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Magnetic form factor of the deuteron in chiral effective field theory
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We calculate the magnetic form factor of the deuteron up to O(eP 4) in the chiral effective field theory
expansion of the electromagnetic current operator. The two low-energy constants which enter the two-body part
of the isoscalar NN three-current operator are fit to experimental data, and the resulting values are of natural size.
The O(eP 4) description of GM agrees with data for momentum transfers Q2 < 0.35 GeV2.
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Introduction. In the past two decades chiral effective field
theory (χEFT) has been fruitfully applied to few-nucleon
dynamics (see Refs. [1,2] for recent reviews). Two-nucleon
potentials at next-to-next-to-next-to-leading order (N3LO) in
the chiral expansion were developed [3,4] and these accurately
describe low-energy scattering data and the static properties
of the deuteron. Higher-order corrections to the three-nucleon
force are presently under investigation (see, e.g., [5]), although
discussions regarding nonperturbative renormalization of the
Schrödinger equation and implications for χEFT power
counting continue (see [6–10] for samples of different views).
In parallel to these developments in the strong sector, much
effort has been devoted to pionic and electroweak reactions in
few-nucleon systems (see [11–13] for recent examples).

Electromagnetic reactions on light nuclei such as elastic
electron scattering, photodisintegration and electrodisintegra-
tion, and radiative capture have been extensively studied in
nuclear physics. In the single-photon approximation, their the-
oretical description requires knowledge of the electromagnetic
current operator, which should be constructed consistently
with the nuclear Hamiltonian. The derivation of exchange
currents in χEFT was first addressed in the seminal paper by
Park et al. [14], who, however, limited themselves to threshold
kinematics |q| � Mπ with Mπ denoting the pion mass.
Recently, this work was extended to the general kinematics
suitable to study, e.g., electron scattering off light nuclei
at momentum transfer |q| of order Mπ by the JLab-Pisa
[15–17] and Bochum-Bonn groups [18,19]. Here and in
what follows, we discuss the expansion of the irreducible
two-nucleon operators J0 and J in powers of P ≡ (p,mπ )/�
with � denoting the hard scale in the theory, e.g., the cutoff
(∼600 MeV) used in calculations. In this expansion the
leading-loop order is eP 4. However, most of the corrections
to the two-body pieces of the two-nucleon current and charge
operators at this order are of isovector type and thus do not
contribute to the deuteron form factors. In particular, up to this
order, the only two-body contributions to the isoscalar charge
density operator, J

(s)
0 , emerge from the leading relativistic
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corrections of one-pion range so that J
(s)
0 is parameter free.

The impact of these corrections on the deuteron charge and
quadrupole form factors GC and GQ is studied in Refs. [20,21].
In these works the deuteron wave functions obtained from
χEFT potentials at various orders were used to compute GC

and GQ (and see also Refs. [22,23] for earlier work along the
same lines). Good agreement with the compilation of elastic
electron-deuteron data from Ref. [24] was then found for
both form factors in the kinematic range Q2 < 0.35 GeV2,
provided factorization was employed in order to account for
single-nucleon structure.

On the other hand, the isoscalar two-nucleon current
operator, J(s), has two two-body contributions at order eP 4:
one from a short-distance operator and one of one-pion range.
The impact of these terms on the magnetic moments of the
deuteron and trinucleons was examined in Ref. [25]. However,
markedly more information on the interplay of these terms
with each other and with one-body mechanisms is available
via the |q|2 dependence of observables. In this work we present
a study in this direction, using χEFT expressions for J(s)

derived in Refs. [18,19] to extend the predictions given for
GM in Refs. [21,23] to O(eP 4). We discuss the relevant terms
in the current operator and use the data on the magnetic form
factor of the deuteron at low values of |q|2 to determine two
unknown low-energy constants (LECs). The O(eP 4) χEFT
results thereby obtained accurately describe experimental data
on GM in the kinematic range Q2 < 0.35 GeV2. This, together
with the findings of Ref. [21], provides a full set of results for
elastic electron-deuteron form factors at O(eP 4).

We next describe the anatomy of the calculation and outline
the relevant terms in the two-nucleon current operator. This is
followed by a discussion of our results, including those for the
LECs. We finish by summarizing.

Anatomy of the calculation. The magnetic form factor of
the deuteron is related to the Breit-frame matrix element of the
four-current operator Jμ according to the well-known relation

GM = 1√
2η|e| 〈1|J+|0〉, (1)

where J+ = J 1 + iJ 2 and η = |q|2/(4m2
d ) with q ≡ p′

e − pe

denoting the momentum transfer and md the deuteron mass.
(Since we work in the Breit frame we have Q2 = |q|2.) The
deuteron states are labeled by the projection of its spin along
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the direction of q. Both the deuteron wave functions and the
current operator appearing on the right-hand side of the above
equation are calculated order by order in χEFT.

We now briefly describe the χEFT expansion of the two-
nucleon current operator, Jμ, as it pertains to the calculation
of the deuteron form factors. We employ Weinberg’s power
counting throughout this work, which makes use of naive
dimensional analysis to determine the significance of various
contributions. The leading contribution to the charge density,
J0, is given by an A0 photon coupling to a point proton at
order e. Nucleon-structure corrections start contributing to the
one-body current at order eP 2 [next-to-leading order (NLO)].
The first isoscalar two-body contribution is generated from
a tree-level pion-exchange diagram at order eP 4, provided
the nucleon mass is counted as mN ∼ �2/Mπ 	 � [18,19].1

This correction is associated with a relativistic correction
to the one-pion exchange part of the NN potential. There
are numerous other corrections to the two-body part of the
charge operator at leading-loop order, eP 4, from one- and
two-pion exchange diagrams and from pion loops involving
the lowest-order contact interactions, but this is the only
isoscalar effect. The explicit form of all terms can be found in
Refs. [18,19].

The chiral expansion of the three-current starts at order
eP with the single-nucleon contributions. The first two-body
terms emerge from tree-level one-pion exchange diagrams at
order eP 2 (NLO). The next two-body corrections to J occur
at order eP 4 from pion loops and tree diagrams involving
higher-order vertices from the effective Lagrangian. The two-
pion exchange contributions are parameter free [18], while the
one-pion exchange terms depend on the LECs d̄8, d̄9, d̄18, d̄21,
and d̄22 entering L(3)

πN [14,26–28]. However, the only long-
range two-body mechanism in J(s) at this order is proportional
to d̄9. While this LEC could, in principle, be constrained by
pion photoproduction data, in practice these data provide little
information on d̄9 [29,30].

GM is of particular interest at O(eP 4) because it is there
that the first short-distance NN physics not determined by NN
scattering and gauge invariance appears. This is represented
by the simplest M1 isoscalar four-nucleon–one-photon contact
term in the χEFT Lagrangian, which is of the form [19,23,31]

LM1 = eL2

2
(N † εijkσiFjk N )(N † N ). (2)

The low-energy constant L2 that appears in Eq. (2) must be
extracted from data on electromagnetic reactions in the two-
nucleon system.

The combination of these two effects yields a two-body
isoscalar current operator J(s) [18,19]:

J(s)
2B = 2e

gA i

F 2
π

d9 τ 1 · τ 2
σ 2 · q2

q2
2 + M2

π

[q1 × q]

+ ieL2 (σ 1 + σ 2) × q1 + (1 ↔ 2), (3)

where q labels the photon momentum and q1 and q2 label
the momentum transfer on nucleon one and two respectively.

1In the nomenclature of Refs. [18,19], these contributions appear at
O(eQ).

Since GM is determined completely by the one-body part of
J(s) up to O(eP 3) the total form factor is thus

GM = 1√
2η|e| 〈1|J(s)

1B

+ + J(s)
2B

+|0〉. (4)

Here we use factorization to compute J1B ; i.e., we write

J(s)
1B

+ = |e|
M

[
G

(s)
E (Q2)2p+ + iG

(s)
M (Q2)(σ1 × q)+

]
, (5)

with p the momentum of the struck nucleon, and G
(s)
E and G

(s)
M

the isoscalar single-nucleon form factors, for which we take
the parametrization of Ref. [32]. The use of this ansatz for
the one-body part of J(s)+ is equivalent (up to corrections that
begin only two orders beyond the order to which we work)
to making a χEFT expansion for the “body” form factors
DM and DE [33]. This allows us to focus on the momentum
transfer at which the χEFT expansion for the NN current
operator J breaks down, without having to worry whether the
theory is doing a good job of describing isoscalar nucleon
structure.

Results. We now evaluate the matrix elements in Eq. (4)
with a variety of χEFT deuteron wave functions computed
with the NLO and next-to-next-to-leading order (NNLO)
χEFT potentials and different values of the cutoffs � in the
Lippmann-Schwinger equation and �̃ in the spectral function.
The result found for GM with leading-order χEFT wave
functions and the leading piece of J(s), denoted here as O(eP ),
was computed in Ref. [34]. Corrections to this come both from
higher-order pieces of the NN potential, V , which affect the
wave function, and from the corrections to J(s) discussed in
earlier. The NNLO χEFT potential includes all effects up to
O(P 3) relative to leading (in this counting), so its deuteron
wave function, when combined with the O(eP 4) J(s), yields
a χEFT calculation for GM which includes all effects up to
O(eP 4).

The pertinent matrix elements are computed via Monte
Carlo (MC) integration. To increase efficiency, we use impor-
tance sampling with the weight function of Ref. [35]:

p(k) ≡ p(k) = (r − 3)(r − 2)(r − 1)

8π

Cr−3

(k + C)r
. (6)

The functional form of p(k) is chosen such that the weight
function is maximal at the origin, reflecting the large S-wave
component of the deuteron wave function. The parameters C

and r control the vanishing of the weight function at large
momenta and are tuned to optimal values (in terms of the
efficiency of the MC integration) by calculating the expectation
value of the one-pion exchange potential, yielding C = 1 GeV
and r = 11.

As in Ref. [35] we perform a path average over several runs.
We use 2730 sample points and the path average is performed
for 3000 runs. Analysis of the run-to-run fluctuations indicates
a final answer with better than 1% precision throughout
the momentum range of 0–800 MeV. At several points we
compared this MC answer to calculations using quadrature
methods, and we always found agreement within the precision
claimed.

We adopt the following procedure to determine the values
of the two LECs entering J(s). First, we fix the value of L2
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FIG. 1. (Color online) The magnetic form factor GM as a function
of |q|. The experimental datum for the magnetic moment is from [36].
The remaining data are from the parametrization of [37] (upward
triangles) and scattering experiments reported in [38] (downward
triangles), [39] (squares), and [40] (solid dots). The light (dark) band
represents the results with NLO (NNLO) wave functions and J(s)

computed up to O(eP 4).

for a given d̄9 by demanding that the magnetic moment of
the deuteron is reproduced. We then perform a χ2 fit to the
experimental data for |q| < 400 MeV (including four points
from the parametrization of Ref. [37]) to determine d̄9. Our
attempts to use even lower |q| data for this fit resulted in
unstable answers, reflecting the insensitivity of GM to this
LEC at small values of |q|.

The results of this procedure are shown in Fig. 1. The
light (blue online) and dark (red online) bands are obtained
by using wave functions computed with the NLO and NNLO
χEFT potentials, respectively. The width of the band shows the
variation of the prediction as � and �̃ are changed in the range
� = 400–550 MeV (� = 450–600 MeV) at NLO (NNLO)
and �̃ = 500–700 MeV. The cutoff variation is reduced at
NNLO, and the data are well described for Q2 < 0.35 GeV2.

In order to assess the momentum transfer at which the
χEFT expansion for J(s) breaks down, in Fig. 2 we show
the size of different contributions to the final result. This
time the bands represent the impulse approximation result
obtained with NLO (light bands; blue online) and NNLO (dark
bands; red online) wave functions. The dotted (dashed) line is
the effect from the piece of J(s)

2B that is proportional to L2

(d̄9). For both two-body matrix elements, we show results
averaged over the five cutoff combinations considered, with
the light blue lines showing the NLO case, and the dark red
lines obtained with NNLO wave functions. We estimate the
breakdown scale of the EFT expansion by values of momentum
transfer at which the O(eP 4) two-body contributions start
becoming comparable to the effect of the O(eP ) (impulse-
approximation) piece of the current. Figure 2 shows that the
smaller two-body contributions to GM found with the NNLO
wave function delay the breakdown of the expansion. Even so,
we would infer a breakdown scale |q| = 600 MeV, as there the
short-distance effect ∼L2 becomes equal in magnitude to the
impulse-approximation result.
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FIG. 2. (Color online) The magnetic form factor GM as a function
of |q|. The light (dark) band represents the results with NLO (NNLO)
wave functions using the impulse approximation. The dashed and
dotted lines are the contributions from two-body pieces of J(s) (light:
NLO, dark: NNLO), as described in the text. For remaining notation
see Fig. 1.

In Table I we present the values of d̄9 and L2 obtained in our
fits. Small values of d̄9 are preferred, which is consistent with
the findings of Ref. [29]. Reassuringly, the inferred values
of d̄9 show only a very mild dependence on the cutoffs as
compared to the expected natural size of this LEC, |d̄9| ∼
1 GeV−2. In contrast, the values of L2 do depend on the choice
of the regulator employed for the NN potential, as one would
expect. It is comforting to see that all obtained values of L2 are
natural with respect to the cutoff scale � employed in these
calculations. The values of L2 reported in the table show that
two-body effects in GM play a larger role in the calculation
with NLO deuteron wave functions, as seen in Fig. 2.

Summary. The first two-body effects in the deuteron
magnetic form factor GM occur at O(eP 4) in χEFT, i.e.,
three orders beyond leading. Inclusion of these mechanisms
in the computation of GM improves the description of data
and allows an exact reproduction of the deuteron magnetic
moment, which otherwise is underpredicted in χEFT. Experi-
mental data are then well described for Q2 < 0.35 GeV2, and
the chiral expansion for GM is found to converge well for
Q2 < 0.25 GeV2, provided that the NNLO wave functions of

TABLE I. Values for d̄9 and L2 found by fitting data up to |q| =
400 MeV, using different values of the cutoffs.

Order �/�̃ (MeV) d̄9 (GeV−2) L2 (GeV−4)

NLO 400/500 − 0.010 0.243
NLO 400/700 − 0.011 0.249
NLO 550/500 0.016 0.605
NLO 550/600 0.017 0.731
NLO 550/700 0.018 0.892
NNLO 450/500 − 0.011 0.188
NNLO 450/700 − 0.009 0.173
NNLO 550/600 0.005 0.089
NNLO 600/500 0.001 0.113
NNLO 600/700 − 0.001 0.028
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Ref. [4] are employed. Finally, we note that the proposal of
Ref. [7] to change the scaling of short-distance χEFT operators
in order to ensure proper renormalization of the theory does
not significantly alter the relative importance of such operators
in the 3S1-3D1 channel [9]. Therefore we expect that the
conclusions of this study will be quite robust with respect
to developments on this front.
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[4] E. Epelbaum, W. Glöckle, and U.-G. Meißner, Nucl. Phys. A

747, 362 (2005).
[5] H. Krebs, A. Gasparyan, and E. Epelbaum, Phys. Rev. C 85,

054006 (2012).
[6] G. P. Lepage, arXiv:nucl-th/9706029.
[7] A. Nogga, R. G. E. Timmermans, and U. van Kolck, Phys. Rev.

C 72, 054006 (2005).
[8] E. Epelbaum and U.-G. Meissner, arXiv:nucl-th/0609037.
[9] M. C. Birse, Phys. Rev. C 74, 014003 (2006).

[10] M. Pavon Valderrama and E. Ruiz Arriola, Phys. Rev. C 74,
054001 (2006).

[11] V. Baru, C. Hanhart, M. Hoferichter, B. Kubis, A. Nogga, and
D. R. Phillips, Phys. Lett. B 694, 473 (2011).

[12] D. Gazit, S. Quaglioni, and P. Navratil, Phys. Rev. Lett. 103,
102502 (2009).

[13] H. W. Griesshammer, J. A. McGovern, D. R. Phillips, and
G. Feldman, Prog. Part. Nucl. Phys. 67, 841 (2012).

[14] T.-S. Park, D.-P. Min, and M. Rho, Nucl. Phys. A 596, 515
(1996).

[15] S. Pastore, R. Schiavilla, and J. L. Goity, Phys. Rev. C 78,
064002 (2008).

[16] S. Pastore, L. Girlanda, R. Schiavilla, M. Viviani, and R. B.
Wiringa, Phys. Rev. C 80, 034004 (2009).

[17] S. Pastore, L. Girlanda, R. Schiavilla, and M. Viviani, Phys. Rev.
C 84, 024001 (2011).
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