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Nonlinearities in the harmonic spectrum of heavy ion collisions
with ideal and viscous hydrodynamics
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We determine the nonlinear hydrodynamic response to geometrical fluctuations in heavy ion collisions using
ideal and viscous hydrodynamics. This response is characterized with a set of nonlinear response coefficients
that determine, for example, the v5 that is produced by an ε2 and an ε3. We analyze how viscosity damps both
the linear and nonlinear response coefficients, and provide an analytical estimate that qualitatively explains most
of the trends observed in more complete simulations. Subsequently, we use these nonlinear response coefficients
to determine the linear and nonlinear contributions to v1, v4, and v5. For viscous hydrodynamics the nonlinear
contribution is dominant for v4, v5, and higher harmonics. For v1, the nonlinear response constitutes an important
∼25% correction in midcentral collisions. The nonlinear response is also analyzed as a function of transverse
momentum for v1, v4, and v5. Finally, recent measurements of correlations between event planes of different
harmonic orders are discussed in the context of nonlinear response.
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I. INTRODUCTION

The goal of the BNL Relativistic Heavy Ion Collider
(RHIC) and the CERN Large Hadron Collider (LHC) heavy
ion programs is to produce and to characterize the quark
gluon plasma (QGP), a prototype for non-Abelian plasmas.
One of the best ways to understand the transport properties
of the experimentally produced plasma is through anisotropic
flow [1–3]. In a heavy ion collision the nuclei pass through
each other, and the resulting energy density in the transverse
plane fluctuates in coordinate space from event to event. If
the mean free path is short compared to the system size,
the produced plasma will respond as a fluid to the pressure
gradients and convert these coordinate space fluctuations
to long range momentum space correlations between the
produced particles. In the last two years it was gradually
realized [4–6] that all of the long range momentum-space
correlations known colloquially as the “ridge” and “the Mach
cone” are manifestations of this collective flow [7,8]. This
realization gave rise to a large variety of flow observables
which provide an unprecedented experimental check of the
overall correctness of the hydrodynamic picture of heavy ion
events [7,9–11]. Further, different observables have different
sensitivity to the shear viscosity of the plasma [12], and
therefore a global analysis of flow can provide cross-correlated
constraints on η/s.

One of the most direct measurements is the harmonic
spectrum of the produced particles. The final state momentum
spectrum for each event can be expanded in harmonics

dN

dφ p
= N

2π

(
1 + 2

∞∑
n=1

vn cos(nφ p − n�n)

)
, (1.1)
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where φ p is the azimuthal angle of the produced particles
and �n is the event plane angle.1 The averaged square of
these harmonics, i.e., 〈〈v2

n〉〉, can be measured experimentally
by studying two particle correlations [1]. There is strong
experimental and theoretical evidence that the harmonic
coefficients, v2 and v3, are to a good approximation linearly
proportional to the deformations in the initial energy den-
sity in the transverse plane. For example, the experimental
ratio 〈〈v2

3〉〉/〈〈v2
2〉〉 closely follows the geometric deformations

〈〈ε2
3〉〉/〈〈ε2

2〉〉 as a function of centrality [7]. Event-by-event
simulations with ideal hydrodynamics reproduce this trend,
and show that the event plane angles �2 and �3 are strongly
correlated with the angles of the initial deformations [13].

However, in an insightful paper Gardim et al. [14] studied
the correlation between higher harmonics, v4 and v5, and
the initial spatial deformations within ideal hydrodynamics.
This work explained and quantified the extent to which the
higher harmonics such as v4 and v5 arise predominantly from
the nonlinearities of the medium response. For example, for
midcentral collisions the observed v5 is predominantly a result
of the interactions between v2 and v3. This work was motivated
in part by previous event-by-event simulations by Heinz and
Qiu [13] which showed that �4 and �5 are uncorrelated with
the fourth and fifth harmonics of the spatial deformation.
Based on the centrality dependence of this decorrelation, these
authors anticipated (but did not quantify) the importance of
v2-v3 mode-mixing in determining v5.

The goal of this work is to systematically characterize the
nonlinear response of the medium. First, in Sec. II we introduce
a set of nonlinear response coefficients, and describe how these
coefficients can be used in conjunction with a Glauber model
to determine 〈〈v2

n〉〉. The strongest nonlinear response stems
from the interactions between v2 and the other harmonics, and
consequently a prominent response coefficient is w5(23)/ε2ε3,

1Following tradition, we have expanded the particle distribution in
terms of cosines and phases �n rather than cosines and sines.
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which determines the v5 produced by an elliptic and triangular
deformation. In Sec. III B we determine these response
coefficients using both ideal and viscous hydrodynamics, and
study how the response depends on the shear viscosity. With
these nonlinear coefficients, together with the linear response,
we make several predictions for v1, v4, and v5 in ideal and
viscous hydrodynamics in Sec. IV. Finally, in Sec. IV we also
study the transverse momentum dependence of v1, v4, and v5.

In this work we will determine the harmonic spectrum
by characterizing the quadratic response of the system to
small deformations. Alternatively, one could simply run
hydrodynamics event-by-event and compute the averages that
are needed to compare to experiment [13,15–19]. While event-
by-event hydrodynamics is the best for this pragmatic purpose,
the framework of nonlinear response can yield valuable insight
into the physics of these rather involved simulations.

II. NONLINEAR RESPONSE

A. The cumulant expansion

In hydrodynamic simulations of heavy ion collisions the
medium is first modeled with an initial state model, then
the medium is evolved with hydrodynamics, and finally the
particle spectrum is computed by making kinetic assumptions
about the fluid. The final state particle spectrum for each event
can be expanded in harmonics

dN

dφ p
= N

2π

(
1 +

∞∑
n=1

vne
in(φp−�n) + c.c.

)
, (2.1)

where here and below c.c. denotes complex conjugation. The
root mean squares of vn are easily determined experimentally,
and are given a special notation

vn{2} ≡
√

〈〈v2
n〉〉 , (2.2)

where 〈〈. . .〉〉 denotes the average over events.
In the next sections we will describe how the momentum

space response is related to the initial state geometry. To this
end, the spatial distribution of the initial entropy density in the
transverse plane,

ρ(x) ≡ τ0s(x)∫
d2x τ0s(x)

, (2.3)

is quantified with a cumulant expansion [9], where x =
(x, y) = (r cos φ, r sin φ) are the coordinates in the transverse
plane and τo is the initial Björken time [20]. Specifically the
n,m-th moment of the entropy distribution is defined as

ρn,m ≡
∫

d2x ρ(x) (r2)(n−m)/2rmeimφ , (2.4)

where (n − m)/2 is a non-negative integer. This moment is
closely related to the n,m-th cumulant Wn,m

Wn,m ∝ ρn,m − contractions. (2.5)

The meaning of Eq. (2.5) will be clarified through examples,
with additional details about the cumulant expansion relegated
to the literature [9,21]. The radial variation of ρ(x) is quantified
by the radial cumulants, 〈r2〉 and 〈r4〉 − 2〈r2〉2, while the the

azimuthal variation of ρ(x) is quantified by the azimuthal
cumulants

ε1e
i	1 = −〈r3eiφ〉

〈r3〉 , (2.6)

ε2e
i2	2 = −〈r2ei2φ〉

〈r2〉 , (2.7)

ε3e
i3	3 = −〈r3ei3φ〉

〈r3〉 . (2.8)

Here 〈. . .〉 denote an average over ρ(x) for a single event,
and 	1, 	2, and 	3 are the participant plane angles. These
coordinate space angles are distinct from the momentum space
angles �1, �2, and �3.

For the lowest harmonics the azimuthal cumulants and the
azimuthal moments coincide, and these definitions will appear
obvious to most readers. For the fourth harmonic and higher,
we will depart from traditional moment based definition,
and quantify the deformations with cumulants rather than
moments2

C4e
i4	4 ≡ − 1

〈r4〉 [〈r4ei4φ〉 − 3〈r2ei2φ〉2] . (2.9)

The motivation for this definition can be seen by studying an
elliptic Gaussian distribution,

ρ(x) = 1

2πσxσy

e
− x2

2σ2
x

− y2

2σ2
y , (2.10)

which has C4 = 0, although ε4 is nonzero and is of order ε2
2 .

Similarly we define

C5e
i5	5 ≡ − 1

〈r5〉 [〈r5ei5φ〉 − 10〈r2ei2φ〉〈r3ei3φ〉] (2.11)

and remark that a Gaussian distribution deformed by an ε3,

s(x, τ ) ∝
[

1 + 〈r3〉ε3

24

( (
∂

∂x

)3

− 3

(
∂

∂y

)2
∂

∂x

)]
e
− x2

2σ2
x

− y2

2σ2
y ,

(2.12)

has C5 = 0, although 〈r5ei5φs 〉 is nonzero and of order ε2ε3.
We will characterize the hydrodynamic response to the

cumulants defined above in the next section.

B. Nonlinear response to the cumulants

We expect the response of the system to be dominated
by the lowest cumulants. Motivated by Fourier analysis [9],
we replace the general distribution ρ(x) with a Gaussian,
Eq. (2.10), whose second moments have been adjusted to
reproduce 〈r2〉 = σ 2

x + σ 2
y and ε2 = (σ 2

y − σ 2
x )/(σ 2

x + σ 2
y ). In

Ref. [9] we showed that a Gaussian + forth order cumulants
reproduces the results of smooth Glauber initial conditions in
detail. If a Gaussian with a non-negligible ε2 is simulated, the

2For n � 4 we notate the cumulant based eccentricity by Cn to
differentiate this quantity from the moment based eccentricity εn. Cn

is equal to Wn,n up to normalization and an overall factor of 〈rn〉.
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particle spectrum produced by this background contains all
even harmonics

dN

dφ p
= N

2π
(1 + w2e

i2(φ p−	2) + w4(22)e
i4(φ p−	2)+ · · · + c.c.).

(2.13)

For small ε2 the response coefficient w2 describes the linear
response to the deformation and is proportional to ε2, while
w4(22) describes the nonlinear response and is proportional
to ε2

2 . Below, we will assume that ε2 is small enough that
this scaling with ε2 applies. Further, we have truncated the
expansion in Eq. (2.13) at quadratic order in ε2, and will
continue to do this implicitly from now on. The working
assumption in this paper is that the most important nonlinearity
stems from the almond shape of the background.

If the Gaussian distribution is perturbed by a small fourth-
order cumulant C4e

i4	4 , then the resulting particle spectra will
be described by

dN

dφ p
= N

2π
(1 + w2e

i2(φ p−	2) + w4e
i4(φ p−	4)

+w4(22)e
i4(φ p−	2) + c.c.) , (2.14)

where w4 captures the linear response to the fourth-order
cumulant and is proportional to C4 for small C4. In writing
Eq. (2.14) we have neglected terms proportional to C4ε2, which
can contribute to v2 and reduce the perfect correlation between
�2 and 	2. Comparing Eq. (2.14) with the definition of v4,
Eq. (2.1), we see that v4 is determined by the linear and
quadratic response

v4e
−i4�4 = w4e

−i4	4 + w4(22)e
−i4	2 . (2.15)

Squaring this result and averaging over events we see that

v4{2} ≡ 〈〈v2
4〉〉1/2 = 〈〈|w4e

−i4	4 + w4(22)e
−i4	2 |2〉〉1/2 .

(2.16)

In writing Eq. (2.14) we have neglected the nonlinear contri-
butions of ε1 and ε3 to v4 since v3 and v1 are small compared
to v2 for midperipheral collisions.

Similarly, if the Gaussian background distribution is per-
turbed by a third order cumulant and a fifth-order cumulant
C5, then v5 is determined by a combination of the linear
and nonlinear response. The response to C5 is small [12],
and therefore we will neglect the nonlinearities due to ε2C5,
but we will keep the nonlinearities due to ε2ε3. With this
approximation scheme the particle spectrum through quadratic
order reads

dN

dφ p
= N

2π
(1 + w3e

i3(φ p−	3) + w5e
i5(φ p−	5)

+ w1(23)e
iφ p−3	3+2	2 + w5(23)e

i5φ p−3	3−2	2

+ even harmonics + c.c) . (2.17)

Comparing this equation to the definition of v5, we see that

v5{2} = 〈〈|w5e
−i5	5 + w5(23)e

−i(3	3+2	2)|2〉〉1/2 , (2.18)

which is clearly analogous with v4 case. Finally, if the
distribution has a net dipole asymmetry ε1, then v1 is given

a combination of the linear and nonlinear response

v1{2} = 〈〈|w1e
−i	1 + w1(23)e

−i(3	3−2	2)|2〉〉1/2 , (2.19)

where w1 notates the linear response to ε1. In writing this result
for v1 we have neglected the nonlinear interaction between v1

and v2, i.e., w1(21). Thus Eq. (2.19) makes the simplifying
assumption that v1 is small compared to v3, while a more
complete treatment would include a w1(21) contribution.

Let us discuss how this formalism can be used to study the
pT dependence of the flow. The particle spectra is expanded
in harmonics

dN

dpT dφ p
≡ dN

dpT

(
1 +

∞∑
n=1

vn(pT )ein(φ p−�n(pT )) + c.c.

)
,

(2.20)

where the phase, �n(pT ), is in general a function of pT . Then
vn(pT ){2} in the �n plane is normally defined as

vn(pT ){2} ≡
{ 〈〈vn(pT )vn cos(n(�n(pT )−�n))〉〉

vn{2} n > 1

−〈〈v1(pT )v1 cos(�1(pT )−�1)〉〉
v1{2} n = 1

, (2.21)

where we have inserted an extra minus sign for v1(pT ), since
the integrated v1 is negative. The phase angle �n(pT ) is often
assumed to equal �n. Using the formalism outlined above we
write v1(pT ) as a sum of the linear and nonlinear response

v1(pT )e−i�1(pT ) = w1(pT )e−i	1 + w1(23)(pT )e−i3	3+i2	2 .

(2.22)

Then the numerator of v1(pT ){2} is given by

〈〈v1(pT )v1 cos(�1(pT ) − �1)〉〉
= 〈〈w1(pT )w1 + w1(23)(pT )w1(23) + [w1(pT )w1(23)

+w1(23)(pT )w1] cos(	1 − 3	3 + 2	2)〉〉 , (2.23)

and the denominator is given by the integrated expression for
v1{2}, Eq. (2.19). Similar expressions follow for v4(pT ) and
v5(pT ).

Finally, let us place some older measurements and calcula-
tions of v4(pT ) into context [22–28]. Traditionally, what was
referred to as v4(pT ) would today be called v4(pT ) in the �2

plane:

v4(22)(pT ){2} ≡ 〈〈v4(pT )v2 cos(4�4(pT ) − 2�2 − 2�2)〉〉
v2{2} .

(2.24)

As discussed in the conclusions, the differences between
v4(22)(pT ){2} and v4(pT ){2} can be used to partially disentangle
the linear and nonlinear response.

C. Summary

The goal of the present work is to compute the linear and
nonlinear response coefficients, and to use these coefficients
together with an initial state model to determine 〈〈v2

n〉〉 with
Eqs. (2.16), (2.18), and (2.19). For v5 the step by step
procedure is: (i) use hydrodynamics to determine the response
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coefficients
w5

C5
and

w5(23)

ε2ε3
, (2.25)

for vanishingly small C5 and ε2ε3; (ii) use the initial state
model to determine the geometric coefficients that are needed
in Eq. (2.18), 〈〈C2

5〉〉, 〈〈(ε2ε3)2〉〉, and 〈〈C5ε2ε3 cos(5	5 − 3	3 −
2	2)〉〉; (iii) combine these results in Eq. (2.18) to determine
the complete hydrodynamic prediction for 〈〈v2

5〉〉. For the initial
state model we have adopted the Phobos Monte Carlo Glauber
model [29] and taken the entropy density proportional to the
transverse density of wounded nucleons in the xy plane. When
computing 〈r5ei5φ〉 and 〈r5〉, for example, we have treated
the wounded nucleons as points in the transverse plane. We
note that there is a very strong geometric correlation between
participant planes differing by two, e.g.,

〈〈C5ε2ε3e
i(5	5−3	3−2	2)〉〉 and 〈〈ε1ε2ε3e

i(3	3−	1−2	2)〉〉 .

(2.26)

This geometric correlation can be studied analytically in an
independent source model [30], and is easily attributed to the
elliptic shape of the overlap region [9,30,31].

III. HYDRODYNAMIC SIMULATIONS

A. Ideal and viscous hydrodynamics

To calculate the nonlinear response we use a hydrodynamics
code that implements conformal second-order hydrodynamics
[32]. The numerical scheme is based on a central scheme
developed and tested in Ref. [33], although the equations of
motion for the πij are somewhat different from what was
studied in that work.3η/s is held constant, and the ratio of
second-order hydro parameters are taken from their AdS/CFT
values [32,34], e.g., τπ/(η/sT ) = 4 − 2 ln 2. The equation
of state partially parametrizes lattice results and was used
previously by Romatschke and Luzum [35]. Finally, we have
followed the time “honored” constant temperature freeze-out
prescription, with Tfo = 150 MeV. For simplicity we have
adopted the popular quadratic ansatz for the viscous correction
to the thermal distribution function [2]

f (P ) = fo(P ) + δf (P ) , δf (P ) ≡ fo(1 ± fo)

2(e + P)T 2
P μP νπμν ,

(3.1)

where fo(P ) = 1/(exp(−P · U (X)/T ) ∓ 1) is the equilib-
rium distribution, e + P is the enthalpy, and δf is the first
viscous correction [2,36]. Although we have used the quadratic
ansatz in this work, a linear ansatz is probably more appropriate
for QCD-like theories and can effect the integrated flow for
the higher harmonics [25,37].

For the simulations shown below we have followed the
centrality classification given in Ref. [13] which is documented

3However, when additional nonconformal second order gradients
are added to our equations of motion and the parameters are matched,
our current numerical can be compared directly to Ref. [33]. If this
is done, the two hydrocodes yield the same answers to 0.1% for the
type of problems considered in this work.

TABLE I. The geometrical ratios in Eq. (4.6) as a function of
centrality.

Centrality % 2.5 7.5 12.5 17.5 25.0 35.0 45.0 55.5√
〈ε4

2 〉/〈ε2
2 〉2 1.40 1.33 1.26 1.22 1.20 1.18 1.17 1.16√

〈(ε2ε3)2〉/(〈ε2
2 〉〈ε2

3 〉) 0.99 0.97 0.96 0.95 0.94 0.93 0.930 0.92√
〈ε2

2 〉/〈ε2
1 〉 2.12 2.78 3.22 3.46 3.56 3.40 3.04 2.64

in Table I. of that work. Our procedure to determine the re-
sponse coefficient at a given impact parameter largely follows
Ref. [9], which should be referred to for additional details—see
especially Appendix A of that work. Briefly, for each impact
parameter we determine the average squared radius 〈r2〉,
and initialize a Gaussian distribution that is deformed by
the appropriate cumulant. The Gaussian is normalized to
reproduce the total entropy in the event. For instance, to
determine the w5(23) we initialize the distribution given in
Eq. (2.12) with ε2 = ε3 = 0.02. A technical complication is
that the distribution in Eq. (2.12) must be regulated [9], and
the regularization procedure introduces a small C5. However,
the spurious C5 decreases faster than ε3 and can be made
arbitrarily small compared to the signal. Empirically we find
that the spurious C5 decreases approximately as ε5, and the v5

from the spurious cumulant is negligibly small compared to
the v5 from the ε2ε3 combination.

B. The nonlinear response coefficients in ideal and viscous
hydrodynamics

In this section we will study the nonlinear response coef-
ficients systematically. In particular we study how the linear
and nonlinear response coefficients depend on (i) transverse
momentum, (ii) centrality, and (iii) shear viscosity.

1. Momentum dependence of the response coefficients

Figure 1 examines the pT dependence of the linear and
nonlinear response coefficients, w4 and w4(22), which are
characteristic of the response coefficients more generally. First,
focus on the ideal curves in Figs. 1(a) and 1(b).

At large pT the nonlinear response curves show a charac-
teristic quadratic rise with pT , while the linear response curves
show a characteristic linear rise. This difference between the
nonlinear and linear response is known from previous studies
of v4 [23]. Later, when examining nonlinear corrections to v1

(see Fig. 6), we will see that the nonlinear corrections are most
important at high pT and exhibit a characteristic quadratic rise.
Comparing Figs. 1(a) and 1(b), we see that viscous corrections
are smaller for the nonlinear response w4(22)(pT )/ε2

2 , than for
the linear response w4(pT )/C4. This is a generic result as will
be discussed in detail in Sec. III B3.

We also note that the linear response curves shown in
Fig. 1(a) change sign for sufficiently large viscosity. This is
an artifact of the first viscous correction, δf , and the quadratic
ansatz. To see this, we have plotted w4(pT ) and and w4(22)(pT )
using only the unmodified distribution function fo in Figs. 1(a)
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FIG. 1. (Color online) The linear and nonlinear response coefficients for v4, w4(pT ), and w4(22)(pT ), for ideal and viscous hydrodynamics.
The grey curves (which are shown only for η/s = 1/4π ) exhibit the resulting response when the equilibrium distribution fo is used, and the
viscous correction, δf , is neglected [see Eq. (3.1)].

and 1(b). For large viscosity the δf correction to v4 and v5 is
not small compared to the ideal contribution fo, and this causes
a reduction of the response, which is more pronounced for the
higher harmonics, v4 and v5. In full kinetic theory calculations
w4/C4 and w5/C5 remain positive and approach zero as the
viscosity is increased [12]. Thus, the negative w4/C4 indicates
that the first viscous correction has become too large to be
trusted. Below, we will simply set the response coefficients
to zero when this is the case. Experience with kinetic theory
suggests that this ad hoc procedure is not far from what really
happens.

2. Centrality dependence of the response coefficients

Figure 2 shows the linear and nonlinear response coeffi-
cients in ideal and viscous hydrodynamics. There are several
salient features contained in these plots. First, note that the
magnitude of the linear response coefficient w5/C5 is quite
small in the viscous case, and w5/C5 has been multiplied
by ten to make the curves visible. The nonlinear response
w5(23) coefficient is significantly larger. The implications of this
difference will be studied in the next section when we multiply
the response coefficients by C5 and ε2ε3 respectively. Second,
all of the response coefficients are reduced by viscosity,
especially in noncentral collisions.

The viscous w4/C4 and w5/C5 curves stop abruptly as a
function of centrality, since we have truncated the curves when
response falls below zero. As discussed above (see Fig. 1),
this is because viscous corrections to the thermal distribution
function (δf ) become larger for more peripheral collisions,
and this correction is magnified by the high harmonic number.
We have therefore truncated the w4 and w5 response curves
when the response turns negative. At this point δf constitutes
an order one correction and can no longer be trusted.

3. Dependence on viscosity

It is interesting to note that viscous reduction for w1/ε1

is smaller than for w4/C4 and w5/C5. This pattern of viscous

corrections for linearized perturbations is studied further in
Fig. 3(a). Each linearized perturbation labeled by n,m-th
cumulant is damped by a factor ∼ exp(−�n,m τfinal) relative
to ideal hydrodynamics, where τfinal is an estimate for the
duration of the event. Analytical work shows that the damping
coefficients �n,m scale as

�n,m τfinal ∼ �mfp

L

(
n − m

2
+ m

)2

, (3.2)

for a conformal equation of state and a particular background
flow [21]. Thus, each power of r2 and each harmonic order in
Eq. (2.4) increases (n−m)/2+m by one unit. Our numerical
work [Fig. 3(a)] is not limited to the conformal equation of
state or the particular background flow of Ref. [21], and shows
that this scaling is reasonably generic [12,38]. Specifically, the
formal estimate given in Eq. (3.2) implies a definite pattern
among the viscous corrections to vn:

−�w1

wid
1

	 −�w2

wid
2

∝ 4
η

s
, −�w3

wid
3

∝ 9
η

s
,

(3.3)
−�w4

wid
4

∝ 16
η

s
, −�w5

wid
5

∝ 25
η

s
,

where �w = wviscous − wideal, and wid is the ideal hydro
response coefficient. Note, in particular, that the viscous
corrections v1 and v2 are similar since v1 and v2 respond
to the dipole asymmetry, W3,1, and the ellipticity, W2,2,
respectively [38]. Since the slopes of the v1 : v2 : v3 : v4 : v5

curves in Fig. 3(a) have approximately the expected ratios
4 : 4 : 9 : 16 : 25, our numerical work qualitatively confirms
this pattern of viscous corrections.

Figure 3(b) compares the damping rate for the nonlinear
response coefficients to the corresponding linear response
coefficients. Take w5(23) for example. Since w5(23) is of order
v2v3 we expect the damping of this nonlinear perturbation to
scale as ∼ e−�2,2τ e−�3,3τ , and thus the damping rate �5(23) is
expected to scale as

�5(23) ∼ �2,2 + �3,3 . (3.4)
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FIG. 2. (Color online) The linear and nonlinear response coefficients for ideal and viscous hydro. In the viscous case the curves are truncated
when the response coefficients turn negative, i.e., outside of the regime of validity of viscous hydro.

Thus, we expect the nonlinear and linear response coefficients
for v5 to scale as

−�w5(23)

wid
5(23)

∝ 13
η

s
, −�w5

wid
5

∝ 25
η

s
. (3.5)

Comparing the slopes of the nonlinear and linear response
curves in Fig. 3(b), we see that the slope of the �w5(23)/w

id
5(23)

curve is approximately half of the corresponding �w5/w
id
5 ,

and is qualitatively consistent with our heuristic estimate
of 13/25. w4(22) and w4 show a similar pattern of viscous
corrections. Finally our estimates seem only partially appli-
cable to v1. For instance, the reasoning of Eq. (3.4) predicts
that the nonlinear damping rates, �1(23) and �5(23), should be
equal. However, the slope of �w1(23)/w

id
1(23) is significantly

smaller than the �w5(23)/w
id
5(23), and contradicts this reasoning.

Clearly, the nonlinear viscous damping of v1 is a special case
which will have to be investigated more completely at a later
date.

IV. RESULTS AND DISCUSSION

A. Results

Having clarified the nonlinear hydrodynamic response, we
study the phenomenological implications of these response

coefficients. Figure 4 shows v1, v4, and v5 including the
linear and nonlinear response as outlined in Sec. II, and is
the principal result of this work.

Examining this figures we see that the nonlinear response
is an important correction for v1, and essential for v4 and
v5. The contribution of the nonlinear response to the total
flow increases towards peripheral collisions, and for v4 and v5

is of order 50% in midperipheral collisions. This is roughly
compatible with simulation results from event-by-event hy-
drodynamics [13,14]. Especially for viscous hydrodynamics
and for v5, the linear response is negligible in all but the
most central bin. Even in the most central bin, the nonlinear
contribution to v5 is about 50% of the total. It is notable,
if expected, that for v1 viscosity reduces the nonlinear
contribution relative to the total, while for v4 and v5 viscosity
increases the nonlinear contributions. This is consistent with
the discussion given in Sec. II B.

It will be quite interesting to measure the complete set of
event planes (�1, �2, �3, �4, �5) and their intercorrelations.
These measurements will place a strong experimental con-
straint on the relative of importance of the nonlinear response
[11]. For example, if the nonlinear response is dominant
(as implied by the viscous v5 curves), then a stronger than
geometric correlation is expected for certain experimental
averages, e.g., 〈cos(5�5 − 3�3 − 2�2)〉.
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FIG. 3. (Color online) (a) Linear response coefficients wn as a function of viscosity relative to the ideal response. (b) A comparison of
nonlinear and linear response coefficients as a function of viscosity, e.g., w5(23) records the v5 produces by a combination of ε2 and ε3. The
negative values for large viscosity are spurious, and lie beyond the region of applicability of viscous hydrodynamics.

Next we examine the pT dependence of the v1, v4, and v5.
Since v4 and v5 are dominated by the nonlinear response we
will present our results by scaling v2

2 and v2v3, respectively.
Many of the points raised in this and the next paragraph
are familiar from earlier studies of v4 in the �2 plane. In
particular, the importance of nonlinearities and fluctuations
in determining the experimental v4/v

2
2 ratio was understood

previously [23,24].
First we note that according to an old argument by Borghini

and Ollitrault [23], v4/v
2
2 should approach 1/2 at large mo-

mentum in ideal hydrodynamics for any given event due to the
nonlinearities inherent in the phase space distribution. Their
result is easily generalized to v5, v5 = v2v3. The argument
follows by computing the freeze-out distribution in a saddle
point approximation [39], and can be schematically understood
by examining the thermal factor in an approximately radially
symmetric flow profile. The transverse flow vector as a
function of the spatial azimuthal angle φ relative to the reaction
plane is


uT = (ux, uy) 	 (uT (φ) cos φ, uT (φ) sin φ) , (4.1)

where in the second step we have assumed that the flow
is approximately radially symmetric. The transverse flow
velocity is then expanded in harmonics

uT (φ) = u
(0)
T + 2u

(2)
T cos 2φ + 2u

(4)
T cos 4φ

+ other harmonics , (4.2)

and the thermal factor with 
p = (pT cos φ p, pT sin φ p) reads

e 
p·
u/T 	 e
pT
T

u
(0)
T cos(φ p−φ)

[
1 + 2pT

T
u

(2)
T cos 2φ

+ 1

2

(
2pT

T
u

(2)
T cos 2φ

)2

+ · · ·
]

, (4.3)

	 e
pT
T

u
(0)
T (cos φ p−φ)

[
1 + 2pT

T
u

(2)
T cos 2φ p

+
(pT

T
u

(2)
T

)2
cos 4φ p + · · ·

]
. (4.4)

The leading exponential strongly correlates coordinate space
angle φ and the momentum space angle φ p. In the second line
we have anticipated the saddle point approximation, (which
realizes this correlation) and set φ 	 φ p in the post-exponent.
The second term in square brackets determines the linear
response coefficient w2 and rises linearly with momentum,
w2 ∼ pT u

(2)
T /T . The third term determines the nonlinear

response coefficient w4(22), and grows quadratically with
momentum, w4(22) ∼ 1

2 (pT u
(2)
T /T )2. At high pT this quadratic

growth overwhelms the (neglected) linear response due to u
(4)
T ,

and leads to the characteristic relation v4 = 1
2v2

2. An entirely
identical argument shows that v5 = v2v3 at high momentum
in ideal hydrodynamics.

The Borghini-Ollitrault argument given above shows that
the response coefficients in ideal hydro should asymptote at
large momentum,

w4(22)/ε
2
2

(w2/ε2)2
−−−−→
pT →∞

1

2
,

w5(23)/(ε2ε3)

(w2/ε2)(w3/ε3)
−−−−→
pT →∞ 1 . (4.5)

When fluctuations are included these asymptotic relations are
modified [24]:

v4{2}
v2{2}2

−−−−→
pT →∞

1

2

( 〈
ε4

2

〉
〈
ε2

2

〉2
)1/2

,

(4.6)
v5{2}

v2{2}v3{2} −−−−→
pT →∞

(
〈(ε2ε3)2〉〈
ε2

2

〉 〈
ε2

3

〉
)1/2

.

Previous studies of v4 in the �2 plane (see Sec. II B)
have shown that such geometrical factors are essential to
reproducing the centrality dependence of v4/v

2
2 [24]. Table I

records the geometrical ratios in Eq. (4.6) as a function of
centrality.

We have found that rather large pT is needed to see the
nonlinear limit given by Eq. (4.6). In the current framework,
the linear and nonlinear response terms, and their interference,
determine the full result

v4{2}(pT ) = 〈〈|w4(pT )e−i4	4 + w4(22)(pT )e−i4	2 |2〉〉1/2 . (4.7)
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FIG. 4. (Color online) v1, v4, and v5 versus centrality in ideal and viscous hydrodynamics. To keep the ideal and viscous curves on the
same scale we have multiplied the viscous v5 curves by a factor of two. In the viscous case, the linear response is neglected when the response
coefficients turn negative, i.e., outside of the region of applicability of viscous hydrodynamics.

Figure 5 shows the complete result for v4{2}/v2{2}2 (scaled
by 〈ε4

2〉/〈ε2
2〉2) for ideal and viscous hydrodynamics. Fo-

cusing on the ideal results, we see that full results (the
solid lines) approach the nonlinear expectation of Borghini
and Ollitrault (the dashed line) only very slowly. This is
in large part because w4(pT ) is only qualitatively linear
at subasymptotic pT and increases almost quadratically at

intermediate pT ∼ 1.5 GeV, momentarily keeping up with the
nonlinear response. When viscous corrections are included, the
nonlinear results become dominant in peripheral collisions.
Similar results for v5 in ideal and viscous hydrodynamics
are also shown in Fig. 5. In the viscous case, the nonlinear
result gives almost the full v5{2} for all centrality classes
shown.
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FIG. 5. (Color online) Results for v4 and v5 for ideal and viscous hydrodynamics at various impact parameters. The Borghini-Ollitrault
expectation is indicated by the arrows for the ideal v4 and v5 curves [23].

It is worth noting that the magnitude of the viscous
corrections as a function of pT for v4 and v5 are sensitive
to ansatz used for the viscous distribution function, δf [26]. In
particular, the quadratic ansatz used in this work assumes that
the quasiparticle energy loss is independent of momentum,
dp/dt ∝ const. A linear ansatz for δf is better motivated for
QCD-like theories and results in smaller viscous corrections
for v4 and v5 as a function of pT [37]. A complete discussion
of this point is reserved for future work.

Figure 6 presents the corresponding analysis for v1(pT ). We
see that the nonlinear terms provide a correction to the linear
response which grows with pT due to the quadratic dependence
of the nonlinear response coefficients, w1(23) ∝ p2

T . We note
that the viscous corrections are approximately the same for
v1(pT ) and v2(pT ), as expected from the discussion of viscous
corrections given in Sec. II B.

B. Discussion

We have presented a framework of nonlinear response
to understand the higher harmonics generated in heavy
ion collisions. Then we extracted the nonlinear response
coefficients using ideal and viscous hydrodynamics and
studied the dependence on the shear viscosity, in Fig. 2. The
pattern of viscous corrections is further analyzed in Fig. 3
and explained in Sec. III B. Generally, when the harmonic

order is large, the nonlinear response is less damped than
the corresponding linear response. Thus, when viscosity is
included in hydrodynamic simulations, the nonlinear response
becomes increasingly important for the higher harmonics. This
qualitative reasoning is confirmed in Fig. 4 which shows v1, v4,
and v5 using linear and nonlinear response and is the principal
result of this work. We see that the nonlinear response is essen-
tial for v4 and v5, and constitutes an important correction for v1.

Experimentally, the relative contributions of the linear and
nonlinear response can be disentangled by measuring v5 in the
2�2 + 3�3 and �5 planes, i.e., by measuring

v5(23) ≡ 〈cos(5φ p − 2�2 − 3�3)〉 and

v5(5) ≡ 〈cos 5(φ p − �5)〉 . (4.8)

Although a full discussion of this and similar measurements
is reserved for future work, a qualitative expectation based
on Figs. 4(e) and 4(f) is that the 〈cos(5�5 − 3�3 − 2�2)〉
correlation should be strong compared to the geometric
average, and should change rapidly from central to midcentral
collisions. Qualitatively, this is precisely what was observed
recently by the ATLAS collaboration [11].

The nonlinear response can also be studied by analyzing the
pT dependence of the flow harmonics. Figures 5 and 6 exhibit
v4(pT ), v5(pT ), and v1(pT ). In ideal hydrodynamics at large
pT we expect to find v4 = 1

2v2
2 on an event by event basis.

Our nonlinear response coefficients corroborate this nonlinear
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FIG. 6. (Color online) v1(pT ){2} [Eq. (2.21)] in ideal and viscous hydrodynamics from the linear response to ε1, the nonlinear response to
ε2ε3, and the total response, Eq. (2.23).

expectation for v4 and an analogous relation for v5, v5 = v2v3.
However, since what is normally measured is v4{2}/(v2{2})2

and not 〈〈v4/v
2
2〉〉, this ideal nonlinear expectation must be mul-

tiplied by (〈ε4
2〉/〈ε2

2〉2)1/2 when comparing to the experimental
data [24]. In addition, this expectation of ideal hydrodynamics
is broken by viscous corrections, and by the linear response
to the fourth order cumulant C4 (i.e., ε4). When all of these
corrections are taken into account, we find that relations such
as v4 = 1

2v2
2 and v5 = v2v3 provide only a rough guide to the

full result.
Throughout we have assumed perfect correlation between

�2 and 	2 and �3 and 	3. This strict correlation is only
approximately true. For instance the combination of a v1 and
a v3 can yield a v2,

v2e
−i2�2 = w2e

−i2	2 + w2(13)e
−i3	3+	1 . (4.9)

This naturally provides a correlation between the �2 and �3

plane, although the geometric correlation between 	2 and 	3

is negligibly small. Indeed the (�2, �3) correlation, which was
very recently observed by the ATLAS collaboration [11], is too
large to be easily explained with the geometric correlations of

the Glauber model. Similarly, assuming that the linear response
to ε6 is negligible, one could expect that in central collisions
v6 is determined by the quadratic response to v3, while in
peripheral collisions v6 is determined by a cubic response
to v2

v6e
−i6�6 = w6(222)e

−i6	2 + w6(33)e
−i6	3 . (4.10)

Qualitatively, this pattern is consistent with the observed
(�6, �3) and (�6, �2) correlations presented in [11]. It will
be interesting to see if all of the observed correlations can be
quantitatively understood with the nonlinear response theory
outlined in this paper. A full quantitative comparison with the
experimental data is reserved for future work.
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