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A simple hybrid quark-diquark model for the baryons is constructed as a partial solution to the well-known
“missing resonances” problem. In this model, the quark-diquark approach is merged with the usual constituent
three-quark model. The underlying idea is that the quark-diquark approach describes the excited states while
the three-quark model the ground states. The spectrum is calculated through a mass formula, a generalization
of the Gürsey-Radicati formula, built to reproduce the rotational and vibrational Regge trajectories. Using the
quark-diquark scheme, we were also able to describe the spin-flavor degrees of freedom in the framework of an
algebraic model. Moreover, we have constructed a complete classifications of the possible quark-diquark states
only based on group theory and thus it can be useful both for other model builders and for experimentalists.
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I. INTRODUCTION

Since the introduction of the quarks, the baryons have
always been thought of as made up of three constituent
confined quarks. The light baryons, in particular, have been
ordered according to the approximate SU(3)f symmetry,
which requires that the baryons belong to the multiplets
[1]A ⊕ [8]M ⊕ [8]M ⊕ [10]S . However, when we consider the
spatially excited resonances, many more states are predicted
than observed; on the other hand, states with certain quantum
numbers appear in the spectrum at excitation energies much
lower than predicted [1]. Considering only the nonstrange
sector up to an excitation energy of 2.41 GeV, on average
about 45 N states are predicted, but only 12 have been
established (four- or three-star) and seven are tentative (two-
or one-star) [1]. This is the so-called “missing resonances”
problem. One possible solution to this problem is to describe
two correlated quarks inside the baryons by means of the
diquark effective degree of freedom. In this case the number
of states predicted is considerably lower. The concept of
the diquark was first proposed by Gell-Mann [2] and soon
afterward constituent quark-diquark models for the baryons
were proposed by Ida and Kobayashi [3] and Lichtenberg
and Tassie [4]. More recently, several studies, ranging from
one-gluon exchange models to lattice QCD calculations, have
investigated the possibility of diquark correlations and found
that they are indeed attractive (see for example [5–9]). In this
article we construct all the allowed states in the framework
of the constituent quark-diquark model and we try to assign
all known light baryons (with masses smaller than ≈2 GeV)
to the appropriate multiplet. If we think of the quark-diquark
system as a stringlike object with an o(4) dynamical symmetry
analogous to the quark-antiquark mesons [10,11], we can,
moreover, write a simple mass formula constructed with the
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aim of reproducing both rotational and vibrational Regge
trajectories.

II. A QUARK-DIQUARK MODEL FOR BARYONS

In this model, we hypothesize that the baryons are a bound
state of two elements, a constituent quark and a constituent
diquark. We regard the diquark as two correlated quarks with
no internal spatial excitations, or at least we hypothesize
that their internal spatial excitations will be of higher energy
than the scale of masses of the resonances we will consider,
i.e., light resonances up to 2 GeV masses. Calculations in a
rainbow-ladder DSE model [7,8,12] have now confirmed that
the first spatially excited diquark, the vector diquark, has a
mass much higher than the ground states, the scalar, and the
axial-vector diquarks. Diquarks are made up of two identical
fermions and so they have to satisfy the Pauli principle.
Since we consider diquarks with no spatial excitations, their
color-spin-flavor wave functions must be antisymmetric. This
limits the possible color-spin-flavor representations to

color in [3̄] (AS), spin-flavor in [21]sf (S), (1a)

color in [6] (S), spin-flavor in [15]sf (AS). (1b)

The decomposition of these SUsf (6) representations in terms
of SU(3)f ⊗ SU(2)s is (in the notation [flavor repr., spin])

[21]sf = [3̄, 0] ⊕ [6, 1], (2a)

[15]sf = [3̄, 1] ⊕ [6, 0]. (2b)

Since the baryons must be colorless, we can allow only the
diquark states in color [3̄]c:

|[3̄]c, [3̄]f , 0〉, |[3̄]c, [6]f , 1〉. (3)

The first of the above states is the scalar (or good) diquark; the
second is the axial-vector (or bad) diquark. In the following,
we will represent scalar diquarks by their constituent quarks
(denoted by s if strange, n otherwise) in a square bracket,
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while axial-vector diquarks are indicated in a brace bracket.
This choice is not random, because the explicit expression of
diquarks is the commutator of the constituent quarks for the
scalar diquarks and the anticommutator for the axial-vector
ones.

III. BARYONS AND THE PAULI PRINCIPLE

The Pauli principle implies that the baryons must be
antisymmetric to exchange each couple of quarks. First, we
describe the application of this principle to the baryons in the
three-quark model, in order, then, to underline the differences
from the quark-diquark model.

In the three-quark model we can have the spin-flavor states

[6] ⊗ [6] ⊗ [6] = [56]S ⊕ [70]M ⊕ [70]M ⊕ [20]A, (4)

where the subscripts indicate the symmetry of the state.
These multiplets can be decomposed in terms of SU(3)f ⊗
SU(2)s as: [56]S = [10, 3/2] ⊕ [8, 1/2], [70]M = [10, 1/2] ⊕
[8, 3/2] ⊕ [8, 1/2] ⊕ [1, 1/2], [20]A = [1, 3/2] ⊕ [8, 1/2].

Since we have two different relative angular momenta, we
can have symmetric, mixed and antisymmetric spatial parts,
independently from the spatial model adopted.

In order to obtain an antisymmetric baryon, we have to
combine the spin-flavor-spatial part, with the antisymmetric
color part. Thus, we need a symmetric spin-flavor-spatial part
which can be obtained only through the combinations reported
on the left side of Table I.

In the quark-diquark model we can have only the spin-flavor
states

[21] ⊗ [6] = [56]S ⊕ [70]M. (5)

Since, in the quark-diquark model, we freeze one spatial
degree of freedom, thus setting one of the two relative angular
momenta to zero and letting the other vary, we can have only
symmetric (if the relative orbital angular momentum L is even)
or mixed (if L is odd) spatial parts. On the right side of Table I,
we report the allowed spin-flavor-space combinations. Hence
the sequence of states would be

(SU (6)sf , LP ) = ([56], 0+), ([70], 1−), ([56], 2+) (6)

and so on.
It is important to underline the absence of the [20] spin-

flavor multiplet, which features the state with the unique
quantum numbers [1, 3/2] of flavor and spin. In the standard
three-quark model, the resonance present in this multiplet
would be allowed to have quantum numbers LP = 1+ [13,14],
and thus would violate the sequence permitted [Eq. (6)] in the
quark-diquark scheme. Thus the presence or the absence of a

TABLE I. Allowed spin-flavor and spatial combinations in the
three-quark model (left) and in the quark-diquark model (right).

Three-quark baryons Quark-diquark baryons

spin-flavor space spin-flavor space

[56]S S [56]S S

[70]M M [70]M M

[20]A A

flavor singlet with LP = 1+ (i.e., a � with positive parity) is an
unambiguous signature of the three-quark or the quark-diquark
model, respectively.

IV. DIFFERENT TYPES OF DIQUARK MODELS

In the present paper we will consider several ways to
implement the diquarks inside the baryons in a not completely
broken SU (3) scheme; the completely broken scheme has
already been studied by one of the authors [13]. Thus, this
is the only other possibility that remains to be investigated
systematically and will be the main subject of this paper.
We think of the baryon as being composed of a constituent
quark and a constituent diquark. We have already described the
possible spin and flavor quantum numbers and the symmetry
properties of the diquark alone and of the baryon in the
quark-diquark scheme in detail in Secs. II and III. In a
quark-diquark model, we consider every baryon as a bound
state of a quark (strange or nonstrange) and a diquark (scalar
or axial-vector, with all the possible strangenesses). In a first
and elementary approach, which we will henceforth call the
“pure” quark-diquark model, we discard the possibility of a
superposition of the two types of diquarks in some baryons.
Thus, for example, only scalar diquarks are considered for
the nucleon and all the particles in the same flavor octet. All
the known baryons are classified according to their quantum
numbers and their diquark content. While all the currently
known resonances fit well into this scheme, the main problem
of this model is that it still predicts several missing resonances.
In particular, as can be seen by applying Table II in the
LP = 0+ case, we expect the presence of two ground state

TABLE II. General classification of the baryon multiplets in the
quark-diquark model. m is an integer �0; SD is the diquark spin (0 is
the scalar diquark, 1 the axial-vector diquark). For J = 1

2 the states
[8, 3

2 ] with LP = (2m − 1)− and [10, 3
2 ] with LP = (2m)+ are not

allowed. The energy splittings and the actual ordering of the various
multiplets will obviously depend on the details of the particular model
used.

J LP SD multiplets ([SU (3)f , Spin])

2m + 1
2 (2m)+ 0 [8, 1

2 ]
(2m + 1)− 0 [8, 1

2 ],[1, 1
2 ]

(2m)+ 1 [8, 1
2 ]

(2m + 1)− 1 [8, 1
2 ],[10, 1

2 ]
(2m − 1)− 1 [8, 3

2 ]
(2m)+ 1 [10, 3

2 ]
(2m + 1)− 1 [8, 3

2 ]
(2m + 2)+ 1 [10, 3

2 ]

2m + 3
2 (2m + 1)− 0 [8, 1

2 ],[1, 1
2 ]

(2m + 2)+ 0 [8, 1
2 ]

(2m + 1)− 1 [8, 1
2 ],[10, 1

2 ]
(2m + 2)+ 1 [8, 1

2 ]
(2m)+ 1 [10, 3

2 ]
(2m + 1)− 1 [8, 3

2 ]
(2m + 2)+ 1 [10, 3

2 ]
(2m + 3)− 1 [8, 3

2 ]

045202-2



HYBRID QUARK-DIQUARK BARYON MODEL PHYSICAL REVIEW C 86, 045202 (2012)

JP = 1
2

+
octets, one with a scalar and the other with an

axial-vector diquark. The former can be identified with the
octet featuring the nucleon, but for the latter no particles with
a suitable energy (estimated around 1.1–1.3 GeV for the N of
the octet) are known with certainty. Anisovich et al. [15] have
suggested the possibility that these JP = 1

2
+

octet states with
axial-vector diquarks actually could overlap somewhat with
the radially excited 1

2
+

octet formed by N (1440), �(1660),
and �(1600). In this hypothesis, a double-pole structure of the
partial amplitude in the regions of masses of these resonances
should be present. Recently, Morsch and Zupranski [16] and
Arndt et al. [17] have seen traces of a second Roper resonance
in the energy range 1.35–1.40 GeV that could agree with
our predictions. A discussion of the Roper resonance and the
possibility of this controversial second pole can be found in
Ref. [18].

Alternatively, we could modify the “pure” quark-diquark
model in a way that does not require the presence of a second
1
2

+
octet. In this case, the double pole structure discussed

above would be only a different manifestation of the same
resonance in different channels. Anisovich [15] suggested that
the two kinds of diquark could be degenerate. In this case,
the missing octet would simply collapse to the energy of the
nucleon octet and would become identical with it. However, the
large majority of studies have found the axial-vector diquark to
be about 200 MeV heavier than the scalar one (see Table VIII)
and therefore very far from a degenerate condition. Another
variation, here called the “mixed” quark-diquark model, can be
introduced, in which the nucleon results from the superposition
of the scalar diquark and of the axial-vector diquark. The name
“mixed” has been chosen to underline the fact that the nucleon
is now a superposition of both types of nondegenerate diquark.
In the hypothesis that the weight of the two diquarks inside the
nucleon (and in the rest of its octet) is approximately 1/2, the
two ground state octets would have the same composition and
thus would again overlap and solve the problem of the second
“embarrassing” octet. While both of these modifications to
the “pure” quark-diquark model would be able to solve the
problem of the missing octet, they are, as yet, only theoretical
speculations without solid evidence. Recent calculations by
Roberts et al. [12] show that the effective model calculations
based on DSE equations could confirm the superposition of
the two types of diquark, which is what we have called the
“mixed” point of view.

In the present paper we have also considered a further
possibility, which we have called the “hybrid” model. Theo-
retical calculations [19,20] could support the supposition that
the diquarks do not form inside the ground-state, nonexcited
baryons: these baryons would be compressed to provide
the usual three-quark SU (6)-symmetry structure, while the
excited states would be spatially separated to give rise to the
quark-diquark string-like structure, as shown in Fig. 1. In this
case we would have only one ground-state three-quark octet,
and the quark-diquark scheme would be valid only starting
from the spatially excited resonances. In brief, this model
results from the deformation of a three-quark model for the
ground states into a quark-diquark model for the excited states;
hence the name “hybrid”. Santopinto has already hinted at this

FIG. 1. Ground three quarks and excited quark-diquark baryons
in the “hybrid” model.

idea in Ref. [13]. In Tables III– VI we present a classification
of all the known low-energy resonances according to the
“pure” (valid if the detection of the second Roper resonance is
considered credible), “hybrid” and “mixed” models.

V. THE MASS FORMULA

In order to apply the models described in Sec. IV, we
need to develop a mass formula able to reproduce the baryon
spectrum. The basic elements on which we choose to construct
our mass formula are the Regge trajectories, which have
become an essential feature of hadronic phenomenology, and
we follow the methodology developed in the algebraic models
for mesons and baryons [10,11,21–24] . Actually, we need
two mass formulas, one to be applied to the “pure” and
“mixed” models and the other to the “hybrid” model. In
the former case, we write Eq. (7), which implements the
rotational and vibrational Regge trajectories for a string-like
object and presents explicit dependence on the masses of the
diquarks Mdiq and the isolated quark Mq . The mass formula is
completed by spin SU (2), flavor SU (3), and spin-flavor SU (6)
quark-diquark interaction terms. These are inspired by similar
terms introduced in potential models [25,26], but here they are
used in the framework of algebraic models. Still, these latter
terms account only for fine-tuning corrections:

M2 = b L + n ν + (Mq + Mdiq)2

+ d J + e I (I + 1) + c

MqMdiq
Sq · Sdiq

+ g

MqMdiq
Fq · Fdiq + h

MqMdiq
Gq · Gdiq + �, (7)

where

Mq = Mn + Ns �Ms,

Mdiq = M[n,n] + N[n,s] �M[n,s] + N{n,n} �M{n,n}
+N{n,s} �M{n,s} + N{s,s} �M{s,s},

Sq · Sdiq = S(S + 1) − 3/4 − Sdiq(Sdiq + 1)

2
,

Fq · Fdiq = C2(SU (3)f ) − 4/3 − C2(SU (3)f )diq

2
,

Gq · Gdiq = C2(SU (6)sf ) − 115/12

2
.
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TABLE III. Quark-diquark model assignments for some of the known baryons with no vibrational excitations. Assignments for several
states are merely educated guesses. Resonances marked with “no” are forbidden in the quark-diquark scheme by the rules summed up in Sec. VI.
Resonances labeled “missing” are the so-called missing resonances. As discussed in Sec. IV, in the “hybrid” model the L = 0 resonances
are considered in a three-quark scheme; thus they have no diquark spin (Sdiq) and only one octet is present. These corrections to the “pure”
quark-diquark model are shown in italics in the Table. The resonance �(2250) has been inserted in the same multiplet as �(1910) even though
its quantum numbers are still unknown.

octet decuplet singlet

J P , L, S, Sdiq
1
2 1 0 1

2
3
2 1 1

2 0 0
1
2

+
, 0, 1

2 , 0 N (939) �(1189) �(1116) �(1318) no no no no no
1
2

+
, 0, 1

2 , 1 missing missing missing missing no no no no no
1
2

+
, 2, 3

2 , 1 no no no no �(1910) missing missing �(2250) (?) no
1
2

−
, 1, 1

2 , 0 N (1535) missing �(1670) missing no no no no �(1405)
1
2

−
, 1, 1

2 , 1 missing �(1750) missing missing �(1620) missing missing missing no
1
2

−
, 1, 3

2 , 1 N (1650) missing �(1800) missing no no no no no
3
2

+
, 2, 1

2 , 0 N (1720) missing �(1890) missing no no no no no
3
2

+
, 0, 3

2 , 1 no no no no �(1232) �(1385) �(1530) �(1672) no
3
2

+
, 2, 1

2 , 1 missing missing missing missing no no no no no
3
2

+
, 2, 3

2 , 1 no no no no �(1920) missing missing missing no
3
2

−
, 1, 1

2 , 0 N (1520) �(1670) �(1690) �(1820) no no no no �(1520)
3
2

−
, 1, 1

2 , 1 missing missing missing missing �(1700) missing missing missing no
3
2

−
, 1, 3

2 , 1 N (1700) �(1940) missing missing no no no no no
3
2

−
, 3, 3

2 , 1 missing missing missing missing no no no no no
5
2

+
, 2, 1

2 , 0 N (1680) �(1915) �(1820) �(2030) no no no no no
5
2

+
, 2, 1

2 , 1 missing missing �(2110) missing no no no no no
5
2

+
, 2, 3

2 , 1 no no no no �(1905) missing missing missing no
5
2

+
, 4, 3

2 , 1 no no no no missing missing missing missing no
5
2

−
, 3, 1

2 , 0 missing missing missing missing no no no no missing
5
2

−
, 3, 1

2 , 1 missing missing missing missing �(1930) missing missing missing no
5
2

−
, 1, 3

2 , 1 N (1675) �(1775) �(1830) missing no no no no no
5
2

−
, 3, 3

2 , 1 missing missing missing missing no no no no no

� is an overall constant taken to be equal to −0.55 GeV2;
Mn = 0.3331 GeV is the mass of the nonstrange quark as
obtained in Ref. [21]; M[n,n] is the mass of the nonstrange
scalar diquark [n, n], Ns and �Ms are the number of strange
quarks and the mass difference between the strange quark
and the nonstrange one; N[n,s], N{n,n}, N{n,s}, and N{s,s}
are the number of strange scalar, nonstrange axial-vector,
strange axial-vector, and double strange axial-vector diquarks,
respectively; �M[n,s], �M{n,n}, �M{n,s} and �M{s,s} are
the mass difference between the strange scalar, nonstrange
axial-vector, strange axial-vector, double strange axial-vector
diquarks and the nonstrange scalar diquark [n, n], respectively;
C2(SU (3)f ) and C2(SU (6)sf ) are the quadratic Casimirs of
flavor SU(3)f and spin-flavor SU(6)sf , respectively, referred
to the entire baryon, while C2(SU (3)f )diq refers to the diquark
only; L is the relative orbital angular momentum; I the total
isospin; S the total spin and Sdiq the diquark’s spin; J the total
angular momentum, and ν the vibrational quantum number.
This mass formula is suitable for both the “pure” and the
“mixed” models, since in the latter only the input numbers

N[n,s], N{n,n} and N{n,s} would change, and only for the ground
state octets.

Regarding the “hybrid” model, we need to modify our mass
formula to be able to reflect a three-quark structure for all
the ground state baryons. Thus, while the quark-diquark part
remains largely untouched, we need to insert new terms of
quark-quark interaction for the three-quark part. The resulting
mass formula is written in Eq. (8):

M2 = bL + nν + δL,0δν,0

⎛
⎝∑

i<j

c′Si · Sj + g′Fi · Fj

MiMj

+ d ′J + e′I (I + 1) + M2
3q

⎞
⎠

+ (1 − δL,0δν,0)

(
�1 + 1

MqMdiq
(gFq · Fdiq

+hGq · Gdiq + eIq · Idiq) + (Mq + Mdiq)2

)
, (8)
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TABLE IV. Quantum numbers of the three- or four-star resonances with orbital angular momentum and parity LP = 0+ in the
quark-diquark model. Section (a) lists the resonances used for the fit with our mass formula [Eq. (8)]; section (b) shows the
resonances we could not use because either we were not sure of their diquark content—in which case our assignment is marked
with a question mark—or they are not well established yet. For the ground-state baryons, the composition is given for the “pure”,
“mixed”, and “hybrid” models. All the masses are in GeV. In the last three columns the theoretical predictions are reported for each
model.

Resonances J S composition SU (3)f SU (6)sf ν M(exp) M(pure) M(mixed) M(hybrid)

(a)
N (939)P11

1
2

1
2 [n, n]n 8 56 0 0.939 ± 0.005 0.924 – –

N (939)P11
1
2

1
2 [n, n]n + {n, n}n 8 56 0 0.939 ± 0.005 – 0.940 –

N (939)P11
1
2

1
2 nnn 8 56 0 0.939 ± 0.005 – – 0.943

�(1189)P11
1
2

1
2 [n, s]n 8 56 0 1.189 ± 0.005 1.189 – –

�(1189)P11
1
2

1
2 nns 8 56 0 1.189 ± 0.005 – – 1.182

�(1116)P01
1
2

1
2 nns 8 56 0 1.116 ± 0.005 – – 1.113

�(1318)P11
1
2

1
2 [n, s]s 8 56 0 1.315 ± 0.005 1.349 – –

�(1318)P11
1
2

1
2 nss 8 56 0 1.315 ± 0.005 – – 1.320

N∗(?)P11
1
2

1
2 {n, n}n 8 56 0 1.390 ± 0.020a 1.300 – –

�(1232)P33
3
2

3
2 {n, n}n 10 56 0 1.231 − 1.233 1.229 1.228 –

�(1232)P33
3
2

3
2 nnn 10 56 0 1.231 − 1.233 – – 1.238

�(1385)P13
3
2

3
2 nns 10 56 0 1.383 ± 0.005 – – 1.375

�(1530)P13
3
2

3
2 nss 10 56 0 1.532 ± 0.005 – – 1.524

�(1672) 3
2

3
2 {s, s}s 10 56 0 1.672 ± 0.005 1.673 1.675 –

�(1672) 3
2

3
2 sss 10 56 0 1.672 ± 0.005 – – 1.681

N (1440)P11
1
2

1
2 [n, n]n 8 56 1 1.420 − 1.470 1.446 1.478 1.455

�(1660)P11
1
2

1
2 [n, s]n 8 56 1 1.630 − 1.690 1.629 1.697 1.683

N (1710)P11
1
2

1
2 {n, n}n 8 56 1 1.680 − 1.740 1.711 1.599 1.654

�(1810)P01
1
2

1
2 {n, s}n 8 56 1 1.750 − 1.850 1.864 1.774 1.820

�(1600)P33
3
2

3
2 {n, n}n 10 56 1 1.550 − 1.700 1.658 1.730 1.658

(b)

�(1189)P11
1
2

1
2 [n, s]n + {n, s}n (?) 8 56 0 1.189 ± 0.005 – 1.238 –

�(1116)P01
1
2

1
2 [n, n]s (?) 8 56 0 1.116 ± 0.005 1.103 – –

�(1116)P01
1
2

1
2 [n, n]s + {n, s}n (?) 8 56 0 1.116 ± 0.005 – 1.202 –

�(1318)P11
1
2

1
2 [n, s]s + {s, s}n (?) 8 56 0 1.315 ± 0.005 – 1.393 –

�(1385)P13
3
2

3
2 {n, n}s (?) 10 56 0 1.383 ± 0.005 1.395 1.419 –

�(1530)P13
3
2

3
2 {s, s}n (?) 10 56 0 1.532 ± 0.005 1.531 1.496 –

�(1600)P01
1
2

1
2 [n, n]s (?) 8 56 1 1.560 − 1.700 1.567 1.637 1.580

aThe datum is taken from Ref. [16].

where

M3q = 3Mn + Ns�Ms,

Iq · Idiq = I (I + 1) − 3/4(1 − Ns) − Idiq(Idiq + 1)

2
,

∑
i<j

c′Si · Sj

MiMj

∼= 1

M2
n

(
1 − 2

3
Ns

�Ms

Mn

)
c′

2

(
S(S + 1) − 9

4

)
,

∑
i<j

g′Fi · Fj

MiMj

∼= 1

M2
n

(
1 − 2

3
Ns

�Ms

Mn

)
g′

2
(C2(SU (3)f ) − 4),

�1 = −0.57 GeV2, Mn = 0.3331 GeV, Mq , Mdiq, and all the
other terms are the same as defined above.

VI. QUANTUM NUMBERS

In order to use the mass formulas [Eqs. (7) and (8)] it is
necessary to assign to every baryon its quantum numbers,
in particular those, like L and S, not determined by the
experiments. For this purpose, we consider only well-known
baryons, namely the three- and four-star baryons. We classify
the light baryons by following three guidelines. First of all,
we must obviously respect the quantum numbers that can be
measured experimentally (like J , P , etc.). Secondly, we must
respect the constraint related to the diquark spin-flavor states:

[21] ⊗ [6] = ([3̄, 0] ⊕ [6, 1]) ⊗ [
3, 1

2

]
= ([

1, 1
2

] ⊕ [
8, 1

2

]) ⊕ ([
8, 3

2

] ⊕ [
8, 1

2

]
⊕[

10, 3
2

] ⊕ [
10, 1

2

])
. (9)
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TABLE V. Same as Table IV, but for baryons with LP = 1−. All the masses are in GeV.

Resonances J S composition SU (3)f SU (6)sf ν M(exp) M(pure) M(mixed) M(hybrid)

(a)
N (1535)S11

1
2

1
2 [n, n]n 8 70 0 1.525 − 1.545 1.533 1.516 1.520

N (1520)D13
3
2

1
2 [n, n]n 8 70 0 1.515 − 1.525 1.535 1.517 1.520

�(1670)D13
3
2

1
2 [n, s]n 8 70 0 1.665 − 1.685 1.684 1.699 1.698

�(1820)D13
3
2

1
2 [n, s]s 8 70 0 1.818 − 1.828 1.773 1.819 1.819

N (1650)S11
1
2

3
2 {n, n}n 8 70 0 1.645 − 1.670 1.676 1.675 1.676

�(1800)S01
1
2

3
2 {n, s}n 8 70 0 1.720 − 1.850 1.828 1.819 1.820

N (1700)D13
3
2

3
2 {n, n}n 8 70 0 1.650 − 1.750 1.677 1.676 1.676

N (1675)D15
5
2

3
2 {n, n}n 8 70 0 1.670 − 1.680 1.679 1.677 1.676

�(1830)D05
5
2

3
2 {n, s}n 8 70 0 1.810 − 1.830 1.831 1.821 1.820

�(1620)S31
1
2

1
2 {n, n}n 10 70 0 1.600 − 1.660 1.784 1.661 1.680

�(1700)D33
3
2

1
2 {n, n}n 10 70 0 1.670 − 1.750 1.785 1.662 1.680

(b)

�(1405)S01
1
2

1
2 [n, n]s (?) 1 70 0 1.402 − 1.410 1.563 1.566 1.380

�(1520)D03
3
2

1
2 [n, n]s + [n, s]n (?) 1 70 0 1.520 ± 0.005 1.606 1.604 1.505

�(1670)S01
1
2

1
2 [n, n]s + [n, s]n (?) 8 70 0 1.660 − 1.680 1.652 1.659 1.699

�(1690)D03
3
2

1
2 [n, n]s + [n, s]n (?) 8 70 0 1.685 − 1.695 1.654 1.660 1.699

�(1750)S11
1
2

1
2 {n, s}n (?) 8 70 0 1.730 − 1.800 1.883 1.759 1.714

�(1940)D13
3
2

3
2 {n, s}n (?) 8 70 0 1.900 − 1.950 1.818 1.818 1.714

�(1775)D15
5
2

3
2 {n, s}n (?) 8 70 0 1.770 − 1.780 1.820 1.819 1.714

As we can be seen, only the baryons in a flavor octet and
spin 1

2 can be made up of either the scalar or the axial-vector
diquark, while the baryons in a flavor singlet can be composed

of only scalar diquarks, and those in a flavor decuplet
of only axial-vector diquarks. Finally, the spin-flavor-space
part must be symmetric. As we have seen in Sec. III, the

TABLE VI. Same as Table IV, but for baryons with LP = 2+. All the masses are in GeV.

Resonances J S composition SU (3)f SU (6)sf ν M(exp) M(pure) M(mixed) M(hybrid)

(a)

N (1720)P13
3
2

1
2 [n, n]n 8 56 0 1.700 − 1.750 1.700 1.689 1.693

N (1680)F15
5
2

1
2 [n, n]n 8 56 0 1.680 − 1.690 1.702 1.690 1.693

�(1915)F15
5
2

1
2 [n, s]n 8 56 0 1.900 − 1.935 1.859 1.884 1.893

�(2110)F05
5
2

3
2 {n, s}n 8 56 0 2.090 − 2.140 2.008 2.006 2.015

�(1910)P31
1
2

3
2 {n, n}n 10 56 0 1.870 − 1.920 1.881 1.911 1.870

�(2250) 1
2 (?) 3

2 {s, s}s 10 56 0 2.243 − 2.261 2.196 2.224 2.252

�(1920)P33
3
2

3
2 {n, n}n 10 56 0 1.900 − 1.970 1.882 1.912 1.870

�(1905)F35
5
2

3
2 {n, n}n 10 56 0 1.865 − 1.915 1.884 1.912 1.870

�(1950)F37
7
2

3
2 {n, n}n 10 56 0 1.915 − 1.950 1.885 1.913 1.870

(b)

�(1890)P03
3
2

1
2 [n, n]s + [n, s]n (?) 8 56 0 1.850 − 1.910 1.837 1.858 1.898

�(1820)F05
5
2

1
2 [n, n]s (?) 8 56 0 1.815 − 1.825 1.805 1.830 1.802

�(1880)P11
1
2

3
2 {n, n}s (?) 8 56 0 1.880 1.963 2.004 1.894

N (2000)F15
5
2

3
2 {n, n}n 8 56 0 1817.7a 1.858 1.862 1.866

�(2080)P13
3
2

3
2 {n, s}n (?) 10 56 0 2.080 2.031 2.047 2.064

�(2070)F15
5
2

3
2 {n, s}n (?) 10 56 0 2.070 2.032 2.048 2.064

�(2030)F17
7
2

3
2 {n, s}n (?) 10 56 0 2.025 − 2.040 2.034 2.049 2.064

aThe datum is taken from Ref. [17].
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FIG. 2. (Color online) Hybrid model. Comparison between
experimental data and theoretical results for nonstrange baryon
resonances. The pink boxes with dashed edges and the green ones with
dotted edges are the nucleons and the � states, respectively; the black
lines are the corresponding predicted masses from the mass formula
Eq. (8), corresponding to the “hybrid” model (i.e., three quarks for
the ground states and quark-diquark for the excited states). For the �

resonance with J P = 5/2− [i.e., the �(1930)D35] we used the latest
value of the mass from Ref. [17], instead of the very different PDG
estimate.

consequence is that we must respect the sequence of states
([56], 0+), ([70], 1−), ([56], 2+), . . ., where

[56] = [
10, 3

2

] ⊕ [
8, 1

2

]
[70] = [

10, 1
2

] ⊕ [
8, 1

2 ] ⊕ [
8, 3

2

] ⊕ [
1, 1

2

]
.

This means, for example, that we cannot have a flavor singlet
with L = 0.
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FIG. 3. (Color online) Hybrid model. Comparison between ex-
perimental data and theoretical results for strange baryon resonances.
The �’s, �’s, �’s, and � resonances are represented, respectively,
by pink boxes with dashed edges, green boxes with dotted edges,
light blue boxes with dash-dotted edges, and yellow boxes with solid
edges; the solid black lines are the resonances calculated with the
mass formula Eq. (8), corresponding to the “hybrid” model.
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FIG. 4. (Color online) “Pure” model. Comparison between exper-
imental data and theoretical results for nonstrange baryon resonances.
Same as Fig. 2, using the mass formula Eq. (7), corresponding
to the “pure” model (i.e., quark-diquark states with no diquark
superposition).

In Table II we report a general classification, valid for
all quantum numbers, of the baryon multiplets in the quark-
diquark scheme, while in Table III we assign the known light
baryons to each multiplet. The missing and the not allowed
states are reported in the table. These tables are in part based
on the analogous tables compiled by Bijker, Iachello, and
Leviatan [24] and the Particle Data Group [1] for a three-quark
model, and Selem and Wilczek [27] for a quark-diquark model.

It is important to underline that we lack a sure criterion for
assigning the diquark content to the baryons (i.e., we cannot
say whether a particular baryon should be made up of a scalar,
an axial-vector or even a mix of the two diquarks). We found
only two sure elements on which the choice can be based:
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FIG. 5. (Color online) “Pure” model. Comparison between ex-
perimental data and theoretical results for strange baryon resonances.
Same as Fig. 3, using the mass formula Eq. (7), corresponding to the
“pure” model.
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FIG. 6. (Color online) “Mixed” model. Comparison between
experimental data and theoretical results for nonstrange baryon
resonances. Same as Fig. 2 using the mass formula Eq. (7),
corresponding to the “mixed” model (i.e., quark-diquark states with
diquark superposition for the ground states).

(i) Isospin and strangeness:
We must remember that every baryon family has a
definite isospin and strangeness: N has isospin I = 1

2
and strangeness S = 0; � has I = 3

2 and S = 0; �

has I = 0 and S = −1; � has I = 1 and S = −1; �

has I = 1
2 and S = −2; � has I = 0 and S = −3.

Thus, we must combine the diquark and the quark to
reproduce the isospin and strangeness of the baryon.
But we can easily see that [n, n] has I = 0 and S = 0,
[n, s] has I = 1

2 and S = −1, {n, n} has I = 1 and
S = 0, {n, s} has I = 1

2 and S = −1 and {s, s} has
I = 0 and S = −2. On combining the quark and the
diquark together, we find the possible diquark content.
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FIG. 7. (Color online) “Mixed” model. Comparison between ex-
perimental data and theoretical results for strange baryon resonances.
Same as Fig. 3, using the mass formula Eq. (7), corresponding to the
“mixed” model.
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FIG. 8. (Color online) Graph of the N (939) (red dashed line) and
the �(1232) (blue dotted line) theoretical Regge trajectories, from
Eq. (8), compared with the experimental data.

N can be either [n, n]n or {n, n}n; � can be only
{n, n}n; � can be [n, n]s or [n, s]n if they are in a
flavor singlet, otherwise they can be [n, n]s, [n, s]n or
{n, s}n if they belong to a flavor octet; � can be [n, s]n;
{n, n}s or {n, s}n; � can be [n, s]s; {n, s}s or {s, s}n,
and finally � can be only {s, s}s.

(ii) Diquark masses:
According to all the previous studies on the diquarks
(as for example Refs. [5,6,9]), we can say that the axial-
vector diquark should be heavier than the scalar one.
Thus, if we have two baryons with similar quantum
numbers but different masses, we will assign the axial-
vector diquark to the heavier one.

In this first attempt, we have chosen to assign an analogous
diquark content to all the baryons that are part of the same
flavor multiplet (i.e., if, for example, we establish that a baryon
should have a scalar diquark, then all the other baryons of the
same multiplet will have a scalar diquark). In this way, we think
that all the mass differences inside a baryon multiplet should be
attributed to the different strangeness of the various baryons.

We now determine the parameters of the two mass formulas
[Eqs. (7) and (8)] through a fit. We have excluded from the fit
the states for which their diquark content cannot be determined
by applying the criterion described in Sec. VI. These states
have a question mark next to their diquark content in
Tables IV–VI. The results of the fit for the parameters are
reported in Table VII and the predicted states are confronted
to the experimental data in Figs. 2–7. In Fig. 8 a graph of two
Regge trajectories is given.

VII. CRITICAL DISCUSSION OF THE RESULTS

We have constructed a complete classification of the quark-
diquark states that is general and does not depend on the
particular form chosen for the dynamical interaction. Thus, it
may also be useful for other model builders. Since we underline
the differences from the three-quark case and the signatures in
favor or against one or the other model, this work could also
be useful to experimentalists. The construction of the quark-
diquark states is done by using only group theory techniques; it
is therefore evident that the quark-diquark states are a subset of
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TABLE VII. Parameters resulting from the fit for the “pure” and “mixed” models, both represented by Eq. (7), and
the “hybrid” model [Eq. (8)].

Parameter “pure” “mixed” “hybrid”

M[n,n] 0.956 ± 0.005 GeV 0.898 ± 0.013 GeV 0.852 ± 0.040 GeV
�Ms 0.107 ± 0.015 GeV 0.156 ± 0.021 GeV 0.128 ± 0.003 GeV
�M[n,s] 0.197 ± 0.010 GeV 0.238 ± 0.023 GeV 0.288 ± 0.014 GeV
�M{n,n} 0.250 ± 0.010 GeV 0.228 ± 0.023 GeV 0.224 ± 0.010 GeV
�M{n,s} 0.409 ± 0.013 GeV 0.397 ± 0.004 GeV 0.436 ± 0.022 GeV
�M{s,s} 0.472 ± 0.007 GeV 0.453 ± 0.004 GeV 0.520 ± 0.050 GeV
b 1.016 ± 0.016 GeV2 1.073 ± 0.017 GeV2 1.13 ± 0.07 GeV2

c −0.075 ± 0.011 GeV4 0.060 ± 0.013 GeV4 0 GeV4

d 0.005 ± 0.015 GeV2 0.003 ± 0.016 GeV2 0 GeV2

e −0.021 ± 0.012 GeV2 −0.004 ± 0.04 GeV2 −0.16 ± 0.04 GeV4

n 1.24 ± 0.05 GeV2 1.48 ± 0.05 GeV2 1.50 ± 0.13 GeV2

g 0.043 ± 0.011 GeV4 0.051 ± 0.029 GeV4 0.16 ± 0.04 GeV4

h −0.102 ± 0.003 GeV4 −0.105 ± 0.003 GeV4 −0.108 ± 0.009 GeV4

c′ – – 0.291 ± 0.020 GeV4

g′ – – −0.316 ± 0.025 GeV4

e′ – – 0.079 ± 0.008 GeV2

d ′ – – 0.75 ± 0.05 GeV2

the three-quark ones. We have developed three models based
on the quark-diquark degrees of freedom. In the first, which
we have called the “pure” model, all the baryons are in the
quark-diquark configuration and each baryon has a definite
type of diquark (scalar or axial-vector). The second, called the
“mixed” diquark model, is a variation of the first; in the mixed
model, the ground state octet is regarded as a superposition of
the scalar and axial-vector types of diquark with equal weight.
For the excited states, one type of diquark becomes dominant
as a “confinement” effect and there is no longer, as a first
approximation, superposition. In the third model, called the
“hybrid” model, the baryons in the ground state, i.e., with no
spatial excitations, have a standard three-quark structure, while
the quark-diquark configuration is applied only to the excited
states. The three-quark algebraic model by Bijker, Iachello,
and Leviatan [24] works well in calculating both the masses
and the decay amplitudes for the ground states. However, it
predicts too many excited states. While our “hybrid” model
shares the good characteristics of the three-quark scheme for
the ground states, it avoids the downside of the too many
excited resonances by introducing the diquark degree of free-
dom. In the case of the “hybrid” model, it should be possible
to find a signature of a string-like structure for the excited
resonances and a three-dimensional structure for the ground
states in particular from the study of their electromagnetic
transition form factors, to be compared with the experimental
data by Jefferson Lab (JLab), Mainzer Mikrotron (MAMI), etc.

The “pure”, “mixed”, and “hybrid” models exhaust all the
current possibilities in the framework of the constituent quark-
diquark baryons, apart from the case already investigated in
Ref. [13]. A future development could be to introduce the
superposition of the two types of diquark for all the resonances.
However, this will become possible only when a model is
developed in which the weights of the diquark superposition
for each baryon can be calculated theoretically or can be
related unambiguously to experimental data, such as decay

rates, etc. The baryon spectrum resulting from each model has
been calculated through the use of an algebraic mass formula.
Actually, the first two models were able to be described by the
same mass formula, while the third one needed the introduction
of a modified version. All these mass formulas can be regarded
as generalizations of the Gürsey-Radicati mass formula, but
they offer the advantage that the diquark mass differences are
parameters that can be extracted from the phenomenology and
compared with other diquark calculations. In a subsequent
paper we will discuss in detail the link between them.

The principal feature of all quark-diquark models is the
drastic reduction in the number of baryonic states. Indeed,
while all the well-established baryon resonances, i.e., the
ones labeled with three and four stars in Ref. [1], still fit
well in our scheme, we have far fewer missing states than a
normal three-quark constituent model. Some of the remaining
missing states can be ascribed to one- or two-star resonances.
For example the states �(1620)S11, �(1770)P11, �(1840)P13,
�(2080)P13, and �(2070)F15 fit quite well in the multiplets
of the well-known N (1535)S11, N (1710)P11, N (1720)P13,
�(1920)P33, and �(1905)F35, respectively. Other resonances
that, if confirmed, could be inserted easily in our scheme are
N (1890) [18] [also called N (2000)F15 in the PDG] which can
be placed in the same multiplet of �(2110)F05, N (1880) can be
identified with the state with quantum numbers JP = 1/2+,
L = 0, and ν = 2 for which we predict with the “hybrid”
model a mass of 1.903 GeV, and N (1900)P13 to whom we
assign quantum numbers JP = 3/2+, L = 2, and ν = 0 and
predict a mass of 1.866 GeV. On the other hand there are some
resonances that fit less than ideally in our scheme. �(1690)
(with unknown JP quantum numbers) is best included in the
multiplet of N (1440)P11 with a predicted mass of 1.807 GeV.
�(1900)S31 and �(1940)D33 are two resonances that we can
assign L = 1 and ν = 1 quantum numbers and predict a mass
around 2.080 GeV. However the latest George Washington
University (GWU) analysis [17] finds no evidence for these
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resonances. Thus we suggest to look for them at higher ener-
gies. �(1750)P31 is redundant in our quark-diquark scheme
but, again, the existence of this resonance is very doubtful
and has not been confirmed by the latest analysis [17]. Finally
we assign L = 0 and ν = 2 quantum numbers to the two-star
�(1880)P11 resonance and we calculate a mass around 2 GeV.
With our model we can as well investigate the higher spin
resonances. This can be done more easily with the non-strange
baryons, in particular the �s, since there are less doubts in their
attribution to the right multiplets. The resonances N (2220)H19

and �(2420)H3,11 are well established. Our assignments are
L = 4, ν = 0 and S = 1/2 for the former and L = 4, ν = 0,
and S = 3/2 for the latter, and the predicted masses are,
respectively, 2.262 and 2.534 GeV. �(2750)I3,13, �(2390)F37,
�(2300)H39, and �(2350)D35 are one- or two-star resonances
which have not been seen by the latest analysis of Ref. [17]. The
most probable quantum numbers in our scheme are L = 7, ν =
0, and S = 1/2 for �(2750)I3,13; L = 4, ν = 0, and S = 3/2
for �(2390)F37; L = 4, ν = 0, and S = 3/2 for �(2300)H39

and L = 3, ν = 1, and S = 1/2 for �(2350)D35. With these
quantum numbers the resulting masses are, respectively, 3.095,
2.490, 2.490, and 2.565 GeV, somewhat higher than the
experimental measurements. Since these measures are very
old, we urge new experiments and data analysis to confirm the
existence of the resonances and to determine precisely their
masses. Finally we have the two-star resonances �(2950)K3,15

(L = 6, ν = 0, and S = 3/2 our assignment) and �(2400)G39

(L = 5, ν = 0, and S = 1/2), for which we predict masses
around 2.907 and 2.706 GeV, respectively. �(2400)G39 has
been seen in Ref. [17] with a mass of 2.643 ± 0.141 GeV.

All these states, together with the missing ones with no
known correspondences as yet, should be further investigated,
both theoretically and experimentally, since they are surely
the missing part of the puzzle. The search for these resonances
should be one of the main focuses of the baryon programs
at JLab, the Beijing Spectrometer (BES), the Electron
Stretcher and Accelerator (ELSA) facility (the Crystal Barrel
collaboration), and the Two Arms Photon Spectrometer
(TAPS). It should also be mentioned the big effort for the
extraction of the resonances in analysis project like EBAC,
Jülich, SAID, MAID, etc.

We have managed to describe the spectrum reasonably well
by means of both the mass formulas used, and particularly well
with the “hybrid” model. The resulting orbital and vibrational
Regge trajectory slopes, α(pure) = b + d = 1.021 GeV2,
n(pure) = 1.24 GeV2, α(mixed) = b + d = 1.075 GeV2,
n(mixed) = 1.48 GeV2, α(hybrid) = b = 1.13 GeV2, and
n(hybrid) = 1.50 GeV2 for the “pure”, “mixed”, and “hybrid”
models, respectively, agree quite well with the theoretical
expectations (αtheo = 1.15 GeV2 and ntheo = 1.36 GeV2) in
a string model [10,11,21,32,33]. We note that the values
of the baryon Regge trajectories slopes found in this work
are compatible with the corresponding values found for the
mesons in Refs. [10,11,21]. This can be due to a fundamental
baryon-meson supersymmetry.

Important parameters of constituent models are the mass
differences between the constituents, rather than the absolute
masses of the constituents, largely dependent on the model
used. These mass differences tend to be more stable and
can be compared with results yielded by both constituent
and other models, such as QCD-inspired and lattice ones.
In each model, our values of the mass difference between
the strange and the nonstrange quark �Ms are compatible
with the estimates of the constituent quark models and
with the PDG value for the current quark mass difference
[1]. The difference �M{n,n} = M{n,n} − M[n,n], as well as
the mass differences between [n, s] and [n, n], between
{n, s} and {n, n} and between {n, s} and [n, s], have been
compared with the predictions made through the other
main models for the constituent diquark (see Table VIII).
We find that all the mass differences lie in the same range
of values as in the other studies.

We have managed to obtain a sufficiently satisfactory
description of the baryon spectrum by means of two very
simple mass formulas, based essentially on only three ele-
ments: the constituent quark-diquark structure of the baryons,
the Regge trajectories and a generalized Gürsey-Radicati–
like form of the mass formulas. Thus, we can conclude
that these elements should be the basis of future, more
advanced investigations. We do not have elements which
indicate a definite preference for one of the models used
in this work over the other, as these can come only from

TABLE VIII. Mass differences (in GeV) between scalar and axial-vector diquarks according to some important studies, compared with the
results obtained in the present study.

M[n,n] M{n,n} − M[n,n] M[n,s] − M[n,n] M{n,s} − M[n,s] M{n,s} − M{n,n} M{s,s} − M{n,s} Source

0.688 0.202 0.272 – – – Maris [28,29]
– 0.29 – 0.11 – – Wilczek [6]
– 0.210 – 0.150 – – Jaffe [5]

0.595 0.205 0.240 0.140 0.175 – Lichtenberg [30]
0.74 0.21 0.14 0.17 0.10 0.08 Hecht et al. [8]
0.78 0.28 – – – – Roberts et al. [12]
0.60 0.35 – – – – Ferretti et al. [31]
0.50 0.30 – – – – Santopinto [13]

– 0.183 0.218 0.176 0.211 – Chakrabarti [26]
0.956 0.250 0.197 0.212 0.159 0.063 “pure” model
0.898 0.228 0.238 0.159 0.169 0.056 “mixed” model
0.852 0.224 0.288 0.148 0.212 0.084 “hybrid” model
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new experimental data or new theoretical insights about
the internal structure of the baryons. However, the “hybrid”
model has the very good characteristic of being able to exploit
the advantages of the three-quark model, which has seen
several decades of success, in the description of the ground
states, while making up for its defects by introducing the
dominance of the quark-diquark features for the excited states.
The “mixed” model, while displaying only quark-diquark

degrees of freedom, is also able to work in a similar
way.
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