1)

Next we need diagonal conditions to explain why states with
the same (Jp, Jn) are degenerate. These are given by
⎧⎪⎨
⎪⎩

j j (2j − 3)

j j (2j − 1)

(2j − 3) (2j − 1) I

⎫⎪⎬
⎪⎭

= 1

4(4j − 5)(4j − 1)

(2)

TABLE I. Wave functions and energies (in MeV, at the top) of selected states of 96Cd calculated with the INTd interaction (see text).

J = 11
5.5640 5.6482 6.4693 6.6384 6.9319 8.1822

Jp Jn T = 1 T = 1 T = 1 T = 1
4 8 0.4709 −0.6359 −0.2463 0.3092 −0.4544 0.1051
6 6 0.2229 0.0000 0.8712 0.0000 −0.3121 −0.3065
6 8 0.4607 −0.3092 −0.0631 −0.6359 0.4432 −0.2956
8 4 0.4709 0.6359 −0.2463 −0.3092 −0.4544 0.1051
8 6 0.4607 0.3092 −0.0631 0.6359 0.4432 −0.2956
8 8 0.2869 0.0000 0.3343 0.0000 0.3110 0.8421

J = 12
5.0303 5.8274 6.1835 6.7289 6.8648 9.0079

Jp Jn T = 1 T = 1 T = 2
4 8 0.4364 0.3052 −0.3894 −0.3592 −0.5903 0.2957
6 6 0.7797 −0.4079 0.0000 0.2927 0.0000 −0.3742
6 8 0.0344 0.5602 −0.5903 0.2078 0.3894 −0.3766
8 4 0.4364 0.3052 0.3894 −0.3592 0.5903 0.2957
8 6 0.0344 0.5602 0.5903 0.2078 −0.3894 −0.3766
8 8 0.0940 0.1402 0.0000 0.7550 0.0000 0.6337

J = 13
5.8951 6.1898 7.5023

Jp Jn T = 1 T = 1
6 8 0.7071 0.6097 −0.3581
8 6 −0.7071 0.6097 −0.3581
8 8 0.0000 0.5065 0.8623

J = 14
5.1098 6.4980 6.7036

Jp Jn T = 1
6 8 0.6943 −0.1339 −0.7071
8 6 0.6943 −0.1339 0.7071
8 8 0.1894 0.9819 0.0000

J = 15
6.2789

Jp Jn T = 1
8 8 1.0000

J = 16
4.9371

Jp Jn

8 8 1.0000
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TABLE II. Wave functions and energies (in MeV, at the top) of selected states of 96Cd calculated with the INTd interaction (see text) with
T = 0 matrix elements set to zero.

J = 11
5.0829 5.3798 6.8295 7.4699 7.5178 7.8842

Jp Jn T = 1 T = 1 T = 1 T = 1
4 8 0.7071 0.0000 0.2933 −0.5491 0.3351 −0.0121
6 6 0.0000 0.0000 0.2913 0.5605 0.6482 −0.4253
6 8 0.0000 0.7071 0.5350 0.0396 −0.4111 −0.2079
8 4 −0.7071 0.0000 0.2933 −0.5491 0.3351 −0.0121
8 6 0.0000 −0.7071 0.5350 0.0396 −0.4111 −0.2079
8 8 0.0000 0.0000 0.4130 0.2822 0.1319 0.8558
J = 12

5.1165 5.2336 5.4865 7.5293 7.5959 12.4531

Jp Jn T = 1 T = 1 T = 2
4 8 0.5699 0.2803 −0.0961 −0.4783 0.5208 0.2957
6 6 0.5712 −0.7151 0.1498 0.0000 0.0000 −0.3742
6 8 0.0925 0.3679 0.4629 −0.5208 −0.4783 −0.3766
8 4 0.5699 0.2803 −0.0961 0.4783 −0.5208 0.2957
8 6 0.0925 0.3679 0.4629 0.5208 0.4783 −0.3766
8 8 −0.0846 −0.2465 0.7284 0.0000 0.0000 0.6337

J = 13
5.3798 7.6143 7.8873

Jp Jn T = 1 T = 1
6 8 0.7071 0.5265 −0.4721
8 6 −0.7071 0.5265 −0.4721
8 8 0.0000 0.6676 0.7445

J = 14
5.3798 5.6007 7.8515

Jp Jn T = 1
6 8 0.7071 0.0000 −0.7071
8 6 0.7071 0.0000 0.7071
8 8 0.0000 1.0000 0.0000

J = 15
7.9251

Jp Jn T = 1
8 8 1.0000

J = 16
5.6007

Jp Jn

8 8 1.0000

for I = (4j − 4), (4j − 5), (4j − 7) and
⎧⎪⎨
⎪⎩

j j (2j − 1)

j j (2j − 1)

(2j − 1) (2j − 1) I

⎫⎪⎬
⎪⎭

= 1

2(4j − 1)2
(3)

for I = (4j − 4), (4j − 2).
How the partial dynamical symmetry manifests itself is best

illustrated by examining Tables I and II. Here we use the two-
body INTd matrix elements from Zamick and Escuderos [16]
to perform single-j -shell calculations of the energies and wave
functions of 96Cd. Actually, it does not matter what charge-
independent interaction is used to illustrate the symmetry that
will emerge.

Let us first focus on the J = 11+ and J = 12+ states.
Relative to Table I, we see certain simplicities for the J = 11+

states in Table II (where the T = 0 two-body interaction matrix
elements are set to a constant). For the lowest state, the only
non-zero components are (Jp, Jn) = (4, 8) and (8, 4); for the
second state, they are (6, 8) and (8, 6). This confirms what we
said above: (Jp, Jn) are good dual quantum numbers. Nothing
special happens to J = 11+, T = 1 states.

We show results for J = 12+ as a counterpoint. We see
that nothing special happens as we go from Table I to
Table II—no PDS. The reason for this is, as discussed
above, that four identical g9/2 nucleons can have J = 12+,
but, because of the Pauli principle, they cannot couple
to J = 11+.

The other states with J = 13, 14, 15, 16 cannot occur for
four identical nucleons and are therefore subject to the PDS.
Note certain degeneracies, e.g., J = 11, 13, and 14 states,
all with (Jp, Jn) = (6, 8) and (8, 6), have the same energy
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E = 5.3798 MeV. The proof of all these properties are
contained in Refs. [2,3].

The J = 16+, which was experimentally discovered by
Nara Singh et al. [1] is correctly predicted to be isomeric
in Table I. It lies below the lowest 15+ or 14+ states. In

Table II, however, the J = 16+ state lies above the lowest
J = 14+ state and is degenerate with the second J = 14+
state (E = 5.6007 MeV). Clearly, fluctuations in the T = 0
matrix elements are responsible for making the J = 16+
isomeric.
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