
PHYSICAL REVIEW C 86, 045804 (2012)

Different scenarios of topological phase transitions in homogeneous neutron matter
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We study different scenarios of topological phase transitions in the vicinity of the π0 condensation point in
neutron matter. The transitions occur between the Fermi-liquid state and a topologically different one with two
sheets of the Fermi surface. Two possibilities of a rearrangement of quasiparticle degrees of freedom are shown:
the first-order topological phase transition and the second-order one. The order of the phase transition is found
to be strongly dependent on the value of the critical wave vector of the soft π0 mode. The thermodynamics of
the system is also studied. It is shown that the topology of the quasiparticle momentum distribution is mainly
determined by the neutron matter density, while the temperature T is essential in a narrow density region. A
simple explanation of the first-order topological phase transition at T = 0 is given.
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I. INTRODUCTION

Dense neutron matter is an example of systems in which
correlations of single-particle degrees of freedom are strongly
enhanced in a certain region of external parameters. Such en-
hancement is attributed to an exchange of critical fluctuations
of a very soft collective mode in a vicinity of its collapse [1].
In dense neutron matter, critical spin-isospin fluctuations with
quantum numbers of the neutral pion are enhanced close to
the π0 condensation point (PCP) [2]. Critical density for
the neutral pion condensation ρc � 0.2 fm−3 predicted in
microscopic calculations [3,4] is reached in a typical neutron
star with the central density of 0.5–1.0 fm−3.

Strong momentum dependence of the quasiparticle (QP)
interaction due to exchange of critical spin-isospin fluctuations
may result in a change in the topology of the ground state of
a neutron QP system [5]. To our knowledge, the possibility
of a change in the topology of the ground state was discussed
for the first time in Ref. [6] for electronic systems. In nuclear
physics, QP momentum distributions n(p) with a topology
different from that of the Fermi sphere nFL(p) = θ (pF − p)
were considered in Refs. [7,8] for model interactions and in
Ref. [9] for semirealistic ones.

The non-Fermi-liquid topology of the ground state QP
momentum distribution in the vicinity of PCP was first
discussed in Ref. [5]. With the increase of the density ρ towards
the PCP value ρc, the QP spectrum ε(p) (measured from the
chemical potential μ) becomes a nonmonotonic function and
at certain density ρb touches the momentum axis at some point
pb [see panel (a) of Fig. 1]. This situation is associated with a
quantum critical point (QCP) [10] at which the single-particle
density of states diverges [11]. Beyond the QCP, the Landau
state with the Fermi step QP distribution nFL(p) becomes
unstable as it violates the necessary stability condition

δE[n] = 2
∫

ε(p, [n(p)]) δn(p) dυ > 0. (1)

Here dυ = d3p/(2π )3 is the volume element in the momentum
space and the factor 2 stands for summation over spin

projections. The constraint (1) requires a positive change in the
total energy E[n] of the system for any admissible variation
δn(p) of the QP momentum distribution that conserves the
density

2
∫

δn(p) dυ = 0. (2)

Thus a new state appears with an unoccupied region (“bubble”)
in the momentum distribution, which has several sheets of the
Fermi surface [panel (b) of Fig. 1]. This is the state that was
considered in Refs. [7–9]. Further development concerning
states with many bubbles can be found in Refs. [12,13]. It
is also worth noting investigations [14] concerning abnormal
occupation in boson matter.

Reconstructions of the QP momentum distribution in
strongly correlated Fermi systems changing the Fermi surface
topology are generally referred [15] to as topological phase
transitions (TPTs). It should be noted that, besides the bubble
scenario, there is another type of TPT which is called
the fermion condensation [16–18]. In this scenario, the QP
spectrum acquires a flat band ε(p) = 0, p ∈ [pi, pf ], and the
Fermi surface changes its dimension. The relation between the
bubble scenario and the fermion condensation is discussed in
Ref. [19].

Going back to the neutron matter problem, we note that
a bubble formation beyond the QCP is quite important for
cooling of neutron stars [5,20]. Indeed, a new sheet of the
neutron Fermi surface with a low value of the corresponding
Fermi momentum plays an important role for operation of the
direct Urca processes: n → p + e− + ν̄e, p + e− → n + νe.
In a neutron star’s core these processes are generally consid-
ered to be forbidden [21] due to the kinematic restriction on the
Fermi momenta of the involved particles, pFn

� pFp
+ pFe

.
In the typical density range of the core ∼1–2 ρ0 (ρ0 � 0.16
fm−3 is the normal nuclear density), the proton fraction does
not exceed 6%–8%, and the right-hand side of the kinematic
equality is estimated by ∼0.8 pFn

. The appearance of the new
sheet of the Fermi surface at the point p

(1)
Fn

< 0.8 pFn
provides

agreement with the kinematic restriction. This mechanism was
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FIG. 1. Left panel: QCP at the ρb density value. Right panel:
Beyond the QCP.

considered in Refs. [5,20] as a possibility for the enhanced
cooling of some neutron stars (e.g., Vela, Geminga, and 3C58).

II. QUASIPARTICLE APPROACH NEAR THE PION
CONDENSATION POINT

A. General relations

The method we use for a description of neutron matter near
the PCP is based on an implementation of the Landau-Migdal
QP approach to strongly correlated Fermi systems that is
reviewed in details in Ref. [22]. Within this approach, the
QP spectrum and the QP momentum distribution at finite
temperature T are evaluated by solving the set of equations

∂ε(p)

∂p
= p

m
+

∫
f (p, p′)

∂n(p′)
∂p′ dυ ′, (3)

n(p) = [1 + eε(p)/T ]−1, (4)

2
∫

n(p) dυ = ρ. (5)

The first equation of this set is the Landau relation where
f (p, p′) is the QP interaction function [23,24] and m stands for
the free neutron mass; the second equation is the Fermi-Dirac
formula in which ε(p) is a functional of n(p); and the last one
is the normalization condition.

The QP interaction function is identified [23,24] with the ω

limit of the vertex function �,

f (p1, σ 1; p2, σ 2) = Z2�ω
αβ,γ δ(p1, p2)

= Z2 lim
k
ω
→0,ω→0

�αβ,γ δ(p1, p2, k, ω), (6)

where Z is the residue of the single-particle Green function
and σ αγ stands for Pauli spin matrices. According to Ref. [1],
the most singular contribution to the vertex function near the
PCP comes from an exchange of a soft spin-isospin collective
mode. The corresponding direct and the exchange graphs are
shown in Fig. 2. At the limit k → 0, the contribution of
the exchange graph still exhibits a strong dependence on the
relative momentum q = p1 − p2. Therefore the QP interaction

FIG. 2. The main contribution to the QP interaction function.

function reads [5]

f (p1, σ 1; p2, σ 2) � (JαδDJβγ )(q, ω = 0; ρ), (7)

where Jαδ is the interaction vertex of nucleons and pions
in neutron media, D is the π0 propagator, and the general
arguments of the operators are in parentheses.

B. Topological phase transitions

The occurrence of TPTs in dense neutron matter can be
traced with the help of the strong momentum dependence of
the QP interaction function near the PCP. As was discussed in
Ref. [2], the spectrum ω(q) of π0-like collective excitations
in neutron matter is given by a particular branch of poles
of the π0 propagator. The behavior of this branch depends
on the density ρ of the system. Pion condensation occurs at
the critical density ρc where the excitation energy vanishes,
ω(qc) = 0, together with its derivative, ∂ω(qc)/∂q = 0, at
a certain momentum qc. As a consequence, the following
conditions at the PCP are valid:

D−1(qc, 0; ρc) = 0,
∂D−1(q, 0; ρc)

∂q2

∣∣∣∣
qc

= 0. (8)

Thus using the Taylor expansion of D−1, the interaction func-
tion f entering in Eq. (3) can be written [5,20,25] in the form

f (p1, p2) = 1

2
Trσ 1 Trσ 2f (p1, σ 1; p2, σ 2)

= g

κ2(ρ) + [
(p1 − p2)2/q2

c − 1
]2 , (9)

where g is an effective coupling constant and κ2(ρ) ∝ (ρc − ρ)
is an effective radius in momentum space. The notation Trσ
stands for the trace over the spin variable.

Previous investigations [25] within the QP interaction
(9) were focused on the ground-state topology, and g, qc, κ

quantities were regarded as phenomenological parameters. For
convenience of readers, we present in Fig. 3 a topological
phase diagram in qc, κ variables obtained in that work. The
label FL corresponds to the Fermi-liquid state and LBi , to
states with i sheets of the Fermi surface. A change in the
density ρ leads to a change in the system position (qc, κ)

FIG. 3. The phase diagram of the neutron matter ground state
near the PCP [25].
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FIG. 4. The interaction function (15) multiplied by N0 =
mpF /π 2 as a function of q/pF . The parametrization (16) corresponds
to the curves peaked at qc � 0.74 pF , while (17) corresponds to
qc � pF .

on the diagram. Transitions between different regions of the
phase diagram represent TPTs that can occur in neutron matter.
Until recently, all such TPTs were considered [19,22] to occur
continuously according to violation of Eq. (1). However, an
attentive investigation [26] within the model (9) revealed
another possibility, namely, a first-order TPT. Such a scenario
of the Fermi surface reconstruction in a homogeneous isotropic
Fermi system was first found [27] in a model of strongly
correlated 2D electron gas beyond the QCP. Below, we present
a detailed analysis of possible TPTs for the neutron matter
problem.

III. SEMI-MICROSCOPIC QP INTERACTION FUNCTION

The above discussion of TPTs was restricted by the phe-
nomenological description (9) of the QP interaction function.
It is possible to convey neutron matter physics near the PCP
in a more direct way. A semi-microscopical expression for
the QP interaction can be derived by use of the microscopic
formula (7).

The bare π0-nucleon interaction vertex is given [28] by

J 0
πNN = if

mπ

(σq)τ3, (10)

where f � 1 is the dimensionless π0-nucleon coupling con-
stant, mπ is the pion mass, and τ3 is the diagonal isospin
matrix. The vertex renormalization in neutron matter is due to

FIG. 5. Evolution of the QP spectrum (in units ε0
F = p2

F /2m) and
the QP momentum distribution with increasing pF within the model
(16). The temperature T = 0.

nucleon-nucleon correlations that can be described by means
of the Landau-Migdal amplitude [29]

m∗p0

π2
F = F + F ′τ 1τ 2 + (G + G′τ 1τ 2)σ 1σ 2. (11)

Here p0 = (1.5π2ρ0)1/3 is the Fermi momentum in equilib-
rium nuclear matter and m∗ is the effective nucleon mass.
According to Ref. [2], the renormalized static vertex reads

J st
αβ(q) = if

mπ

(σ αβq)τ3

1 + gcχ
st
NN (q)

, gc = π2

m∗p0

m2
π

f 2
(G + G′).

(12)

The function χst
NN (q) is the static susceptibility of free QPs

proportional to the Lindhard function:

χst
NN (q)

= f 2

m2
π

m∗pF

π2

[
1

2
+ pF

2q

(
q2

4p2
F

− 1

)
ln

∣∣∣∣1 − q/2pF

1 + q/2pF

∣∣∣∣
]

,

(13)

where pF = (3π2ρ)1/3 is the neutron Fermi momentum.
The pion propagator in Eq. (7) is connected with the polar-

ization operator: D−1(q, ω) = ω2 − q2 − m2
π − �(q, ω). The

microscopic description of the pion polarization operator is
a quite subtle matter [28]. We use here its semi-microscopic
representation [30]

�(q, 0) = −q2

(
χst

NN (q)

1 + gcχ
st
NN (q)

+ ρ

ρ�

(
1 + q2/q2

�

)
)

. (14)

The first term describes processes of particle-hole excitations
where nucleon-nucleon correlations are taken into account by
the denominator. The second term is a phenomenological one
and describes �-resonance-hole excitations. The S-scattering
processes in neutron matter are neglected.

Finally, one arrives at the formula

f (q) = 1

2
Trσ 1 Trσ 2f (p1, σ 1; p2, σ 2)

=
(

f

mπ

q

1 + gcχ
st
NN (q)

)2 1

m2
π + q2 + �(q, 0)

(15)

for the interaction function, where the polarization operator is
given by Eq. (14). In Eq. (15), the constants f = 1, m∗ = m,
G + G′ = 1 are fixed all along the further discussion, while
two sets of parameters for the phenomenological part of the
polarization operator are used. The first set,

ρ� = 0.59 m3
π , q� = 2.08 mπ, (16)

corresponds to Ref. [30], while the second one,

ρ� = 0.97 m3
π , q� = 4.1 mπ, (17)

is suggested in this work. Both sets reproduce the value
ρc � 0.2 fm−3 that agrees with the critical density of π0

condensation obtained in Refs. [3,4]. The difference between
the two parametrizations is in the corresponding value of
the critical wave vector qc, which is not known accurately
from microscopic calculations. We also note that ρc and
qc are quite sensitive to tuning of parameters ρ� and q�.
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FIG. 6. Energy per particle at T = 0 as a function of pF . The left
panel corresponds to the model (16), while the right one corresponds
to the model (17).

The behavior of the QP interaction function is shown in
Fig. 4. The parametrization (16) leads to qc � 0.74 pF (that
is, less then pF ), while (17) leads to qc � pF . Figure 4 also
demonstrates the amplification of the QP interaction with
an increase of pF (equally, the density ρ = p3

F /3π2). The
divergence is reached at the PCP point, pFc � 2.602 mπ and
pFc � 2.598 mπ correspondingly for the first and the second
parametrizations.

IV. DIFFERENT SCENARIOS OF TOPOLOGICAL
PHASE TRANSITIONS

In this section, we discuss results of the analysis of
topological rearrangements of QP degrees of freedom based
on the semi-microscopic QP interaction function. The QP
spectrum and the QP momentum distribution are determined
by the set of Eqs. (3)–(5). Due to the assumed dependence
of the interaction function (15) on the relative momentum q,
Eq. (3) can be integrated by parts, yielding

ε(p) = p2

2m
− μ +

∫
f (p − p′) n(p′) dυ ′. (18)

FIG. 7. Panels (a) and (b): QP spectra and QP momentum
distributions of coexisting states in advance of the first-order TPT.
Panels (c) and (d): The same beyond the TPT point. The temperature
T = 0.

FIG. 8. The energy (a), the entropy (b), the free energy (c), and
the density of states (d) as functions of the temperature for the FL
and the LB2 states.

For solving the equations a contracting iterations method was
used. The case of T = 0 was modeled by T = 10−5ε0

F , where
ε0
F = p2

F /2m.
First, we consider the results obtained within the model (16)

where qc = 0.74 pF . The evolution of QP degrees of freedom,
driven by an increase of pF , is displayed in Fig. 5. It has a
continuous behavior in agreement with the scenario of TPTs
with violation of the necessary stability condition (1). As the
Fermi momentum reaches the critical value pb

F � 2.562 mπ ,
a bifurcation occurs, and a new zero of the QP spectrum ε(p)
appears at the momentum pb = 0. Beyond the pb

F , the QP
momentum distribution possesses two sheets of the Fermi
surface with coordinates p1 	 pF and p2 � pF . The size of
the bubble region (which is equal to p1) increases continuously
from the zero value with further increase of pF .

Dealing with Eq. (18) for the QP spectrum, one can consider
the corresponding energy functional

E[n] = 2
∫

p2

2m
n(p) dυ +

∫
f (p − p′) n(p) n(p′) dυ dυ ′.

(19)

The behavior of the energy is given in panel (a) of Fig. 6.
It shows a monotonic increase according to the continuous
picture of the evolution of the ground state in Fig. 5. A second-
order topological transition occurs between the FL and the LB2

states exactly at the critical point pb
F � 2.562 mπ .

Passing to the model (17) where qc � pF , we first consider
panel (b) of Fig. 6. As it is seen, there are two different states
in the interval 2.57 mπ � pF � 2.58 mπ . The coexistence of
several solutions of Eqs. (4), (5), and (18) was established
by considering different initial conditions for the iteration
procedure. Figure 7 represents QP spectra and QP momentum
distributions of coexisting states. At the value pF = 2.572 mπ

the ground state is the FL one [panel (a)], while there is also
a LB2 state [panel (b)] with a slightly higher energy value.
It is worth emphasizing that the bubble region has finite,
not negligible size p1 � 0.6 pF . A first-order phase transition
occurs at p1st

F � 2.573 mπ . Beyond the transition point, the
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FIG. 9. QP spectra and momentum distributions of the FL and
the LB2 states at the point (the black dot A in Fig. 10 below) of the
temperature-driven TPT.

LB2 state [panel (d)] becomes energetically favored over the
FL state [panel (c)]. Finally, the local energy minimum of
the functional (19), corresponding to the FL state, becomes
unstable1 (for pF � 2.581 mπ ) and only the LB2 ground state
remains [see panel (b) of Fig. 6].

We proceed with a thermodynamic analysis concerning
the case of the first-order TPT. Thermodynamic functions of
neutron matter with the Fermi momentum pF = 2.572 mπ are
given by Fig. 8. Panel (a) demonstrates that the FL state is
lower in the energy than the LB2 one up to the temperature
T ∼ 0.1 ε0

F ∼ 5 MeV. At the same time, panel (b) shows that
the entropy

S[n] = −2
∫

n(p) ln n(p) + [1 − n(p)] ln[1 − n(p)]dυ, (20)

of the LB2 state grows more rapidly with increasing tem-
perature than the entropy of the FL state. An interplay of
contributions to the free energy F [n] = E[n] − T S[n] leads
to a first-order TPT driven by the temperature. Behavior of
the free energy given by panel (c) demonstrates the first-
order phase transition at the temperature T1 � 6.2 × 10−2ε0

F .
Finally, panel (d) shows the temperature evolution of the
density of states,

N [n] =
∫

dn(p)

dε
dυ = 1

T

∫
n(p)[1 − n(p)] dυ. (21)

To elucidate the temperature behavior of the thermody-
namic functions under consideration, we present in Fig. 9 QP
spectra and QP momentum distributions of the FL state and
of the LB2 one at the point T = 6.2 × 10−2ε0

F near the phase
transition. This figure shows that the entropy and the density
of states of the LB2 state are larger than those of the FL state
due to the fact that, in the first case, two sheets of the Fermi
surface “melt,”while in the second case only one does.

The results of the analysis on the temperature behavior of
QP states, in the region near the point pF = 2.572 mπ [see
panel (b) of Fig. 6], are summarized by the (pF , T )-phase
diagram of neutron matter shown in Fig. 10. The diagram
consists of two regions: the first one corresponds to the FL

1Detailed analysis of the energy functional (19) with a QP
interaction amplitude of the form Eq. (9) can be found in Ref. [26]
for nuclear matter and in Ref. [27] for 2D electron gas problems.

FIG. 10. Phase diagram of neutron matter near the line T1(pF )
of the first-order TPTs. The first label corresponds to the thermo-
dynamically favored phase, while the second one corresponds to a
metastable phase. The black dot A refers to the QP states shown in
Fig. 9.

phase of the system, while the other one to the LB2 phase.
The regions are separated by the line T1(pF ) of the first-order
TPTs. The diagram shows that neutron matter state topology
is determined by the temperature in a quite narrow density
interval.

V. ENERGETICS OF LB2 STATES

In this section, we elucidate why the system appears to be
in the LB2 phase. The energy functional (19) can be rewritten
in the form

E[n] = 2
∫

p2

2m
n(p) dυ + 1

2

∫
f (q)S(q; [n]) dυ. (22)

Here the interaction energy is given by means of the structure
function

S(q; [n]) = 2

ρ

∫
n(p + q)n(p) dυ. (23)

In the case T = 0, which we address below, the set of all
possible QP momentum distributions with one or two sheets
of the Fermi surface (that is, the FL or LB2 states) is specified
by

n2(p) = θ (p2 − p) − θ (p1 − p), (24)

p3
2 − p3

1 = p3
F . (25)

The last equation follows from the normalization condition
(5). This class is referred below as QP distributions of n2

type. In this case, the structure function is evaluated explicitly,
the corresponding formulas are given in the Appendix. It
is sufficient, due to Eq. (25), to deal with one parameter.
The convenient choice is η = p2 − p1 (the width of the
occupied region in the QP momentum distribution) that defines
distribution parameters

p1,2 = 1√
3

√
p3

F

η
−

(
η

2

)2

∓ η

2
. (26)

The value η = pF corresponds to p1 = 0, p2 = pF , i.e., to the
case of the Fermi step. The decrease of η leads to a monotonic
increase of p1,2.
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FIG. 11. Left panel: The structure function for QP momentum
distributions of the n2 type vs the ratio η/pF at different values of the
wave vector q. Right panel: The total energy per particle for the thin
n2-type momentum distributions.

The behavior of the structure function S(q; [n2]) = S(q; η)
is shown in panel (a) of Fig. 11.

Its explicit form, corresponding to the Landau state (η =
pF ), is well known:

S(q; pF ) = SFL(q)

= 1

2

(
1 − q

2pF

)2 (
2 + q

2pF

)
θ (2pF − q). (27)

It is remarkable that, in the other important case of thin (η 	
pF ) n2-type QP distributions that can appear by a first-order
TPT, one obtains

S(q; η)|η→0 = η

2q
. (28)

This result is demonstrated well by Fig. 11, and reflects a
decrease of the overlap of the momentum distributions in the
integral in Eq. (23). As a consequence, this leads to a reduction
of the interaction energy,

Eint[n2]|η	pF
� Uη

2pF

, U = pF

∫
f (q)

2q
dυ. (29)

The kinetic energy, on the contrary, shows enhancement in
agreement with the explicit result

Ekin[n2] = 3

5p5
F

(
p5

2 − p5
1

)
ε0
F ρ

=
(

pF

3η
+ η2

3p2
F

− η5

15p5
F

)
ε0
F ρ. (30)

The total energy in the case of distributions of the n2 type in
the limit η 	 pF is given by

E[n2] �
(

pF

3η
+ uη

2pF

)
ε0
F ρ, u = U/ε0

F ρ. (31)

This function is plotted on panel (b) of Fig. 11 and shows a
minimum value

ELB2 =
√

2

3
u ε0

F ρ (32)

at the point ηc = pF

√
2/(3u). Finally, we note that the ELB2

energy appears to be lower than the Fermi-liquid one,

EFL = 3

5
ε0
F ρ + 1

2

∫
f (q)SFL(q) dυ, (33)

when the QP interaction is sufficiently strong. Indeed, if
one characterizes the QP interaction function by an effective
coupling constant f (q) ∝ g, Eqs. (32) and (33) show that
ELB2 ∝ √

g and EFL ∝ g at the large-g limit.
Thus, the appearance of LB2 states is explained by the

interplay between the kinetic and the interaction energy contri-
butions. The existence of this energy minimum, generally, does
not dependent on whether the Landau state is present or not.
We remark that this simple explanation is limited to regarding
the n2 set of QP momentum distributions. A generalization to
a more complete class nα>2 could in principle reveal an insta-
bility of a LB2 state with respect to some energetically favored
one [26]. The solid proof of the existence of the LB2 ground
state comes from the direct solution of Eqs. (4), (5), and (18).

VI. CONCLUSION

In this article we have considered two scenarios of topo-
logical phase transitions in homogeneous neutron matter. The
transitions occur between the Fermi-liquid state and the other
one with two sheets of the Fermi surface. The investigation
was performed with the use of a semi-microscopic expression
for the quasiparticle interaction function in the vicinity of
π0 condensation point. The order of the phase transition is
shown to depend on the value of the critical wave vector
qc. The first possibility for a rearrangement of the quasi-
particle degrees of freedom is the second-order topological
phase transition. It occurs when qc < pF and corresponds
to a quantum-critical-point scenario [10,11,19] of the Fermi
surface reconstruction. The second possibility studied in this
work is the first-order topological phase transition. This case
occurs when qc � pF and is connected with a sudden change
in the quasiparticle momentum distribution and spectrum. The
first-order topological phase transition can be driven by change
of either the density or the temperature. Thermodynamic
functions and the phase diagram have been calculated. It is
shown that the influence of the temperature on the Fermi
surface topology is essential in a quite narrow density region.
A simple explanation of the origin of the first-order topological
phase transition at T = 0 is given.
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APPENDIX

The structure function within the n2 set of QP momentum
distributions reads

S(q; [n2]) = 2

ρ

∫
n(p + q)n(p) dυ = S11 + S22 − 2S12.

(A1)
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Here (4π/3)p3
F Sij is a volume of the intersection of two

spheres with radii pmin = pi and pmax = pj , pmin � pmax,
while the distance between their centers is equal to the q vector
length. The value of the volume is specified by the expression

Sij (q; pi, pj ) = [ζ (q; pi, pj ) + ζ (q; pj , pi)]θ (pi + pj − q)

× θ (q + pi − pj ) + p3
i θ (pj − q − pi).

(A2)

The first term corresponds to an intersection case, while the
second one corresponds to a complete enclosure of the smaller
sphere into the bigger one. The function ζ has the form

ζ (q; pi, pj ) = 1

4

(
pi − p2

i + q2 − p2
j

2q

)2

×
(

2pi + p2
i + q2 − p2

j

2q

)
. (A3)
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