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The direct neutron capture reaction is investigated within the potential model. All allowed electric dipole (E1),
electric quadrupole (E2), and magnetic dipole (M1) transitions are taken into account. The nuclear structure
ingredients involved in the calculation are determined from experimental data whenever available, and if not,
from global microscopic nuclear models. A special emphasis is put on the excitation spectrum deduced from a
mean field plus combinatorial model of nuclear level densities. It is shown that considering either a total intrinsic
nuclear level density or one-particle, one-hole neutron excitations give rise to similar predictions provided the
corresponding average spectroscopic factor is renormalized. The potential model is shown to provide a fair
agreement between the predicted radiative neutron capture cross section and experimental data for light targets
as well as with previous calculations. A systematic study for about 6400 nuclei with 8 � Z � 102 lying between
the proton and neutron drip lines shows that the direct capture cross sections (and consequently reaction rates
of astrophysical interest) are proportional to the number of levels available below the neutron threshold and
decreases with decreasing neutron separation energies. It is found that the E2 and M1 components are usually
negligible with respect to the E1 contribution, but that they can dominate the direct capture rate for about several
hundred nuclei.
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I. INTRODUCTION

Nuclear reactions of astrophysical interest often concern
unstable or even exotic species for which no experimental data
exist. Although significant efforts have been devoted in the
past decades, experimental information covers only a minute
fraction of the entire data set required for nuclear astrophysics.
Moreover, the energy range for which experimental data
are available is restricted to the small range that can be
studied by present experimental setups. For all cases, only
theoretical predictions can fill the gaps. One of these specific
examples concerns the rapid neutron-capture process (or r

process) called for to explain the origin of about half of
the elements heavier than iron observed in nature (for a
review, see Ref. [1]). The r process is believed to take
place in environments characterized by the high neutron
densities, such that successive neutron captures can proceed
into neutron-rich regions well off the β-stability valley. It
involves a large number (typically 5000) of unstable nuclei
for which many different properties have to be determined
and cannot be obtained experimentally. One such fundamental
property concerns the radiative neutron capture reaction.

So far, the neutron capture rates are usually evaluated within
the statistical Hauser-Feshbach (HF) model [2]. The model
makes the fundamental assumption that the capture process
takes place with the intermediary formation of a compound
nucleus (CN) in thermodynamic equilibrium. The energy of
the incident particle is then shared more or less uniformly
by all the nucleons before releasing the energy by particle
emission or γ deexcitation. The formation of a CN is usually
justified by assuming that the level density in the CN at the
projectile incident energy is large enough to ensure an average
statistical continuum superposition of available resonances
[3]. However, when the number of available states in the
compound system is relatively small, the validity of the HF

predictions has to be questioned, the neutron capture process
being possibly dominated by direct electromagnetic transitions
to a bound final state rather than through a CN intermediary.
The direct capture (DC) proceeds via the excitation of only a
few degrees of freedom on a much shorter time scale, reflecting
the time taken by the projectile to traverse the target. For
the DC process, the mean free path of the incident particle
is comparable with the size of the nucleus and the particle
ejection occurs preferentially at forward angles. It has become
clear, however, that the DC process is important, and often
dominating at the very low energies of astrophysical interest
(e.g., Ref. [4]). Such DC reaction is known to play an important
role for light or exotic nuclei systems for which few, or even no
resonant states are available [5,6]. Between these two extreme
CN and DC cases lies the so-called pre-equilibrium (PE)
process characteristic of high-energy collisions where particles
can be emitted after the first direct interaction and before the
statistical equilibrium can be reached.

The CN, PE, and DC contributions to nuclear reactions
are known to be not mutually exclusive. All mechanisms
may contribute to the radiative capture of a neutron. For
this reason, the total cross section is usually taken as the
simple sum of these contributions, neglecting all possible
interferences between them. The CN and PE contributions
to the neutron capture reaction have been thoroughly studied
and can be calculated, for example, within the modern reaction
code TALYS [2] for which all the nuclear structure properties
are taken from experimental information or state-of-the-art
nuclear models. In contrast, the DC process, although widely
used for nucleon capture on light target has only rarely been
applied systematically to heavy neutron-rich nuclei.

It has been shown through a simple analytical model [7] that
the DC contribution may dominate the total cross section for
closed neutron shells (neutron-magic) targets or targets with a
low neutron binding energy. For these nuclei, the number of
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available resonances is very limited, restricting accordingly
the CN contribution. In general, the CN contribution is
by far dominant for nuclei close to the valley of stability
and decreases rapidly when considering more and more
neutron-rich nuclei (especially when crossing a magic neutron
number), while the DC contribution remains. In Ref. [8], it
was found that the DC mechanism is often not negligible
compared with the CN process for nuclei close to the valley of
stability and that neutron-rich nuclei present DC rates which
show large variations according to the allowed or forbidden
E1 transitions available between the initial and final systems.
Large uncertainties obviously still affect the DC predictions,
but the results found in Ref. [8] (based on the potential
model including the E1 transitions only) also emphasize the
possibility of a negligible DC rate for many neutron-rich
nuclei.

In this paper, a new systematic calculation of the neutron
DC reaction is performed. It represents an extension of the
work of Ref. [8] based on the potential model, in which
in addition to the electric dipole (E1) contribution, also the
electric quadrupole (E2) and magnetic dipole (M1) transitions
are calculated, as described in Sec. II. Nuclear structure
ingredients used in the potential model calculation are detailed
in Sec. III, where special emphasis is put not only on the
neutron-nucleus interaction potential, but also on the excitation
spectrum deduced from a recent combinatorial model of
nuclear level densities (NLD). Results are discussed in Sec. IV,
including the comparison between model predictions and
experimental data, the prediction of the neutron DC reaction
rates for about 6400 nuclei with 8 � Z � 102 lying between
the proton and neutron drip lines, and the explicit analysis
of each of the E1, E2, and M1 contributions to the total
neutron DC reaction rates. Finally, we summarize the results
in Sec. V.

II. THE POTENTIAL MODEL

Different approaches exist for describing the low-energy
nuclear reactions of astrophysical interest. What may be
considered as two extremes are the R-matrix method on the
purely phenomenological side and microscopic models such
as the resonating group method or the generator coordinate
method on the more fundamental side. These methods have
been subject to large scrutiny in the last decades. Between
these two extremes lies the potential model. More details on
these models can be found in Refs. [4,9,10].

As a perturbative approach, the potential model is employed
to study the neutron DC reaction A(n, γ )B describing the
transition from the initial scattering state A + n to the final
nucleus B with accompanying γ -ray emission. The allowed
electric dipole (E1), electric quadrupole (E2), and magnetic
dipole (M1) transitions to the ground state as well as all
possible excited states in the final nucleus are taken into
account. Many works on neutron capture reaction [8,11–13]
have been devoted to the description of the DC reaction
mechanism, in which the incoming neutron is scattered
directly into a final bound state. When no experimental
discrete level scheme exists, previous studies have tried to

predict the DC properties assuming one neutron particle-hole
configuration deduced from the single-particle level scheme
[14]. Unfortunately, this approach leads to large deviations
between the predicted DC cross sections and experimental
data because of the remarkable sensitivity of the cross section
to the exact determination of the very few available final states.
Moreover, different nuclear structure models inevitably give
rise to different single-particle schemes, hence to considerable
scattered predictions. To avoid such difficulties related to
the discrete (or single-particle) level approach, we consider
here the transitions to all possible energy levels, as described
by the combination of nuclear discrete levels and a NLD model.
In this way, the total DC cross section of a nucleus (Z,N) can
be expressed as Ref. [8]

σ DC(E) =
x∑

f =0

Sf σ dis
f (E) + 〈S〉

∫ Sn

Ex

∑
Jf ,πf

ρ(Ef , Jf , πf )

× σ cont
f (E)dEf . (1)

In Eq. (1), E is the energy of the incident neutron and
x corresponds to the last experimentally known level with
excitation energy Ex (smaller than the neutron separation
energy Sn). Below Ex , the sum of σ dis

f (E) runs over all the
available discrete final states f (i.e., the experimental known
energy levels). Sf is the spectroscopic factor, describing the
overlap between the antisymmetrized wave function of the
initial system A + n and the final state f in B. Above Ex ,
the summation is replaced by a continuous integration over
the spin (J )- and parity (π )-dependent NLD [ρ(E, J, π )] with
the cross section σ cont

f (E) and the spectroscopic factor by an
average quantity 〈S〉.

The potential model calculates the transition matrix element
between the initial and the final states by sandwiching the
electromagnetic operators in the long-wavelength limit. It is
usually enough to consider the E1, E2, and M1 transitions,
as discussed below. The final state f is either the ground
state of the nucleus B if fed directly or, more generally,
one of its excited states before the secondary γ -ray cascade.
Correspondingly, we denote the total angular momentum and
the parity of the initial A + n system by Ji and πi , and of
the final state by Jf (≡JB , spin of the nucleus B) and πf .
The spin-parity selection rules for the transition between these
states can be expressed by a triangular relation Ji + λ = Jf ,
with λ being the multipolarity (λ = 1 for E1 and M1, λ = 2
for E2), and πiπf negative for E1 and positive for M1
and E2.

The partial cross section σf (E) to a given (discrete or
continuum) final state f can be written as Ref. [9]

σf (E) = σJπ
f

(E)

= 2Jf + 1

Ek(2JA + 1)(2Jn + 1)

∑
If ,Ji ,li ,Ii

{
c1k

3
γ (|ME1|2 + |MM1|2)

+ c2k
5
γ |ME2|2

}
, (2)

where cλ = (λ + 1)/{λ[(2λ + 1)!!]2}, JA and Jn are the spin
of the nucleus A and the neutron, respectively, and kγ is the
wave number of the emitted photon. The summations run over
the channel spin Ii , orbital li , and total Ji angular momentum
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of the initial state, and over the final channel spin If , provided
that the spin-parity selection rules are fulfilled.

The matrix elements consist of two components related to
the radial moments (ME1, ME2, MM1) and, if any, internal
moments of the nucleus A [Mint

M1(A), Mint
E2(A)] or neutron

[Mint
M1(n), Mint

E2(n)]:

ME1 = ME1,

MM1 = MM1 + Mint
M1(A) + Mint

M1(n), (3)

ME2 = ME2 + Mint
E2(A) + Mint

E2(n).

The radial parts of the Eλ and M1 matrix elements are given
by

MEλ = eZA

(
mn

mA + mn

)λ

δIiIf
C

if

λ 〈liλlf |000〉I if

λ (4)

and

MM1 = μNZAm2
nδIiIf

δli lf

mAmn(mA + mn)

( − C
if

1

)√
li(li + 1)I if

0 , (5)

where δκκ ′ stands for the Kronecker symbol, 〈|〉 denotes the
Clebsch-Gordan coefficients,

C
if

λ = (−)li+Ji+Ii [(2λ + 1)(2Ji + 1)(2li + 1)/(4π )]1/2

×
{

Ji Jf λ

lf li Ii

}
, (6)

and

I if
ν =

∫
φnlf (r)rνχli (E, r)dr. (7)

In the above, the quantity with the curly brackets {: : :} is
the six-j symbol. An additional triangular relation li + λ = lf
holds. MEλ vanishes when li + lf + λ is an odd number, and
so does MM1 when lf = 0.

The E2 and M1 matrix elements related to the internal
moments of the nucleus A are

MEλ(A) =
√

5/4Q2,Aδli lf D
if

λ I if

0 ,
(8)

MM1(A) =
√

3μ1,Aδli lf D
if

1 I if

0 ,

where Q2,A and μ1,A are the electric quadrupole and the
magnetic dipole moments of the nucleus A, respectively, as
calculated in Sec. III A, and

D
if

λ = (−)JA+Jn−If −lf [(2Ji + 1)(2JA + 1)(2Ii + 1)

× (2If + 1)/(4π )]1/2 ×
{

Ji Jf λ

If Ii lf

}

×
{

JA Jn If

Ii λ JA

}/〈JAλJA|JA0JA〉. (9)

Similar expressions of MEλ(n) and MM1(n) for the
neutron can be deduced by switching the suffix A and n in
Eqs. (8) and (9). For the internal terms, the additional triangular
relation is Ii = If − λ.

In Eq. (7), the radial wave functions are obtained by solving
the two-body Schrödinger equations, the radial parts of which
may be expressed in the relative coordinate r as

[
d2

dr2
− L(L + 1)

r2
+ 2μ

h̄2 {E − V (E, r)}
]

ψ = 0. (10)

Here, V (E, r) is an energy-dependent central nuclear
potential, L is the relative orbital angular momentum, μ =
mAmn/(mA + mn) is the reduced mass, and ψ represents the
resulting radial wave function, which vanishes at the origin. For
the sake of clarity, we renamed ψ by χ in the case of scattering
problems (E > 0) and by φ in the case of the eigenvalue bound
problems (E < 0) in Eq. (7).

For scattering states (E = h̄2k2/2μ, where k is the wave
number and μ the reduced mass), the radial wave functions
χL(k, r) behave asymptotically at large distances as

χL(k, r) → eiδL [cos(δL)krJL(kr) − sin(δL)krYL(kr)], (11)

where δL is the phase shift of the elastic scattering by the
nuclear potential, and JL(kr) and YL(kr) are the Bessel
functions of first and second kinds, respectively.

For bound states, the radial wave functions must vanish at
infinity and be normalized as∫ ∞

0
|φnL(r)|2dr = 1, (12)

where n stands for the radial quantum number.

III. NUCLEAR INGREDIENTS

The nuclear inputs required for the potential model calcu-
lations, as described in the previous sections, can be extracted
from basic nuclear structure properties. Whenever available,
the nuclear ingredients are taken from experiment. If not,
global models, as described below, are considered. For a
reliable prediction, such models need to be as microscopic
as possible, especially when dealing with exotic neutron-rich
nuclei for which extrapolation is required.

A. Nuclear mass, electromagnetic multipole moments,
and spectroscopic factor

Nuclear masses are taken from the 2011 Atomic Mass
Evaluation [15] whenever available. Theoretical mass data
are predicted by the Hartree-Fock-Bogoliubov (HFB) method
based on the effective nucleon-nucleon interaction of Skyrme
type, namely the HFB-21 mass model [16]. The nuclear
magnetic dipole (μ1) and electric quadrupole (Q2) moments
appearing in Eq. (8) are taken from the experimental data
compilation [17]. When no data are available, the single-
particle model is used for predicting the nuclear magnetic
dipole moment, while the nuclear deformation (β2) obtained
within the HFB-21 calculation [16,18] is used to estimate the
electric quadrupole moments.

So far, the determination of the spectroscopic factor
remains a difficult problem. Closed-shell nuclei, or at low
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excitation energy, often have discrete levels with a high-
purity single-particle configuration. However, away from the
magic numbers, or at increasing excitation energy, residual
interactions and couplings of the single-particle motion to
other degrees of freedom, distribute the spectroscopic strength
of a single-particle state among several nuclear levels. The
spreading and fragmentation of the single-particle states give
a continuous spectroscopic strength if the fragmentation width
is larger than the spacing of the single-particle states [19].

In our calculation, experimental spectroscopic factors
compiled in Ref. [20] are included for the discrete level
contributions in Eq. (1). For the discrete levels for which
no experimental data exist, an average value Sf = 0.347 is
adopted. This value corresponds to the average value from
all the compiled experimental spectroscopic factors [20] for
levels with allowed E1, E2, and M1 transitions. However,
for theoretically determined levels, when pure neutron 1p1h
excitations are considered here (see Sec. III C), the averaged
spectroscopic factor 〈S〉 = 1 is adopted. This estimate mini-
mizes the deviation between the cross sections computed by
Eq. (1) and the cross sections computed by

σ DC(E) = 〈S〉
∫ Sn

0

∑
Jf ,πf

ρ(Ef , Jf , πf )σ cont
f (E)dEf (13)

for the nuclei for which experimental spectroscopic factors are
available in Ref. [20] as well as for light nuclei for which the
cross section has been measured (see Sec. IV). Equivalently,
〈S〉 = 1 assumes that the experimental known level schemes
are rather well described by the theoretical levels deduced from
the adopted NLD model, as discussed below.

B. Nuclear potential

In the present calculation, we restrict ourselves to the so-
called JLMB potential from the Bruyères-le-Châtel renormal-
ization of the Jeukenne-Lejeune-Mahaux potential [21,22] to
solve the Schrödinger equation of Eq. (10). More specifically,
the energy-dependent VJLMB(E, r) is used in the entrance
channel to generate the initial (scattering state) radial wave
function χ , while the energy-independent VJLMB(r)(E = 0)
is used in the exit channel to generate the final (bound
state) radial wave function φ. The JLMB nuclear potential
is a semimicroscopic nucleon-nucleus spherical optical model
potential which has been extended to deformed and unstable
nuclei with A = 30 to 240 and for energies ranging from
10 keV up to 200 MeV [22–24]. In particular, the JLMB
nuclear potential was phenomenologically renormalized in
Refs. [22,25] to improve the agreement between experimental
and predicted observables for a large set of experimental data.

The JLMB nuclear potential for a given nuclear matter
density ρ = ρn + ρp and asymmetry α = (ρn − ρp)/ρ reads

V (E, r) = λV (E)[V0(E) + λV 1(E)αV1(E)]

+ iλW (E)[W0(E) + λW1(E)αW1(E)], (14)

with E the incident nucleon energy, and V0(E), V1(E),
W0(E), and W1(E) are the real isoscalar, real isovector,
imaginary isoscalar, and imaginary isovector nuclear potential

components, respectively, and λV (E), λV 1(E), λW (E), and
λW1(E) their respective renormalization factors. The HFB-21
matter density (ρn and ρp) [16,18] are used to calculate the
four components of the JLMB nuclear potential in Eq. (14)
on the basis of the local approximation applied to Brückner-
Hartree-Fock calculation of nuclear matter [21,26]. The ex-
pressions for λV (E), λV 1(E), λW (E), and λW1(E) can be found
in Ref. [22].

As is classically assumed, we neglect in the present study
the imaginary part of the potential, which is thought to give a
negligible contribution to the total cross section for nuclei
with low neutron separation energy, because of the small
flux into reaction channels. It should also be stressed that
cross sections calculated from various potentials are rather
insensitive to their detailed form provided that they all have the
same volume integral per nucleon (see, for example, Ref. [8]).
Although few potentials are constructed to lead to good
predictions of the volume integral, this requirement has been
carefully kept in mind by Jeukenne et al. [21], who determined
their potential to reproduce the experimental volume integrals
and root-mean-square radii in a wide range of the periodic
table.

Finally, note that the JLMB nuclear potential is also a
popular choice made in CN capture calculations, especially
for nuclear astrophysics applications (see, e.g., Ref. [2]).
Assuming that both CN and DC mechanisms contribute to
the neutron capture reaction, only a coherent treatment of both
parts could ensure a reliable prediction of the total neutron
capture cross sections.

C. Discrete level scheme and nuclear level density (NLD)

As shown by Eq. (1), nuclear level scheme is another
crucial ingredient for the cross section calculation within
the potential model. The discrete level schemes are taken

FIG. 1. (Color online) Comparison between the neutron DC cross
sections computed by Eq. (1) with the neutron 1p1h NLD (crosses)
and 〈S〉 = 1 and those obtained with the total intrinsic NLD (circles)
and 〈S〉 = 0.5 for Sn isotopes at En = 100 keV.
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from the RIPL-3 library [27]. It is well accepted that the
predictions of DC potential model are in qualitatively good
agreement with experimental results as long as all the details
of the excitation spectrum are known experimentally [8,13,14].
However, when dealing with nuclei for which a complete set of
experimental data is not available, large discrepancies can be
expected. As a matter of fact, at least for light nuclei, the main
contribution to the total DC cross section generally results from
transitions to the ground state or to a small number of low-lying
states, provided the selection rules allow for the considered
electromagnetic transitions. The uncertainties related to the
exact determination of the energy, spin, and parity of these
levels can modify the DC contribution by many orders of
magnitude. The selection rules depend on the exact spin and
parity differences between the initial and final states and act as
a real switch, turning on or off the DC reaction. The smaller
the number of contributing levels, the larger the impact of an
erroneous spin and parity affectation. In a similar way, the
energy of the final state can also allow or forbid a transition
according to its relative location with respect to the neutron
separation energy Sn.

Owing to the high sensitivity of the cross section with
respect to the energy, spin, and parity assignment of each
excited level in the final nucleus, a special attention should be
paid to the choice of the NLD model. In this situation, only a
microscopic approach capable of estimating the non-statistical
spin and parity dependence of the NLD, especially at low en-
ergies, should be considered [28,29]. Recently, a microscopic
HFB plus combinatorial approach has proven its capacity
to reproduce not only the low-lying cumulative number of
levels but also the neutron resonance spacings at the neutron
separation energy [30]. In the present calculation, the cor-
responding one-particle, one-hole (1p1h) neutron excitations
deduced from exactly the same combinatorial NLD calculation
is considered. Note that no collective enhancement is included
in the NLD calculation to account for intrinsic single-particle
excitations. In contrast to Ref. [8], where a total intrinsic (i.e.,
without collective enhancement) NLD was applied to Eq. (1)
with a relatively low average spectroscopic factor (〈S〉 = 0.1),
we consider here the neutron 1p1h excitations with a larger
value of 〈S〉 = 1 for each of these levels. As illustrated in
Fig. 1, both approaches give rather similar predictions of the

FIG. 2. Comparison of our calculated total neutron DC cross sections and the experimental data for 9 light nuclei. The solid lines
correspond to the calculation by Eq. (1), including experimental discrete levels and known spectroscopic factors, while the dashed lines results
from Eq. (13) with theoretical predictions only. Experimental data are taken from Ref. [31] for 16O(n, γ )17O; Refs. [32,33] for 18O(n, γ )19O;
Refs. [34,35] for 22Ne(n, γ )22Ne; Refs. [36–38] for 26Mg(n, γ )27Mg; Refs. [39–41] for 27Al(n, γ )28Al; Ref. [42] for 36S(n, γ )37S; Refs. [39,43]
for 37Cl(n, γ )38Cl; Refs. [44,45] for 46Ca(n, γ )47Ca; and Ref. [46] for 48Ca(n, γ )49Ca.
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DC cross section (at the energy En = 100 keV) for nuclei close
to the valley of β stability, provided the average spectroscopic
factor 〈S〉 = 0.5 is adopted. For exotic n-rich Sn isotopes, the
neutron separation energy is small and the proton excitations of
low impact on the total NLD at such energies (in particular for
a closed proton shell element like Sn), so that both approaches
with the same value of the spectroscopic factor give similar
results.

IV. RESULTS AND DISCUSSIONS

For light targets, the DC is known to give the main
contribution to the total capture cross section, the resonant
CN capture cross section being rather negligible. To test
the reliability of the potential model, we compare in Fig. 2
our calculated neutron DC (including the E1 + E2 + M1
multipolarities) cross sections (solid lines) with the available
experimental data for the nine neutron capture reactions on
light nuclei, namely 16O, 18O, 22Ne, 26Mg, 27Al, 36S, 37Cl, 46Ca,
and 48Ca. A rather good agreement is found which confirms
that the potential model with the adopted nuclear structure
ingredients (in particular the average spectroscopic factor),
as described in Sec. III, can provide a fair prediction of the
neutron DC cross section. Note that for the open-shell heavy
species like 36S or 37Cl the resonant capture already dominates
the reaction mechanism, it is therefore not unrealistic to
underestimate the experimental cross section. For the closed-
shell Ca isotopes, the DC is still expected to dominate the
reaction mechanism. Furthermore, to test the predictive power
of the potential model, we compare in Fig. 2 the neutron DC
cross section determined by Eq. (13) assuming no experimental
data regarding the level scheme and spectroscopic factors is
available. In this case, the neutron 1p1h NLD and an average
spectroscopic factor 〈S〉 = 1 are considered. Globally, the
predictions remain rather satisfactory, the cross section being
predicted within a factor of 2.

For both of the 122Sn(n, γ )123Sn and 132Sn(n, γ )133Sn
reactions, our total neutron DC cross sections are compared in
Fig. 3 with the predictions of Ref. [47] obtained also within
the DC model (excluding the direct-semidirect contribution).
A rather fair agreement between both calculations is found,
keeping in mind that the nuclear ingredients may be rather
different. Our higher cross section results from the transitions
not only to the discrete experimental levels but also to the
additional allowed high-lying levels deduced from the NLD.

The E1, E2, and M1 DC contributions to the Maxwellian-
averaged reaction rate of astrophysics interest (Na〈σv〉, where
Na is the Avogadro number, and v the relative velocity between
target and projectile) are compared in Fig. 4 for the Sn isotopic
chain. For most of the nuclei, the E1 component is larger than
the E2 and M1 components by several orders of magnitude.
However, in some cases, the E1 and M1 contributions can
become comparable, for example, for 126Sn. In many cases the
E2 component becomes comparable with the M1 contribution,
though it remains rather negligible with respect to the E1
contributions.

The neutron DC cross sections and reaction rates of
astrophysics interest have been calculated for about 6400

FIG. 3. (Color online) Comparison between the present total
neutron DC cross section and the predictions of Ref. [47] for
122Sn(n, γ )123Sn and 132Sn(n, γ )133Sn reactions.

nuclei with 8 � Z � 102 lying between the proton and neutron
drip lines. Figure 5 shows the E1, E2, M1, and total neutron
DC reaction rates represented in the (N,Z) plane of the target
nuclei at T9 = 1 (T9 denotes the temperature in 109 K). One
can see that, for all of E1, E2, M1, and total DC reaction
rates, the neutron-deficient nuclides generally have larger cross
sections in comparison with nuclei lying in the valley of β

stability or on its neutron-rich side. Many neutron-rich nuclides
close to the neutron drip line are also found to have a rather
small DC cross section, which is mainly caused by the large
decrease of the neutron separation energy and consequently
the number of available levels at low energy. However, owing
to the account of E2 and M1 transitions in addition to E1,
the reaction rates are found to be always larger than typically

FIG. 4. (Color online) E1, E2, and M1 neutron DC reaction rates
for Sn isotopes at T9 = 1 (T9 denotes the temperature in 109 K).
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FIG. 5. (Color online) The E1, E2, M1, and total (E1 + E2 + M1) neutron DC reaction rates (in mol−1 cm3 s−1) represented in the (N,Z)
plane at T9 = 1.

10−4 mol−1 cm3 s−1, while in Ref. [8] it was found that for
many nuclei, the E1 selection rules were not fulfilled and
consequently a negligible DC rate was obtained.

The E1 and M1 contributions show some enhancements for
target nuclei with a neutron number N 	 20, 50, 90, and 150
lying on the neutron-deficient side of the valley of β stability.
In contrast, the E2 contribution presents a more scattered
behavior. Targets with a high spin and electric quadrupole
moment give rise to a correspondingly large E2 contribution
(see also Fig. 6). It is rather obvious that for most nuclei
the dominating contribution stems from the E1 transitions;
this confirms previous calculations which neglected higher
multipolarities [8].

Figure 6 shows the variation of the total (E1 + E2 + M1)
neutron DC reaction rates with the neutron separation energy

FIG. 6. Variation of the total (E1 + E2 + M1) neutron DC
reaction rates with the neutron separation energy Sn of the final nuclei
at T9 = 1.

(Sn) of the final nuclei at T9 = 1. It is of particular interest to
see that, in contrast to previous calculations [7], the present cal-
culation predicts the cross section to decrease with decreasing
Sn. This phenomenon is related to the number of excited levels
below Sn, which decreases with decreasing Sn, leading to less
possible transitions to the final states. Transitions to high-lying
levels have a relatively small contribution to the total DC cross
section owing to the small photon wave number kγ in Eq. (2),
but the exponentially rising number of levels with increasing
excitation energy can compensate for this effect. Consequently,
the total DC reaction rates are clearly proportional to the
number of available levels, as already stressed in Ref. [8],
and therefore do not necessarily depend on the transitions to
low-lying states only. Figure 7 shows the variation of the total
DC reaction rates with the neutron number T9 = 1 and clearly

FIG. 7. Variation of the total (E1 + E2 + M1) neutron DC
reaction rates with the neutron number N of the target nuclei at
T9 = 1.
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FIG. 8. Ratio of the total (E1 + E2 + M1) neutron DC reaction
rate to the E1 rate as a function of the neutron number N at T9 = 1.

illustrates the large DC rates at N 	 20, 50, 90, and 150, as
already observed in Fig. 5.

To analyze the possible contribution of the E2 and M1
transitions, the ratio of the total (E1 + E2 + M1) DC reaction
rate to the E1 contribution at T9 = 1 is shown in Fig. 8 for
the same set of 6400 nuclei. Among those, a ratio larger than
typically 1.2 is found for about 300 nuclei. For those nuclei,
the E2 + M1 component is therefore comparable to the E1
component. The corresponding E1 and E2 + M1 DC rates are
shown in Fig. 9 for those 300 nuclei. Such results contradict
the idea that the E2 and M1 transitions are always negligible
relative to the E1 transition. From Fig. 8, we also find that
the target nuclei with large M1 and E2 rates usually have an
open shell structure and lie close to the valley of β stability, as
shown in Fig. 9. The enhancements of E2 and M1 components
are attributed to (i) the allowed transitions to high-lying levels
deduced from the NLD model and (ii) the internal parts of E2

and M1 transitions determined by the nuclear magnetic dipole
(μ1) and electric quadrupole (Q2) moments [see Eq. (8)].

V. SUMMARY AND OUTLOOK

We have studied the neutron DC reactions on the basis of
the potential model taking into account the E1, E2, and M1
allowed transitions to all possible final states, as found experi-
mentally or deduced from a NLD model. The nuclear structure
ingredients involved in the calculation, namely the nuclear
mass, electromagnetic multipole moments, spectroscopic fac-
tor, neutron-nucleus interaction potential, and excited level
scheme are determined from experimental data whenever
available, and if not, from global microscopic nuclear models
(except for the spectroscopic factors for which an average
value is adopted). Such a combination of experimental data and
model predictions allows not only for the essential coherence
of the predictions for all experimental unknown data, but also a
rather reliable extrapolation away from experimentally known
energy or mass regions, as required in specific applications
like nuclear astrophysics.

The present work represents an extension of the work
of Ref. [8] based on the potential model, in which in
addition to the electric dipole (E1) contribution, the electric
quadrupole (E2) and magnetic dipole (M1) transitions are
now also included. A special emphasis has also been put
on the excitation spectrum deduced from a combinatorial
model of NLD. It is shown that considering either a total
intrinsic NLD or 1p1h neutron excitations give rise to similar
predictions provided the corresponding spectroscopic factor is
renormalized by a factor of 2.

We have shown that the potential model provides a fair
agreement with experimental neutron capture cross sections
for light targets as well as with previous calculations. A
systematic study for about 6400 nuclei with 8 � Z � 102
lying between the proton and neutron drip lines shows that the
DC cross section decreases with increasing neutron richness,

FIG. 9. (Color online) Representation in the (N,Z) plane of the total DC rate relative to the E1 contribution at T9 = 1 for about the 300
nuclei with comparable E1 and E2 + M1 components, as shown in Fig. 8.
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that is, with decreasing neutron separation energies. The
DC cross section is clearly proportional to the number of
available levels below the neutron threshold, as described by
the combinatorial NLD model.

By comparing the ratio of the total (E1 + E2 + M1) DC
reaction rates to the E1 contribution, it is found that the E2
and M1 components can significantly contribute to the DC rate
for several hundred nuclei which usually have an open neutron
shell structure. The additional transitions to the allowed high-
lying levels (deduced from the NLD model), as well as the
internal parts [Eq. (8)] of M1 and E2 transitions determined
by the nuclear magnetic dipole (μ1) and electric quadrupole

(Q2) moments, are both responsible for these large E2 and
M1 components.

The DC mechanism remains to be compared with the CN
and PE components within one unique coherent framework
based on the same nuclear structure models.
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