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Impact of spin-orbit currents on the electroweak skin of neutron-rich nuclei
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Background: Measurements of neutron radii provide important constraints on the isovector sector of nuclear
density functionals and offer vital guidance in areas as diverse as atomic parity violation, heavy-ion collisions,
and neutron-star structure.

Purpose: We assess the impact of spin-orbit currents on the electromagnetic- and weak-charge radii of a variety
of nuclei. Special emphasis is placed on the experimentally accessible electroweak skin, defined as the difference
between weak-charge and electromagnetic-charge radii.

Methods: Two accurately calibrated relativistic mean-field models are used to compute proton, neutron, charge,
and weak-charge radii of a variety of nuclei.

Results: We find that spin-orbit contributions to the electroweak skin of light neutron-rich nuclei, such as 220
and *Ca, are significant and result in a substantial increase in the size of the electroweak skin relative to the
neutron skin.

Conclusions: Given that spin-orbit contributions to both the charge and weak-charge radii of nuclei are often as
large as present or anticipated experimental error bars, future calculations must incorporate spin-orbit currents in

the calculation of electroweak form factors.

DOI: 10.1103/PhysRevC.86.045503

I. INTRODUCTION

Recently the Lead Radius Experiment (PREX) at the
Jefferson Laboratory used parity-violating electron scattering
to probe the weak-charge density of 2*®Pb [1,2]. In Born ap-
proximation, the parity-violating asymmetry—the fractional
difference in cross sections for positive- and negative-helicity
electrons—is directly proportional to the weak form factor,
which is the Fourier transform of the weak-charge density.
Although for a heavy nucleus one must include the effects
of Coulomb distortions, these have been accurately calculated
[3,4]. Thus, parity-violating electron scattering can be used
with as much confidence to measure the weak-charge form
factor of the nucleus as conventional electron scattering
has been used throughout the years to accurately map the
electromagnetic charge distribution. Many details of a practical
parity-violating experiment, along with a number of theoretical
corrections, are discussed in Ref. [5]. PREX demonstrated
excellent control of systematic errors and showed that ac-
curate and model-independent measurements of weak-charge
densities are now feasible.

In this article we focus on the electroweak skin of a nucleus,
which we define as

Ryskin = Rwk — Ren, (1)

where R,y and R, are the root-mean-square radii of the
weak-charge and electromagnetic-charge densities, respec-
tively, Note that, unlike the point-neutron and point-proton
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densities, the weak-charge density—the source for the Z°
weak boson—and the electromagnetic-charge density are
physical observables. For simplicity, we refer to Ryskin as
the weak skin. Given that the charge radius of 2%*Pb is very
accurately known [6], the determination of the weak form
factor of 2%Pb by the PREX collaboration resulted in the
following value for its weak skin [2]:

Rysiin C%®Pb) = 0.32 £ 0.18(expt) + 0.03(mod) fm. (2)

Note that the experimental error (expt) includes both sta-
tistical and systematic errors, while the small model error
(mod) describes the sensitivity in the extraction of Ryy due
to uncertainties in the surface thickness [2]. Although the
statistical accuracy of the measurement was compromised
by unforeseen technical difficulties, a follow-up measurement
(PREX-II) designed to achieve the original £0.05 fm goal
was proposed and accepted [7]. Moreover, a proposal was
made to use parity-violating electron scattering to measure the
weak form factor of “®Ca at a momentum transfer of g =
0.778 fm~'. The Calcium Radius Experiment (C-REX) is
designed to constrain the weak-charge radius of **Ca to
an accuracy of £0.03 fm [8]. A measurement in a smaller
neutron-rich nucleus is desirable because the form factor can
be measured at a larger momentum transfer where the parity-
violating asymmetry is larger; for comparison, the weak form
factor in 2Pb was measured at ¢ = 0.475 fm~'. In addition,
a precise measurement of the weak radius of **Ca may have
a significant impact on nuclear structure because it provides
information that is independent of and complementary to that
found in 2%Pb [9]. Furthermore, it is reasonable to expect
first-principles calculations of the structure of *Ca where the
role of three-neutron forces may be particularly interesting and
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important. Finally, in conjunction with PREX and PREX-II,
C-REX provides vital guidance in areas as diverse as atomic
parity violation [10,11], heavy-ion collisions [12—-16], and
neutron-star structure [17-22]. Given the expected accuracy
of these pioneering experiments, it is critical to assess the role
of “subleading” contributions to the weak skin of these nuclei.
Thus, it is the main goal of the present contribution to quantify
the impact of spin-orbit currents on the electroweak skin of
a variety of nuclei. We note that meson-exchange currents
(MECs)—which are not considered in this contribution—can
change the distribution of both electromagnetic and weak
charges. For example, pmry and woy MECs are known
to modify significantly the electromagnetic form factors of
the deuteron [23]. However, heavy mesons are unlikely to
transport charge over large distances, so we do not expect
significant MEC corrections to either R., or Ry for a heavy
nucleus. Yet MEC corrections could be more important for the
case of the weak skin (Ryx — R¢,) and this deserves further
consideration.

The result depicted in Eq. (2) represents a true experimental
milestone. It provides direct experimental evidence that the
weak-charge density in 2%®Pb extends further out than the
corresponding electromagnetic-charge density. That is, there
is an enhancement of weak charges (which are dominated
by neutrons) relative to electromagnetic charges (which are
dominated by protons) near the nuclear surface. A quantity
that is closely related to the weak skin of a heavy nucleus is
the neutron skin. In analogy to the weak skin, the neutron skin
is defined as the difference between the point neutron R, and
the point proton R, root-mean-square radii:

Rnskin = Rn - Rp- (3)

The weak and neutron skins are closely related to each other
because the weak charge of a neutron (=—1) is much larger
than the weak charge of the proton (*0.07) largely in the same
way that the electromagnetic charge of the proton is much
larger than that of the neutron. Indeed, to a good approximation
the weak form factor of a single nucleon equals the negative
of the electromagnetic form factor of its isospin partner (see
the Appendix). The structure of a nucleus is often modeled
in terms of point nucleons interacting via strong nuclear
potentials or meson exchanges. Therefore, nuclear-structure
calculations provide predictions for the neutron skin, whereas
it is the weak skin that is experimentally accessible. In the
present article we calculate the difference between Rysin and
Ruskin that originates from the internal structure of the nucleon.
The internal structure of the nucleon is contained in a variety
of well-measured single-nucleon electromagnetic and weak
form factors. The electromagnetic size of the nucleon leads
to a charge radius of the nucleus, R, that is slightly larger
than the point proton radius R, due (mostly) to the charge
radius of a single proton, r, (R% ~ Rlz, + ri). Similarly, the
weak radius Ry is slightly larger than R, (mostly) because
of the weak-charge radius of a single neutron. Note that we
reserved the use of upper-case R to denote nuclear radii and
of lower-case r to denote the radii of single nucleons.

The article is organized as follows. In Sec. II we outline
the formalism used to calculate weak- and electromagnetic-
charge form factors and densities. These form factors are
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computed from one-body currents that include weak and
electromagnetic single-nucleon form factors. We discuss in
detail the contribution to both of the form factors from the
spin-orbit currents. For a recent reference on the impact of
spin-orbit currents on the charge density of light nuclei see
Ref. [24]. However, to our knowledge the role of spin-orbit
currents in the weak-charge density has never been studied.
In Sec. IIT we present results for proton, neutron, charge, and
weak radii for a variety of nuclei. Spin-orbit corrections are
particularly large for light nuclei and we observe a significant
increase in the weak skin of these nuclei relative to their
neutron skin. We offer our conclusion in Sec. I'V.

II. FORMALISM

We start the formalism by writing the most general form of
the single-nucleon matrix elements of the electroweak current
consistent with Lorentz covariance and parity invariance. That
is [25],

(N, sHJEIN(p, 5))
=T, s/>[F1 y* 4 ina“”%] Up.s). (4a)

(N, s FcIN D, 5))

s

:ﬁ /’/ i;-’ i f m
(P S)|: et

]U(p, s),  (4b)

where U (p, s) are on-shell nucleon spinors, g = p’ — p is the

four-momentum transfer to the nucleon, and Flyz(ﬁl,z) are
electromagnetic (weak-neutral vector) Dirac and Pauli form
factors, respectively. Note that the axial-vector component of
the weak-neutral current makes no contribution to the elastic
form factor of a nuclear ground state of definite parity. As can
be seen from the above equations, the formal structure of the
vector current is the same regardless of whether one considers
electromagnetic or weak matrix elements or if one considers
protons or neutrons. Thus, for illustration purposes we focus
the derivation on the proton contribution to the charge form
factor.

A. Charge form factor

Throughout this contribution we assume the validity of the
impulse approximation, namely that the single-nucleon form
factors defined in Eq. (4) may be used without modification
in the nuclear medium. Moreover, we rely on an alternative
description of the single-nucleon electromagnetic current
based on the electric and magnetic Sachs form factors rather
than on Fj ». The two sets of form factors are related as follows:

Ge(Q?) = F1(Q%) — tF(0Y), (5a)
Gm(0%) = Fi1(Q) + F>(0%), (5b)

where Q% = —q,q" >0 and t = Q*/4M>. In turn, the
electromagnetic current operator may be written as

. Gu—G v
Jim = Gey" + (—1\14+ . E) |:r)/“ + io‘“’zq—]. (6)
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Given that we are interested in computing the elastic form
factor of spherical nuclei, only the density (i.e., the zeroth
component of the current) needs to be considered. Such density
is given by

Gm — GE) [tyo + you:|. 7

jOE =G 0
EM = P = OBV A oM

Thus, in the impulse approximation, the charge form factor of
the nucleus may written as follows:

Gm(q?) — GE(QZ))

_ 2
ZFy(g) = Ge(q ) Fv(q) + ( 1T+

y [fmq) + %Fm)} ®)

where Z is the number of protons and the charge form factor
of the nucleus has been normalized to Fi,(¢ = 0) = 1. Note
that all nuclear structure information is contained in the elastic
(point-nucleon) vector and tensor form factors defined as

Fe(@) = / F®STYOY O, (%)

Fr(q) = / Oy Gy, (9b)

We now proceed to evaluate these two nuclear form factors
using a relativistic mean-field approximation.

B. Relativistic mean-field approximation

In a relativistic mean-field approximation, the eigenstates
of the Dirac equation corresponding to a spherically symmetric
ground state may be classified according to a generalized
angular momentum « [26]. That s, the single-particle solutions
of the Dirac equation may be written as

< gnk(r)y+1<m(f)>
i fue ()Y —iem (F) '
where n and m are the principal and magnetic quantum

numbers, respectively, and the spin-spherical harmonics are
defined as follows:

1
Z/ln/cm (I‘) = -

r

(10)

. aiy . 1
YVim(®) = (Bll5jm), j=I|k]— 5
(11)
/ K, if €« >0,
T l-1-«, ifk<O.

Note that for the phase convention adopted in Eq. (10) (namely,
the relative factor of i) both g(r) and f(r) are real functions
in the case of real mean-field potentials. Furthermore, the
following spinor normalization is used:

/ U o (¥ Unen (01 = / e+ £l =1,
0
(12)

Thus, in a mean-field approximation the vector and tensor
form factors may be expressed as a sum over occupied
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single-particle states. That is,
Fy(g) =) / Unem @), (@r)Y° Unem (D), (13a)

nkm

Frg) =Y / Unen ®)],(@r)iy°Y - 2 Upen(®)d’r. (13)

nkm

Here j(qr) are spherical Bessel functions and the sum
over single-particle quantum numbers {nkm} is restricted to
the occupied orbitals. Note that, by virtue of the spherical
symmetry of the nuclear form factors, all explicit dependence
on § has been eliminated through an “angle average” (i.e.,
by integrating over dq/4s). This fact leads to a considerable
simplification and enables one to readily perform the integrals
over the remaining solid angle. One finally obtains

A@ =Y+ [ [0+ fiolitndr (14

Frig) =) 22j + 1)/0 & (1) fuc(r) j (gr)dr. (14b)

Note that for a spherically symmetric ground state there is
a third independent “scalar” form factor that is identical to
the vector one except for a relative minus sign between upper
and lower components. Given the form of the electromagnetic
current adopted in Eq. (4), and ignoring possible off-shell
ambiguities, the scalar form factor plays no role in the present
discussion.

In summary, nuclear charge and weak form factors—both
normalized to 1 at ¢ = O—are now obtained from Eq. (8) by
properly adding proton and neutron contributions. That is,

Gyugh — G]i;(qz))
1+

ZFan(@) =Y {Gé<q2>Fv"<q> + (

i=p,n
x [rFV’(q) + %F{'(q)} }
Gig» — 5;;(q2>)

1+

(15a)

QwFulq) = ) {5é<q2>FVi(q> + (

i=p,n

x [ro‘(q) + ﬁmq)}}, (15b)

where Qyx is the weak-vector charge of the nucleus (see the
Appendix).

C. Electromagnetic- and weak-charge radii

The experimentally measurable electromagnetic- and
weak-charge radii, R, and Ry, are obtained from the slope
of the respective form factors at the origin. That is,

dFe d Fyx

Rep = —6 £k
dq2 q=0 qu

and Ry = —6 (16)

q=0

Although in the next section we provide results in the form of
tables and figures, it is illuminating to discuss the particle
content of both Ry and Ryx. We start with the former.
According to Eq. (15a), the electromagnetic-charge form
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factor to first order in g2 may be written as follows:

2 2
94~ 52 94 2
-5)(1-57)

P
+ = M2 a2 kp (1+fp)

ZFu(q) = Z<1

4
2 2
q° 2 qa -
N{1——R 0——
" ( 6 )( 6’")
4
+WKHN(1+an)+“'1 (17)

where rﬁ , and k, , are single-nucleon electromagnetic mean-

square radii and anomalous magnetic moments, respectively.
Note that we define

2(2]+1) / reb (N fh(rydr,  (18a)

—NZ(2j+1) fo rgl () £, (18b)

Using Eq. (17) one can readily obtain an expression for the
electromagnetic-charge radius of the nucleus. That is,

N
Ry= R4+, (24 il). 09

where “spin-orbit”
defined as follows:

contributions to the charge radius are

3k

(ko = =232 (1 1)), (20)
3k, .

(ko = =532 (L + £7)- (20b)

In the context of a relativistic mean-field approximation—
where both upper and lower components are self-consistently
generated from the Hartree equations—there are no further
simplifications. However, one can shed light on the nature of
the spin-orbit contribution by generating the lower component
from the upper component by assuming a free-space relation.
That is,

fuer) = o (L 4

r)=—|—
" 2M \ dr
In this free-space limit an enormous simplification ensues,
as the tensor integrals given in Eq. (18) can be evaluated in
closed form. In this limit the spin-orbit contributions to the
charge radius become

5>gw<r). Q1)
;

3k 2k
(oo =5z + 1) = =255 ;sgn(/c)l(l +1),
(22)
3Kn
(ko =531+ £) = Mz -~ ngn(x)l(l +1).
(22b)

The above results indicate that (a) there is no contribution from
s states and (b) there is an exact cancellation between spin-orbit
partners, which have the same / but opposite signs for «. Thus,
in the particular case of “*Ca the only spin-orbit contribution
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comes from the “unpaired” 1f;,,1 f7,> neutron orbital. For this
case we obtain the following figure of merit:

(o= i), = 56]";”2 ~ —0.101 fm>. (23)
Thus, the spin-orbit contribution amounts to approximately
—0.015 fm of the total charge radius of “*Ca, which is
significantly larger than the quoted experimental error [6].
Note that in a self-consistent relativistic mean-field (RMF)
approximation the cancellation between spin-orbit partners,
although still large, will be incomplete. However, there is an
additional cancellation between neutron and proton orbitals
with the same quantum numbers due to their almost equal
but opposite anomalous magnetic moments. Ultimately, the
spin-orbit contribution is dominated by the unpaired orbitals.
To obtain the weak-charge radius Ryx one proceeds in an
analogous manner but now starting from Eq. (15b). Expanding
the weak-charge form factor to first order in qz, one obtains

QwFur(q) = Z 1—‘1—2132 P 1—‘1—2~2
wkL'wk(q) = 6 pgv 617

q2
KpZ(1+ f7) +

"ot

2 2
9" 52\ n 9"
N(1-LR 1-L
- ( 6 )g( 6”)

+ fﬁan(l ) 4 24)
where gt = 0.0721 and g" = —0.9878 are (radiatively cor-
rected) single-nucleon weak vector charges [2,25]. Note that
the wea.k—charge radii rp and anomalous weak-magnetic
moments K, , may be expressed exclusively in terms of the
corresponding electromagnetic and strange-quark quantities,
as indicated in the Appendix. In this way, the weak-charge

radius of the nucleus can now be readily extracted from
Eq. (24). That is,

zZ . .
m[é’g(lﬁ +7) + (7))

+ i[gV(R2 +72) + (7)., ] (25)
ka

2
ka_

where spin-orbit contributions to the weak-charge radius are
defined in analogy to Eq. (22):

(’7123)50 == 3;p (1 + pr)’

Ve (26a)
3k,
) = =535 1+ £7). (26b)

Given that Quy = Zgb + Ng" (with g ~ 0 and g" ~ —1),
the weak-charge radius of the nucleus Ry is dominated by the
contribution from the neutron radius R,,.

We close this section by providing a figure of merit for the
weak-charge radius of “®Ca by neglecting the strange-quark
contribution and by assuming the free-space relation in the
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evaluation of the tensor integrals [Eq. (18)]. We obtain

Z n
R = ﬁ[gﬁ’Ri +¢bry + gvr]
N n n 6 n
+ a[ngrzz + gvr; + g\l/)rr% + m(gv'cp + gsKn)]
27)

Note that in the above expression single-nucleon mean-square
radii (rfm) as well as anomalous magnetic moments (k) are
purely electromagnetic. Assuming (point) proton and neutron
radii for **Ca as predicted by the FSUGold model [27] (or
“FSU” for short) we obtain

Rk = 3.679(3.669) fm, (28)

where the quantity in parentheses represents the FSU predic-
tion without including the spin-orbit contribution that amounts
to

~2 N

¢ N ol + )

o= — = ~ +0.077 fm”.
o= gulihe =g, e 0T

(29)

Given that the weak spin-orbit contribution has the opposite
sign as the corresponding electromagnetic one [see Eq. (23)],
the spin-orbit contribution to the weak skin of “8Ca is
significant, of about 0.03 fm (see Table II). This is within the
projected accuracy of the proposed C-REX experiment [8].

D. Electroweak nucleon form factors

Because our main objective is the calculation of
electromagnetic- and weak-charge radii, we adopt a simple
dipole parametrization of the single-nucleon form factors that
is accurate at moderate values of the momentum transfer. That
is, we define electromagnetic single-nucleon form factors as
follows [28]:

GH(©0Y) _ G0

GE(Q) = =Gp(Q%),  (30)
p Mn
where the dipole form factor is given by
Gp(Q%) = <1 + Q—2r2)2. 31)
127

Here 2 = 0.769 fm? is the mean-square proton radius, 4, =
2.793 the proton magnetic moment, and u, = —1.913 the
neutron magnetic moment. For the electromagnetic neutron
form factor—which vanishes at Q> = 0—we rely on the
following Galster parametrization [28]:

Q2r2/6
G (0Y) = - —5— |Gp(0?), 32
2% (1+Q2/M2 (0% (32)
where 1> = —0.116 fm? is the electromagnetic mean-square

radius of the neutron. Note that all form factors are ex-
pressed exclusively in terms of experimentally determined
single-nucleon mean-square radii and magnetic moments [29].
Finally, given that the strange-quark form factors of the
nucleon are small at small momentum transfers, we ignore
them in this contribution. In this case, the weak-charge form
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factors of the nucleon can be expressed exclusively in terms
of the corresponding electromagnetic form factors given here
and the weak charges of the nucleon (see the Appendix). For
example, using Eqgs. (A8) and (A9), the weak mean-square
radii and magnetic moments are given by

7 =2.358 fm’,
72 =0.777 fm?,

fi, = +2.091,
fin = —2.897.

(33a)
(33b)

III. RESULTS

In this section we present results—primarily proton, neu-
tron, charge, and weak-charge radii—for a variety of nuclei as
predicted by two accurately calibrated relativistic mean-field
models: FSU [27] and NL3 [30,31]. We start by displaying in
Table I the contribution from the individual single-particle
orbitals in “8Ca to the charge and weak-charge spin-orbit
radius. For illustration purposes, the predictions have been
made using only the FSU parametrization. The quantities
in parentheses represent the results obtained by assuming
a free-space relation between upper and lower components,
as indicated in Eq. (21). Qualitatively, all major trends in
the results may be understood using this simplified case.
In particular, the results displayed in parentheses in Table I
(1) are independent of the dynamics, (ii) scale as /(I + 1), and
(iii) display an exact cancellation among spin-orbit partners
[see Egs. (22)]. Thus, in this limit the sole contribution to
the spin-orbit radius comes from unpaired spin-orbit partners
(an unpaired 1f7,,1 f7/> neutron orbital in the case of BCa).
Given the natural ordering of spin-orbit partners in nuclei,
namely, the ¥ < O orbital being more deeply bound than the
k > 0 orbital, the spin-orbit contribution to the charge radius
is always negative in the case of unpaired neutrons. Note that
the situation is reversed in the case of protons because of
an anomalous magnetic moment of opposite sign to that of
the neutron. Moreover, in the case of the weak-charge radius,
the spin-orbit contribution is always of opposite sign—for
both neutrons and protons—than in the electromagnetic case.
Indeed, for a given nucleon orbital the ratio of spin-orbit
contributions is given by the following simple expression:

~2 ~
- G- GIE - o

(r[?,”>so Kp,n Owk Kp,n N
Hence, although in general small, charge and weak-charge
spin-orbit radii contribute with the same sign to the weak
skin of a nucleus. For example, as indicated in Table II, the
spin-orbit contribution amounts to about 0.04 fm in the case
of the weak skin of 20 and to about 0.03 fm for *3Ca.

Also shown in Table I are predictions from the self-
consistent RMF approach, where now both upper and lower
components are dynamically generated. The qualitative trends
discussed previously are clearly preserved, although now the
cancellation among spin-orbit partners is incomplete. For
example, the contributions from the 1p orbitals differ from
each other by about 55-60%. However, although the spin-orbit
cancellation is incomplete, there is an additional cancellation
stemming from the nucleon anomalous magnetic moments
(which are nearly equal in magnitude but opposite in sign).
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TABLE I. Contributions from the individual single-particle orbitals to the spin-orbit component of the mean-square charge radius (upper
table) and weak-charge radius (lower table) of “*Ca. Mean-square radii are expressed in units of 1072 fm? and were generated using the FSU
interaction. Quantities displayed in parentheses were computed using the free-space relation given in Eq. (21).

nlj () ()0 () ()

Isin (1) 40.570(4-0.000) —0.648(+0.000) —0.078(+0.000)
1p3jn (=2) +3.107(41.583) —3.409(—1.690) —0.302(—0.107)
Ipiyp (+1) —1.997(—1.583) +2.113(+1.690) +0.116(+40.107)
1ds;, (=3) +7.138(44.750) —7.710(—5.069) —0.572(—0.319)
1ds) (42) —6.205(—4.750) +6.613(45.069) +0.408(+40.319)
2512 (=1) +0.178(4-0.000) —0.177(+0.000) +0.001(+40.000)
1f72(—4) 40.000(4-0.000) —13.042(—10.138) —13.042(—10.138)
Total +2.791(40.000) —16.260(—10.138) —13.469(—10.138)
nlj () ()50 ()50 ()0

Lsip (=1 —0.489(+0.000) +0.494(40.000) +0.005(40.000)
1p3p(—=2) —2.669(—1.360) +2.595(41.286) —0.074(—0.074)
Ipip (+1) +1.716(4+1.360) —1.608(—1.286) +0.108(+40.074)
Lds;; (=3) —6.132(—4.081) +5.869(+3.859) —0.263(—0.222)
ld32 (+2) +5.331(4+4.081) —5.034(—3.859) +0.297(40.222)
2512 (=1) —0.153(+0.000) +0.135(4-0.000) —0.018(+0.000)
1f72(—4) 40.000(4-0.000) +9.928(+7.717) +9.928(+7.717)
Total —2.396(+0.000) +12.379(+7.717) +9.983(+7.717)

Ultimately, the spin-orbit radius continues to be dominated
by the unpaired 1f7/, neutron orbital. Note, however, that
the exact RMF prediction exceeds by about 30% the analytic
result obtained from assuming the free-space relation. This
enhancement is because of the reduction of the effective
nucleon mass in the nuclear medium.

In Table II predictions are displayed for the root-mean-
square radii for a variety of magic (or semimagic) nuclei as
predicted by the NL3 and FSU models. Also shown (last three

entries) are nuclei of relevance to the atomic parity-violating
program [11]. These nuclei are relevant because they are
members of long chains of naturally occurring isotopes that
help eliminate uncertainties in the atomic theory by forming
suitable ratios of parity-violating observables. By doing so,
uncertainties in neutron radii become the limiting factor in the
search of physics beyond the standard model. Note that the
NL3 and FSU models—although both accurately calibrated—
predict large differences in neutron radii. However, we caution

TABLE II. Proton, neutron, charge, and weak-charge radii (in femtometers) of a variety of nuclei as predicted by the NL3 and FSU
relativistic mean-field models. The last two columns display the neutron skin (R,-R,) and weak skin (Ryx-Rcn), respectively. Quantities
displayed in parentheses were computed without the spin-orbit correction.

Nucleus Model R, R, R Ry Ruskin Ryskin
20 NL3 2.593 3.026 2.671(2.700) 3.172(3.158) 0.433 0.502(0.458)
FSU 2.580 2.997 2.658(2.688) 3.144(3.129) 0.417 0.487(0.442)
“Ca NL3 3.379 3.605 3.449(3.467) 3.724(3.711) 0.226 0.275(0.243)
FSU 3.366 3.563 3.435(3.455) 3.683(3.669) 0.197 0.247(0.214)
N7r NL3 4.194 4.308 4.254(4.268) 4.404(4.393) 0.114 0.149(0.126)
FSU 4.181 4.269 4.242(4.255) 4.364(4.353) 0.088 0.123(0.098)
1185n NL3 4.561 4.760 4.636(4.628) 4.835(4.843) 0.199 0.199(0.215)
FSU 4.559 4.707 4.634(4.625) 4.780(4.788) 0.148 0.147(0.162)
1328n NL3 4.643 4.989 4.700(4.705) 5.077(5.074) 0.346 0.377(0.369)
FSU 4.654 4.925 4.710(4.716) 5.011(5.008) 0.271 0.301(0.292)
208pp NL3 5.460 5.740 5.510(5.514) 5.815(5.814) 0.280 0.305(0.300)
FSU 5.469 5.676 5.519(5.523) 5.749(5.747) 0.207 0.230(0.224)
133Ba NL3 4.776 5.012 4.827(4.838) 5.100(5.093) 0.237 0.273(0.255)
FSU 4.775 4.957 4.826(4.837) 5.043(5.035) 0.182 0.217(0.198)
18Dy NL3 5.039 5.235 5.099(5.098) 5.309(5.311) 0.196 0.210(0.212)
FSU 5.027 5.172 5.087(5.086) 5.245(5.246) 0.146 0.158(0.160)
176yh NL3 5.215 5.497 5.273(5.272) 5.573(5.574) 0.282 0.300(0.302)
FSU 5.208 5.424 5.266(5.265) 5.498(5.498) 0.215 0.232(0.233)
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the reader that in the case of semimagic and open-shell nuclei,
such as '8Sn, 138Ba, '58Dy, and '7®Yb, nuclear deformation
and pairing correlations—which are not included—may play
an important role. Moreover, although accurately calibrated,
note that most mean-field models (including the ones used
here) are unable to predict with high accuracy charge radii
throughout the nuclear chart. Indeed, sometimes even trends
along an isotopic chain are difficult to reproduce; particularly
noteworthy is the case of “°Ca and *8Ca, where the charge
radius of the former exceeds (slightly) the one of the latter [6].
The first three columns of numbers in Table II provide
predictions for the point-proton, point-neutron, and charge
radii of several nuclei. To a large extent these results
are expected and in some particular cases (such as 20Pb)
have been extensively discussed. For example, given that the
charge form factor of many of these nuclei was accurately
measured via (parity-conserving) elastic electron scattering,
this information—mostly in the form of charge radii-was
incorporated into the calibration of the RMF models. Thus,
the predictions of both models for charge radii are in fairly
good agreement (e.g., they differ by only 0.009 fm in the case
of 298Pb). In contrast, the lack of reliable neutron form factors
leaves the isovector sector of the relativistic functionals largely
unconstrained, thereby generating large differences in the
predictions of neutron radii (e.g., 0.064 fm, or more than 1%,
in the case of 28 Pb). Fortunately, the prospects of constraining
the isovector sector through the measurement of neutron radii
are very good. Indeed, the vigorous and highly successful
parity-violating program at the Jefferson Lab recently provided
the first model-independence evidence in favor of a weak skin
in 2°8Pb. Moreover, a follow-up measurement was approved to
achieve the original £0.05 fm goal (PREX-II) and a fresh new
one (C-REX) was proposed to constrain the neutron radius of
#8Ca to 40.03 fm. It is therefore critical and timely to assess
the impact of the spin-orbit corrections on the weak radius of
these nuclei—which until now has never been considered.
Given the enormous cancellation among spin-orbit partners
and proton-neutron orbitals with the same quantum numbers,
the spin-orbit contribution to the charge and weak-charge radii
lacks the coherence displayed by the dominant vector form
factor [see Eqgs. (14)]. Thus, one expects that the spin-orbit
correction would be largest for light nuclei with unpaired
spin-orbit partners. Indeed, Table II displays relatively large
spin-orbit contributions—of ~0.045 fm and ~0.03 fm—to
the weak skin of 220 and “8Ca, respectively. These spin-orbit
corrections are commensurate with the projected experimental
uncertainty so they must be included in the prediction of
both charge and weak-charge radii. Charge and weak-charge
densities for 20 and *®Ca—with and without spin-orbit
corrections—as predicted by the FSU interaction are also
shown in Fig. 1. Note that the effect from neglecting the
spin-orbit contribution is clearly discernible in the figure, as is
the fact that the modification to the charge and weak-charge
radii goes in the opposite direction—thereby enhancing its
contribution to the weak skin. As alluded to earlier, the impact
of the spin-orbit contribution diminishes with increasing
baryon number and amounts to only ~0.002 fm in the case of
the weak radius of 2’ Pb—significantly below the anticipated
+0.05 fm of the PREX-II measurement. Yet, the ~0.004 fm
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FIG. 1. (Color online) Charge and weak-charge densities for
(a) 20 and (b) “*Ca as predicted by the FSU interaction. The dashed
lines represent the corresponding densities in the absence of spin-orbit
corrections.

contribution to the charge radius of 2%Pb is significantly
larger than the minute 0.0009-fm error quoted in Ref. [6].
In the particular case of atomic nuclei of relevance to the
atomic parity-violating program, the spin-orbit contribution to
the weak-charge radius of '*¥Ba, 1*®Dy, and '7°Yb amounts
to ~0.008 fm, ~—0.002 fm, and ~—0.001 fm, respectively.
Note that whereas the NL3 and FSU predictions for the weak
skin of the various nuclei differ significantly, the spin-orbit
contribution appears to have very little model dependence.
In general, we find that the intrinsic structure of the nucleon
leads to a weak skin that is larger than the corresponding
neutron skin. Moreover, for light neutron-rich nuclei—such as
220 and **Ca—the spin-orbit contribution generates a further
enhancement of the weak skin. In particular, whereas the
FSU interaction predicts a neutron skin in 220 of Ry, =
0.417 fm, the prediction for the experimentally measurable
weak skin is significantly larger, namely, Ryskin = 0.487 fm.
Although not as large, the effect is still significant in *Ca
(Rnskin = 0.197 fm and Rygin = 0.247 fm) and even in 2%Pb
(Ruskin = 0.207 fm and Rygkin = 0.230 fm). We also display
some of these results in graphical form in Fig. 2, where
predictions for the weak skin—with and without spin-orbit
contributions—are shown as a function of the corresponding
neutron skin. Again, the neutron skin is interesting because

| e e | B
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FIG. 2. (Color online) Electroweak skin (Ryx-Rq,) with and
without spin-orbit corrections as a function of neutron skin (R,-R),)
for the various neutron-rich nuclei considered in this work. Predic-
tions are made using both the (a) NL3 and (b) FSU interactions.
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it represents a pristine nuclear-structure observable that is
instrumental in constraining the isovector sector of the nuclear
density functional. The weak skin, however, although sensitive
to the internal structure of the nucleon, is both experimentally
accessible and strongly correlated to the neutron skin. Note
that in Fig. 2 we added the line Rysin = Rnskin to indicate
that in all cases (except for ''8Sn) the weak skin is larger
than the neutron skin—and significantly larger for the lighter
neutron-rich nuclei. Finally, the fact that the points are more
“compressed” in the case of FSU than for NL3 is a reflection
of the softer symmetry energy of the former relative to the
latter.

IV. CONCLUSIONS

A relativistic mean-field approximation was used to com-
pute proton, neutron, charge, and weak-charge densities and
form factors of a variety of neutron-rich nuclei. Special
emphasis was placed on the impact of spin-orbit currents
on the electroweak skin of these nuclei. Although closely
related to the neutron skin, the weak skin—defined as
the difference between the experimentally accessible weak-
and electromagnetic-charge radii—is sensitive to the internal
structure of the nucleon. The weak-charge radius of a nucleus
is closely related to the (point) neutron radius because the weak
charge of the neutron is much larger than that of the proton.
This is analogous to the reason why the charge and proton radii
are closely related. In the absence of spin-orbit corrections, and
regardless of the model, we found a weak skin larger than the
neutron skin for all nuclei investigated here.

Once spin-orbit currents were incorporated, a significant
increase in the weak skin—especially in the case of the two
lighter nuclei, 220 and **Ca—was observed. In particular, we
found quite generally that the spin-orbit contribution to the
weak and charge radii enter with opposite sign so their impact
is enhanced when computing the weak skin. For example, in
the case of **Ca the spin-orbit enhancement amounts to about
0.03 fm; this is commensurate with the projected accuracy
of the C-REX experiment. The impact of the spin-orbit
contribution decreases with increasing mass number, so its
effect in 2%8Pb is small (0.006 fm) and well below the proposed
+0.05 fm accuracy. The spin-orbit contribution is in general
small because of the strong cancellation between spin-orbit
partners and between neutron-proton pairs in identical single-
particle orbits. Given that it lacks the coherence displayed by
the dominant (vector) contribution, spin-orbit currents have
the largest impact on light neutron-rich (or proton-rich) nuclei
with unpaired spin-orbit partners, as in the case of the 1f7/,
neutron orbital in **Ca. We note that in the RMF case, where
the cancellation among spin-orbit partners is incomplete, there
is a further enhancement (of about 30%) relative to the
nonrelativistic predictions due to the presence of a strongly
attractive scalar potential (the so-called M* effect).

In summary, accurately calibrated relativistic mean-field
models were used to compute the impact of spin-orbit currents
on the electroweak skin of a variety of nuclei. Given that
spin-orbit contributions to both the charge and weak-charge
radii may be significant and often as large as existent
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or projected experimental uncertainties, spin-orbit currents
should be routinely incorporated into future calculations of
both charge and weak-charge form factors.
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APPENDIX: SINGLE-NUCLEON
ELECTROWEAK CURRENTS

In terms of the underlying quark vector currents, the
electromagnetic and weak-neutral currents displayed in Eq. (4)
are given by the following expressions [25]:

3
N - _ 2 1- 1_
JleLM = fgl: QfoJ/MC]f = guy”u — gd)/”d — gs]/“s,
(Ala)
3
R =" slhary"ar = gliiy"u + gldy"d + gi5y"s,
f=1

(Alb)

where gf is the weak-vector charge of quark “f”” expressed in
terms of its weak isospin and the weak mixing angle. That
is,

g = 2T{ — 4Q;sin’ 6,

+1 — $sin’ 6, >~ +0.384 iff = {u,c,t}, A2)

-1+ ‘3—‘sin2 Oy >~ —0.692 iff = {d,s,b}.
Note that we are assuming that the heavy-quark (c,b,t) content
of the nucleon is negligible. Also note that the weak-vector
charge of the quarks are to a good approximation equal to
the negative of the electromagnetic charge of its weak isospin
partner. This is the main reason why the neutral Z° boson is
an excellent probe of the neutron density. Assuming isospin
invariance, namely, that the up(down)-quark distribution in the
proton equals the down(up)-quark distribution in the neutron
and that the strange-quark distribution is equal in both, the
proton and neutron electromagnetic currents may be written
in the following way:

Thi(p) = (plAflp) = 2vE — 1y —lye o (A3g)
T = (nlJfln) = 2vi — Lty lyr o (A3b)

where V{, V), and V{' are matrix elements of the respective
quark vector currents in the proton. From the above equations
one can determine Vi and V' in terms of the two electromag-
netic currents and V. That is,

VE = 2J(p) + Jhu(n) + VE,
V= Tha(p) + 205 () + V.

In turn, these relations may be used to express the
matrix elements of the weak-neutral current in terms of the

(Ada)
(A4b)
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corresponding matrix elements of the electromagnetic current
plus the strange-quark contribution. Inserting these relations
into Eq. (A1b), one obtains

Jie(p) = g2 Ti(p) + g0 Jim) + EOVE, (ASa)

Je(n) = gh Ik (D) + gP b (n) + EQVE,

where proton, neutron, and singlet weak-vector charges are
given—including radiative corrections—by Ref. [32]

(ASb)

gb =2g" + gd = (1 — 4sin*6,)(1 + RP) ~ 0.0712,

(Ab6a)
gh =gt +2g¢ = —(1+R}) ~ —0.9877, (A6b)
O =g 4 g0+ g = —(1+RO) ~ —0.9877.  (A6c)

Note that these values are very close to the ones used
in Ref. [2], which are the ones that were adopted here
(.e., g\’f = 0.0721 and g; = —0.9878). Finally, electric and
magnetic Sachs form factors for the weak-neutral current
may be expressed in terms of the corresponding electro-
magnetic form factors plus the strange-quark contribution as
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follows:
GEM(0D) = gPGE (0% + ghGE (07 + E0GE (0D,
(A7a)
G w(0Y) = g2GL (07 + g2GE (0D + DG \(07).
(A7Db)

In particular, using these relations we obtain the following
expressions for the nucleon weak-charge radii:

(A8a)
(A8Db)

~2 2 2 0)..2
ghF, = gbro + giry + £0r7,
~2 2 2 0)..2
gy = gury + ghra + £0r].

Similar expressions follow in the case of the nucleon weak
magnetic moments:

(A9a)
(A9b)

fp = ge:up + g:/],un + SéO)Mm
fn = g\I/ll’Lp + g\[/)“n + E\SO)MP

Note that the mean-square strange radius and strange magnetic
moment are defined as

o _(dGi0Y

s 107 and ;= GIf/I(Q2 =0).
0’=0

(A10)
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