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Dipole resonances and the nuclear Schiff moment
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The nuclear Schiff moment creates a mechanism of transfer of the violation of parity and time-reversal
invariance by weak interaction in nuclei into the atomic electric dipole moment. We point out an additional
contribution to the Schiff moment generated by the mixing of single-particle states through the low-lying nuclear
dipole resonances. An estimate shows that this contribution is by order of magnitude comparable to single-particle
contributions and can be enhanced if the low-lying resonance has collective nature.
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I. INTRODUCTION

There is a close connection between collective nuclear
motion and symmetries in the nuclear Hamiltonian. In some
instances collective excitations are the result of the existence
of certain symmetries in the system. One of the best examples
is the isobaric analog resonance that results from the charge
symmetry of the nuclear force. In other instances however
collective excitations, such as giant resonances, serve as
intermediate states in the process of breaking symmetries.
Again, when we consider the isospin symmetry, the giant
isovector monopole state is the important intermediate state
that facilitates the breaking of this symmetry by the Coulomb
interaction. Other well-known examples are the Jπ = 0−

component of the spin-dipole giant resonance that plays a role
in parity mixing; the quadrupole, Jπ = 2+, together with the
octupole, Jπ = 3−, excitations contribute to the enhancement
of the violation of time reversal symmetry when a T -odd (time
reversal odd) and P-odd (parity odd) interaction is present.
Some nuclei experience a phase transition when the ground
states become quadrupole and/or octupole deformed as a result
of the lowering of the quadrupole and octupole modes. In the
case of the combined quadrupole + octupole deformation, or
corresponding soft vibrations in spherical nuclei, the T - and
P-odd Schiff moment (see next section for the definition)
becomes strongly enhanced. The Schiff moment induces a
T -odd field that in turn produces an atomic electric dipole
moment.

In recent years attention was given to the study of
new nuclear resonances at relatively low energy and to
some specific properties of resonances known before. For
example, concentration of the low-lying isovector dipole
(Jπ = 1−, T = 1) strength was observed in many nuclei,
and termed the pygmy dipole resonance (PDR), see [1,2]
and references therein. A resonance that carries the quantum
numbers JπT = 1−0, the so-called isoscalar dipole resonance
(ISDR), sometimes called also “compression” or “squeezing”
mode, was studied extensively experimentally [3–6] with the
low component observed in many nuclei, see for example
[7–9]. General theoretical estimates based on the sum rules
were performed long ago [10,11]. As in the case of the
isovector dipole, one finds that the strength is split into two

energy regions, a low-energy concentration of strength and
a “main peak” at higher energy. This comes naturally in
the quasiparticle random phase approximation and similar
approaches with different assumptions concerning mean field
and residual interactions [12–16].

The characteristic mechanism of appearance of low-energy
strength concentration can be illustrated by the random
phase approximation: the coherent interaction, usually of
the multipole-multipole type, separates (up in energy for
the isovector channels) a “giant” collective superposition of
particle-hole excitations with appropriate quantum numbers;
however, the remaining strength is still located around the
shell-model excitation energy and can be also collectivized up
to some extent, depending on the specific nuclear properties.
In particular, the collectivity can be enhanced in loosely
bound nuclei with a noticeable neutron excess filling the outer
orbitals and vibrating with respect to the core. If the low-lying
excitations are partly above the neutron separation threshold,
the collectivization through continuum also can increase the
resonance strength [17]. The isoscalar dipole resonance is
of particular interest to us here because the corresponding
exciting operator is similar to the Schiff operator involved
in the time reversal studies of the atomic electric dipole
moment. Because of this close connection between the ISDR
and the Schiff operator it is important to use the measured
(or calculated) ISDR strength to evaluate Schiff moments in
nuclei.

In what follows we consider the emergence of the nonzero
Schiff moment in a spherical odd-A nucleus as a result of the
weak interaction that can mix states of opposite parity through
admixture of the ISDR excitation of a neighboring even core. In
contrast to the known quadrupole-octupole mechanisms here
we do not expect large enhancement due to the parity doublets
and small energy denominators. However, the presence of
the collective strength makes such contributions at least
comparable to the effects typically taken into account in the
available calculations on a pure single-particle level. This
means that such coupling has to be taken into account in
microscopic consideration.

The theoretical consideration of the Schiff moment in
heavy nuclei, specifically for 199Hg, where the best current
experimental limit is established for the electric dipole moment
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[18], was performed by several authors [19–24]. The typical
calculation requires summation of many perturbative diagrams
including the effects of the core polarization, which, depending
on the method used, are equivalent to the Tamm-Dancoff
approximation or quasiparticle random phase approximation.
For the nuclear response in the dipole isoscalar channel, the
results turn out to be sensitive to the parameters of the mean
field and residual nucleon-nucleon interaction. Meanwhile,
there is no doubt that the presence of the collective low-
energy dipole response gives a non-negligible contribution
to the Schiff moment and therefore to the atomic electric
dipole moment. Below we present simple estimates for this
contribution. We do not use any specific model for mean
field or/and residual interactions, just symmetries and the most
general nuclear properties.

II. MIXING OF STATES BY WEAK INTERACTION

We consider two neighboring nuclei, an even-even one with
the ground state |0+〉 of angular momentum J = 0 and positive
parity and its odd neighbor with an unpaired nucleon in the
spherical state |jm; +〉, let say also of positive parity (just for
definiteness, this is of no importance),

|jm; +〉 = a
†
jm|0+〉. (1)

To illustrate our idea we use here the simplest shell-mode
wave functions. Both nuclei are supposed to have relatively
low-lying dipole excitations with typical excitation energy
�E up to 10 MeV. Because of negative parity, these excited
states are concentrated in the region of the next oscillator
shell and may form a collective quasicontinuum, the so-called
pygmy resonance. Although the main part of the isovector
dipole strength is shifted up to the region of the giant
dipole resonance, here we still have a significant leftover, not
necessarily in the form of a single collectivized RPA-type
excitation. It is expected that this part of dipole strength can be
more noticeable for nuclei away from the valley of stability; it
can be of isovector or isoscalar character.

Due to the angular momentum coupling, the dipole states
|1−μ〉 of the even nucleus with angular momentum J = 1, its
projection Jz = μ and negative parity have their cousins in
the odd nucleus with the same angular momentum quantum
numbers as the odd-A ground state,

|jm; −〉 =
∑
μm′

C
jm

1μ jm′a
†
jm′ |1−μ〉; (2)

here and below we use the Clebsch-Gordan coefficients of
vector coupling. Now we have the two states, Eqs. (1) and (2),
in the same (odd) nucleus with the same angular momentum
and opposite parity. The parity-violating weak interaction W

will mix these states creating their linear combinations,

|jm〉0 = |jm; +〉 − α|jm; −〉, (3)

for the new ground state and

|jm〉1 = |jm; −〉 + α∗|jm; +〉 (4)

for the new excited state. The admixture amplitude is deter-
mined by the corresponding matrix element W10 of the weak

interaction,

α = W10

�E
. (5)

These equations are trivially generalized for the case of several
admixed excited states.

Since the mean value of the nuclear dipole moment D
is screened in the atom, the atomic electric dipole moment
is generated by the nuclear Schiff moment (see the recent
reexamination of the Schiff theorem in Refs. [25,26]),

S = x
∑

a

ea

(
r2
a − 5

3
〈r2〉ch

)
ra, (6)

where x = 1/10 in the standard definition, and 〈r2〉ch is the
mean square charge radius, so that, with the radius Rp of
the equivalent homogeneous sphere, (5/3)〈r2〉ch = R2

p. The
similar operator with x = 1 and, for ea = 1, acting uniformly
on protons and neutrons is identical to the ISDR operator
that appears in the long wavelength expansion of a spherical
wave with � = 1 (the main dipole component that leads to the
spurious excitation of the center of mass is excluded).

The operator (6) can have a nonvanishing expectation value
in the mixed ground state (3),

0〈jm′|Sκ |jm〉0 = − 2 Re α√
2j + 1

C
jm′
jm 1κ (j ; +||S||j ; −), (7)

where Sκ are the spherical components of the vector S and we
use the definition of reduced (double-barred) matrix elements
according to Edmonds [27].

The matrix elements of the Schiff moment between the
states of opposite parity in the odd nucleus are given by

〈jm′; +|Sκ |jm; −〉 = 〈0+|ajm′Sκ

∑
m′′μ

C
jm

1μ jm′′ a
†
jm′′ |1−μ〉.

(8)

Here the collective enhancement can emerge from the excita-
tion of the even core through the low-lying dipole modes. This
contribution corresponds to m′′ = m′ and therefore μ = −κ;
with the same definition of reduced matrix elements,

〈jm′; +|Sκ |jm; −〉 ≈ 1√
3

(−)1−κC
jm

1−κ jm′(0+||S||1−). (9)

This amplitude, possibly summed over several dipole excita-
tions, can be of collective nature.

III. EFFECTIVE WEAK INTERACTION

The effective P- and T -violating interaction can be intro-
duced in various forms. In our space of states, the effective
form should look like

W = ξ (D · �σ ), (10)

where ξ is the effective coupling constant, D is a coordinate-
dependent P-odd T -even vector operator, such as a dipole
moment or Schiff moment, creating collective excitations in
the even core, while the spin operator �σ acts on the odd particle.
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The mixing (5) is determined by the matrix element

W10 ⇒ 〈jm′; −|W |jm; +〉
=

∑
m′′μ

C
jm′
1μ jm′′ 〈1−μ|ajm′′Wa

†
jm|0+〉. (11)

For the rotational scalar (10), we have m′ = m, and the
collective contribution is

〈jm; −|W |jm; +〉
≈ ξ

∑
κm′μ

(−)κCjm

1μ jm′ 〈1−μ|Dκ |0+〉〈ajm′ |σ−κ |a†
jm〉. (12)

In the form independent of projections, the necessary matrix
element is given by

W10 = − ξ√
3(2j + 1)

(1−||D||0+)(j�||σ ||j�). (13)

Here the constant ξ ≡ ξj� depends on the shell-model orbital
of the odd nucleon.

IV. ESTIMATING THE INTERACTION STRENGTH

For the estimate by the order of magnitude of the effective
P- and T -interaction acting according to the suggested
mechanism, we use the weak nucleon-nucleon interaction in
the form [28], where we neglect the velocity-dependent terms.
The main contribution comes from the contact interaction
between the nucleons a and b,

Ŵ ◦
ab = G√

2

1

2m
(ηab �σa − ηba �σb) · ∇aδ(ra − rb). (14)

Here G is the weak Fermi constant, m the nucleon mass (mc/h̄

in full units), �σa,b are spin operators and ra,b are coordinate
operators of interacting nucleons. The strength of the effective
interaction W ◦ is regulated by the dimensionless parameters
ηab to be determined by future experimental measurements.

According to our idea, we limit ourselves to the search for
the new effect related to the collective dipole excitations. The
earlier known collective mechanisms coming from the static
octupole deformation [29,30], soft octupole vibration [31],
or combined soft quadrupole and octupole modes [32] are
the subject of further studies, theoretical and experimental.
Here we are looking for the collective dipole excitation of the
even-even core. In Eq. (14) we consider the interaction W ◦

ab of
the valence nucleon b with the nucleons a in the core. Then
the spin operator in Eq. (14) should be related to the external
nucleon in the shell-model state ψb. The corresponding part
of the effective interaction is given by

Ŵa = − G√
2

1

2m
ηba(∇a · ψ∗

b (ra)�σbψb(ra)). (15)

We are interested in the dipole component of this operator that
takes part in the collective dipole excitation of the core. To
extract this component we can use the projection method [31].

The contribution of the core nucleon a to the collective
dipole mode can be presented as a vector

Ŵa = CaD̂, (16)

where D̂ is the corresponding collective operator, such as the
dipole moment or the Schiff moment, while the effective
amplitude Ca for a given nucleon a is determined by the
projection,

Ca = (D̂|Ŵa)

(D̂|D̂)
, (17)

onto the normalized dipole state. As the amplitude of collective
vibrations is small compared to the mean nuclear radius,
the normalization can be performed by integration over the
unperturbed volume.

A. Isovector dipole moment

The simplest case corresponds to the isovector dipole
excitation,

D =
∑

a

eara, (18)

with effective charges ep and en. The presence of the neutron
skin in exotic nuclei can enhance the low-energy dipole mode.
Therefore we distinguish the proton and neutron equilibrium
radii, Rp and Rn (these are radii of equivalent uniform spheres).
Then

(D̂|D̂) = 4π

5

(
e2
pR5

p + e2
nR

5
n

)
. (19)

The overlap of the dipole operator (18) with the weak
interaction mechanism is given by

(Ŵa|Dz) = − G√
2

1

2m
ebηba

∫
d3r ψ∗

b (r)�σψb(r) · (∇z).

(20)

For a given orbital (j�m) of the external nucleon b, we come
to

(Ŵa|Dz) = − G√
2

1

2m
ebηba

1√
2j + 1

C
jm

jm 10(j�||σ ||j�).

(21)

Now we determine the projection amplitude (17),

Ca[D] = − G√
2

1

2m
ebηba

3√
2j + 1

×C
jm

jm 10(j�||σ ||j�)
1

(D̂|D̂)
. (22)

Comparison of this result with the general expression (13)
determines the effective constant

ξ [D] = G√
2

1

2m

15

4π

ebηb

e2
pR5

p + e2
nR

5
n

, (23)

where ηb is the constant ηba averaged over the core nucleons
with the weights N/A and Z/A for neutrons and protons,
respectively. In this approximation the only dependence on
the unpaired orbital in the odd nucleus can enter through ηb.

Collecting everything (consider α real) we obtain

〈S〉0 = −2α〈j,m = j ; +|Sκ=0|j,m = j ; −〉
= 2α√

3
C

jj

10 jj (0+||S||1−), (24)
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where

α = W10

�E
= − 1

�E

ξ√
3(2j + 1)

(1−||D||0+)(j�||σ ||j�).

(25)

Taking ξ = ξ [D] from Eq. (23) and generalizing for the case
of several excited states |1−

i 〉 with excitation energies �Ei ,

α = − 1√
3(2j + 1)

G√
2

1

2m

15

4π

ebηb(j�||σ ||j�)

e2
pR5

p + e2
nR

5
n

×
∑

i

(1−
i ||D||0+)

�Ei

. (26)

The spin matrix element in Eq. (26) is

(j�||σ ||j�) =
[
j (j + 1) − �(� + 1) + 3

4

] √
2j + 1

j (j + 1)
.

(27)

The Clebsch-Gordan coefficient in Eq. (24) equals to√
j/(j + 1).

B. Schiff moment

The same techniques can be used for the choice of the Schiff
moment (6) as the dipole operator (16) acting with the weak
interaction. The normalization (19) can be found now as

(Ŝ|Ŝ) = 8
315 4πe2R9

px2. (28)

The projection of the weak interaction, similarly to Eq. (20),
is expressed as

(Ŵa|Sz) = − G√
2

x

2m
ebηba

∫
d3rψ∗

b (r)�σψb(r)

·∇((r2 − (5/3)〈r2〉ch)z). (29)

Instead of Eq. (21) we now have

(Ŵa|Sz) = − G√
2

x

2m
ebηba

1√
2j + 1

C
jm

jm 10(j�||F ||j�),

(30)

where the P- and T -odd vector operator is introduced

F = 2(�σ · r)r + �σ (
r2 − 5

3 〈r2〉ch
)
. (31)

The projection amplitude is now slightly more complicated,

Ca[S] = − G√
2

1

2m
ebηba

3√
2j + 1

×C
jm

jm 10(j�||F ||j�)
1

(Ŝ|Ŝ)
, (32)

which leads to the effective interaction constant

ξ [S] = G√
2

1

2m

945

8x

1

4π

ebηb

e2
pR9

p

(j�||F ||j�)

(j�||σ ||j�)
. (33)

The matrix element of the operator F can be easily found
with standard methods,

(j�||F ||j�)

(j�||σ ||j�)
= j + 2

j + 1
〈r2〉j� − 5

3
〈r2〉ch, j = � + 1

2
,

(34)

and

(j�||F ||j�)

(j�||σ ||j�)
= j − 1

j
〈r2〉j� − 5

3
〈r2〉ch, j = � − 1

2
.

(35)

In the case of the p1/2 level, Eq. (35), the effect is enhanced.

V. RESULTING SCHIFF MOMENT

The final result for the expectation value of the Schiff
moment in the ground state |jm〉0 of the odd nucleus,

〈S〉0 = 0〈j,m = j |S0|j,m = j 〉0, (36)

can be expressed as

〈S〉0 = 2

3

√
j

(j + 1)(2j + 1)
ξ [S](j�||σ ||j�)

×
∑

i

|(1−
i ||S||0+)|2

�Ei

. (37)

Here we have written the answer for the choice of S,
Sec. IV B, as an operator D exciting the collective mode.

In spite of relatively large energy denominators, we can
expect a result that is comparable with what has been found
for the pure single-particle excitations which, in fact, usually
have the excitation energy of the same order of magnitude.
This is clear from the resulting expression (37) if there is a
coherent low-lying pygmy mode that supports an appreciable
fraction of the dipole sum rule. The collective character of
the pygmy mode is expected to be more pronounced if its
centroid is already in the continuum because of the additional
coherent interaction of particle-hole states through common
decay channel(s) [17]. If there is no RPA-type collectivization
through continuum coupling but the amplitudes ξ [S] are of the
same sign for several partial excitations, they will coherently
add to the amplification of the Schiff moment.

VI. QUANTITATIVE ESTIMATE

We now present an example of a numerical evaluation of
the Schiff moment resulting from the isoscalar dipole strength.
Our purpose is mainly to obtain an order of magnitude estimate
for S.

We estimate the expression (37) for a nucleus with A = 201,
with the extra nucleon occupying the p1/2 orbital. For the
strength distribution of the ISDR we use the results of the
calculation contained in Ref. [33]. This calculation shows
that the strength is concentrated in two broad peaks, one
at lower energy (the centroid around 10 MeV in A ∼ 200
nuclei) and the higher energy peak (centroid around 20 MeV).
Characterizing the results one can say that about 105 of
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the strength (in units of fm6) is contained in the lower
peak and about 2 × 105 fm6 in the upper peak. For our
estimate of summation in Eq. (37) we introduce the total
strength and corresponding energy centroids for the two peaks;
for the radius appearing in Eq. (33) we use R = 6 fm.
Collecting all numbers we find for the Schiff moment the
result S = 0.8 × 10−8η e fm3. This is of the same size as the
Schiff moments evaluated in single-particle models [20,21],
including effects of the core polarization [22,23].

It would be of interest to perform a more detailed
microscopic calculation by calculating explicitly the inverse
energy weighted sum in the framework of the random phase
approximation. The inverse energy weighted sum is equivalent
to the polarization of the nucleus that can be computed in
the constrained Hartree-Fock scheme with the Schiff operator
being the constraint; such sum rules might be less sensitive
to the details of the nuclear forces. An even more significant
possibility is to calculate the ISDR in deformed nuclei or
nuclei away from the stability line where one could expect the
lowering of strength leading to an enhancement of the Schiff

moment. However, for loosely bound nuclei, the continuum
effects are to be taken properly taken into account. A similar
estimate for the isovector dipole resonance, Eq. (26), is not
possible since this expression requires the amplitudes of the
isovector dipole rather than the strength. However in a fully
microscopic approach one would be able to calculate the Schiff
moment for this mechanism as well. In this case some of the
contributions of the low-lying pygmy dipole resonance might
become significant.
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