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Ratio of neutron and proton entropy excess in121Sn compared to 122Sn
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Level densities and entropies in 121Sn and 122Sn nuclei have been extracted within a BCS theory that includes
nuclear pairing interaction based on the modified harmonic oscillator according to Nilsson potential. The entropy
of the 121Sn nucleus follows closely the entropy for the 122Sn, but the even-odd system has an entropy excess
at low temperatures. The neutron and proton entropy excess ratio has been calculated as a function of nuclear
temperature. The proton system at low temperatures plays a minor role in entropy excess and neutron entropy
excess ratio is about 1, as expected.
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Introduction. Experimentalists have developed a new
method to extract level densities from measured Î3 spectra
at the Oslo cyclotron laboratory [1]. Recently, this method has
been applied to obtain level densities in 121Sn and 122Sn using
(3He, 4He) and (3He, 3He) reactions [2], respectively.

On the other hand, most of the theoretical research in the
area of nuclear level densities has been based on the traditional
Fermi gas model first introduced by Bethe [3]. The level
density as a function of excitation energy is the starting point to
deduce the thermodynamic quantities. Pairing correlations are
one of the fundamental properties [4,5] of nuclei and have been
successfully described by Bardeen-Cooper-Schrieffer (BCS)
theory of superconductivity [6].

In this work, the nuclear level densities have been computed
for 121,122Sn nuclei using superconducting theory with the
inclusion of pairing effects. The results are compared with their
corresponding experimental values. The entropy for even-odd
(121Sn) and even-even (122Sn) nuclei have been calculated and
the results are compared. Then the ratio of proton as well as
neutron entropy excess have been determined and discussed.

Summary of the theory. This section is a brief review of
the microscopic model used to calculate the state and level
density as well as the entropy of the system. The calculation
procedure is outlined in our previous publications [7–10]. In
the framework of statistical mechanics, the state density is
defined as [11,12]

ω(N,E) = exp(S)

2π |D|1/2
. (1)

D is the determinant of the second derivations of the grand
partition function taken at the saddle point. At this stationary
point, the entropy S is given by Ref. [13]

S = 2
∑

k

Ln[1 + exp(−βEk)] + 2β
∑

k

Ek

1 + exp(βEk)
,

(2)
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where β is the inverse of nuclear temperature and λ is related
to the chemical potential. Ek = [(εk − λ)2 + �2]1/2 is the
quasiparticle energy, where εk is the energy of single-particle
k and � is the gap parameter that is a measure of nuclear
pairing. The saddle point conditions that must be satisfied are

N =
∑

k

nk, (3)

E =
∑

k

nkEk. (4)

The occupational probability of level k is Ref. [10]

nk = 1 − εk − λ

Ek

tanh
βEk

2
. (5)

For a system of N neutrons and Z protons, the total energy
is given by

E = En + Ep, (6)

and the total entropy is given by

S = Sn + Sp. (7)

The total level density for a system of N neutrons
and Z protons at an excitation energy of U = Un + Up is
Refs. [14–16]

ρ(N,Z,U ) = ω(N,Z,U )

(2πσ 2)1/2
, (8)

where σ 2 is the spin cut-off parameter defined as

σ 2 = σ 2
n + σ 2

p, (9)

with [17]

σ 2
n = 1

2

∑
k

m2
ksech2

(
βEk

2

)
(10)

and a similar equation for σ 2
p . Here, mk is the magnetic

momentum spin quantum number of the state k.
The steps necessary to calculate level density and system

entropy are as follows: The set of single-particle levels and a
particular choice of temperature T , the parameter λ and � are
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FIG. 1. (Color online) The experimental [2] and the calculated
level density as a function of excitation energy in 121Sn nucleus. The
open triangles are data from (3He, 4He) reaction. The filled stars
denote the BCS calculations.

estimated, and a set of occupational probabilities is calculated
using Eq. (5). Next, the saddle point conditions are checked for
a given nucleon number using Eq. (3). If the conditions are not
met, the values of λ and � are adjusted and the procedure
is repeated until the saddle point conditions are satisfied.
Once the proper set of nk values are computed the entropy
Sn is computed from Eq. (2). The energy En is calculated by
applying Eq. (4) at a particular temperature T . The excitation
energy Un is then determined by subtracting the energy at
T = 0. The quantities σ 2

n and ω(N,E) are determined using
Eqs. (1)–(10). A similar set of calculations is used to calculate
Up and Sp for protons. Total entropy S, at excitation energy
U = Un + Up, is then determined from Eq. (7), and the total
level density is calculated using Eq. (8).

Summary and results. In performing calculations of the
level densities for deformed nuclei 121,122Sn with particular
angular momentum I , we have used Eqs. (1)–(10). However,
the single particle energies and spins were first calculated for
specified deformation. Calculations have been based on the
modified harmonic oscillator potential due to Nilsson [18].
The oscillator quantum number h̄ω0 has been assigned the
value of 41A− 1

3 MeV. The quantities μ and χ , which enter in
the Nilsson potential, are taken from Ref. [18]. The state and
level densities as a function of excitation energy were then eval-
uated as outlined above. Results of the theoretical calculations
for prolate deformation (ε = 0.2) for 122Sn nucleus is plotted
in Fig. 1. Their corresponding experimental values taken from
Ref. [2] are also plotted for comparison. Similar calculations
are carried out for the odd A nucleus, 121Sn. In doing so, the
statistical functions were calculated for the even A nucleus and
the energy scale was shifted by an energy equivalent to that re-
quired to produce one quasiparticle [16]. The results are plotted
in Fig. 2 and are compared with experimental values [2].

Although our results are in general agreement with previous
experiments, a slight discrepancy at lower energies is apparent.
The experimental values which are used in our analysis are rel-
atively large compared to general excitations, according to Toft
et al. [2]. According to them, more experimental information

FIG. 2. (Color online) The experimental [2] and the calculated
level density as a function of excitation energy in 122Sn nucleus. The
open triangles are data from (3He, 3He) reactions. The filled stars
denote the BCS calculations.

is needed in order to answer this question. Examination of
Figs. 1 and 2 reveals that at intermediate energies, slope of
the level density is slightly different. This behavior has also
been reported by the Oslo group [2]. The step-like structures
interpreted as a signature of neutron pair breaking accordance
with the finding in 116−119Sn nuclei [5,19].

We have also extracted the entropy for 121,122Sn nuclei,
with the microscopic theory using known values of the single-
particle orbital and their corresponding magnetic spin quantum
numbers. This we have done from additive property of entropy
Eq. (7) with

Sn = 2
∑

k

Ln
[
1 + exp

(−βEn
k

)] + 2β
∑

k

En
k

1 + exp
(
βEn

k

)
(11)

and similar relation for Sp. The deduced entropies for the case
of 121Sn and 122Sn nuclei as a function of nuclear temperature
T , up to 1.0 MeV are plotted in Fig. 3. Our results show the
entropy does not increase smoothly as expected on the basis of

FIG. 3. (Color online) Relation between the entropy and nuclear
temperature for 121,122Sn.
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macroscopic theory [3]. Instead of it, there is step-like structure
at the critical temperature reflecting the angular momenta of
the shell model orbital near the Fermi energy. It is interesting
to note that at temperatures below critical temperature, the
entropy of odd A (121Sn) nucleus is much larger than even
A (122Sn) nucleus. This indicates significant role of neutrons
on system entropy. We have examined this finding in more
detail as follow: If we denote the neutron and proton entropy
excess as

�Sn = Sn(121Sn) − Sn(122Sn), (12)

�Sp = Sp(121Sn) − Sp(122Sn), (13)

respectively, and the entropy excess ratio as Ri(i = p, n) is

Ri = �Si

�S
, (14)

where �S is the total entropy excess. In Fig. 4 we have
shown the evaluated entropy excess ratio for proton and
neutron systems at temperatures below critical temperature, Tc.
Examination of this figure reveals that the major contribution
to the total entropy at low temperatures comes mainly from
the neutrons. The protons make rather small contributions to
the total entropy.

In Summary, we have shown that the microscopic model
describes well the observed level densities and entropies.
Similar conclusions have been reported by S. Goriely et al.,

FIG. 4. (Color online) Entropy excess ratio for proton and neutron
as a function of nuclear temperature.

using the modified combinatorial method [20]. In addition,
we have shown a clear evidence of a phase transition in
a finite system for the quenching of pairing correlations
as a whole. The mechanism of breaking cooper pairs is
believed to be induced by Coriolis forces tending to align
single-particle angular momenta along the nuclear rotation
axis. The critical temperatures of the pair-breaking process are
found at Tc ∼ 0.45 MeV and Tc ∼ 0.61 MeV for 121Sn and
122Sn, respectively.
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