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We study the importance of the initial state, baryon stopping, and baryon number transport for the dynamical
evolution of a strongly interacting system produced in heavy ion collisions. We employ a hybrid model, which
combines the fluid dynamical evolution of the fireball with a transport treatment for the initial state and the final
hadronic phase. We present results for collisions at beam energies from

√
sNN = 7.7 to 200 GeV. We study various

observables such as the centrality dependent freeze-out parameters, the nonmonotonic behavior of effective slope
parameter parameter with particle mass as well as the apparent difference in particle and antiparticle elliptic flow.
Our results are in reasonable agreement with the available data. We find that the propagation of the baryon-number
current in the hydrodynamic evolution as well as the transport treatment of the hadronic phase are essential for
reproducing the experimental data.
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I. INTRODUCTION

Over the last decades many experimental programs at the
Brookhaven National Laboratory and CERN facilities have
been devoted to finding signals of a new state of matter, the
quark gluon plasma (QGP), by means of relativistic heavy
ion collisions. These experiments have produced a wealth
of data including particle ratios and yields, transverse and
longitudinal momentum spectra as well as the coefficients
of a Fourier decomposition of the transverse flow patterns
[1–16]. Several observations at the BNL Relativistic Heavy
Ion Collider (RHIC) and CERN Large Hadron Collider (LHC)
indicate that a strongly coupled QGP (sQGP) dominates
the dynamical evolution [17–24]. In addition the energy
dependencies of various observables, such as the K/π ratio,
already show anomalies at low SPS energies which might
be related to the onset of deconfinement and chiral sym-
metry restoration at lower energies [15,16]. While these are
intriguing observations, experience has taught us that the
interpretation of experimental results and their relation to the
deconfinement phase transition is often ambiguous and exten-
sive model studies are required to understand the numerous
observables.

In order to study the physics of heavy ion collisions
many models have been developed which address specific
aspects of the these reactions. For example, hadron ratios are
well described by thermal models which employ a hadronic
resonance gas at a fixed temperature and chemical potential
for the description of particle yields. The study of transverse
and elliptic flow observables require more complex models:

*jsfroschauer@lbl.gov

at the lowest energies hadronic transport, including the effects
of hadronic potentials/interactions (see, e.g., [14,25–29]) are
applied, while at the highest RHIC and LHC energies a
description of the system in terms of fluid dynamics seems
to be successful [30–37]. Since it is desirable to obtain a
more comprehensive picture of the whole dynamics of heavy
ion reactions, various so called hybrid approaches have been
developed during the last years [38]. In these models one
commonly uses initial conditions that are calculated in a
non equilibrium model which are followed by an ideal or
viscous hydrodynamic evolution. For the late stage of the
collision a kinetic approach is more appropriate and, therefore,
subsequent to the hydrodynamic evolution a transport model
solving the Boltzmann equation is used for the description
of the freeze-out stage [32,33,39–45]. Alternative approaches
couple a partonic phase to a hadronic transport model [46–48].
As each phase may contribute considerably to final state
observables, the interpretation of experimental results and
their relation to the deconfinement phase transition are often
a difficult task, and the contributions of the different phases
need to be evaluated thoroughly.

The purpose of this paper is to study heavy ion col-
lisions within the framework of one such hybrid model,
the so-called UrQMD hybrid model [49] with the aim to
re-evaluate some of the commonly accepted interpretations
of various observables. Specifically we will address the
centrality dependence of freeze-out parameters, transverse
momentum spectra as well as antiparticle elliptic flow at low
energies.

This paper is organized as follows. First we briefly introduce
the hybrid model. Next we discuss particle production and
transverse spectra obtained with the model. In the final section
we present our results for the elliptic flow of particles and
antiparticles with an emphasis on the difference between
proton and anti-proton flow.
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II. THE HYBRID MODEL

The UrQMD hybrid model combines the advantages of a
hadronic transport model with an intermediate hydrodynami-
cal stage for the hot and dense phase of a heavy ion collision.
The UrQMD model [25,26] (in its cascade mode) is used
to calculate the initial state of a heavy ion collision for the
hydrodynamical evolution [50]. This is done to account for
the nonequilibrium dynamics in the very early stage of the
collision. The coupling between the UrQMD initial state and
the hydrodynamical evolution happens at a time tstart when the
two Lorentz-contracted nuclei have passed through each other:

tstart = 2R√
γ 2

c.m. − 1
, (1)

where γc.m. is the center-of-mass frame Lorentz factor and R

is the radius of the nucleus. At this starting time all initial
collisions have happened. It is further the earliest time at
which local thermodynamical equilibrium may be achieved.
At this time the energy, baryon number and momenta of all
particles within UrQMD are mapped onto the spatial grid
of the hydrodynamic model by representing each hadron by
a Gaussian of finite width σ = 1 fm. In this approach the
effects of event-by-event fluctuations and stopping of energy
and baryon number density in the initial state are naturally
included.

The full (3 + 1)-dimensional, one fluid, ideal hydrodynamic
evolution is performed using the SHASTA algorithm [51,52].
We solve the equations for the conservation of energy and
momentum:

∂μT μν = 0 (2)

and for the conservation of the baryonic current,

∂μNμ = 0. (3)

Here T μν is the relativistic energy momentum tensor,

T μν = (ε + p)uμuν − gμνp (4)

and Nμ the baryonic current

Nμ = n uμ. (5)

The above partial differential equations are solved on a
three-dimensional spatial Eulerian grid with fixed position and
size δx = 0.2 fm in the computational frame. The local rest
frame is defined as the frame where T μν has diagonal form (i.e.,
all off-diagonal elements vanish), also known as the Landau
frame. To close the set of equations an equation of state (EoS),
the pressure as function of energy and baryon number density
p(ε, n) needs to be specified. In the following we will use
an EoS that corresponds to an hadron resonance gas. This is
convenient as it includes the same degrees of freedom as the
UrQMD model, which essentially allows us to study the effect
of local equilibrium on the different observables. Previous
investigations have shown that different equations of state only
lead to insignificant differences in the results [53,54].

To transfer all particles back into the UrQMD model,
an approximate iso-eigentime transition is chosen (see [55]
for details). To this end we apply the Cooper-Frye pre-
scription [56] to individual transverse slices, of thickness

	z = 0.2 fm, at a time-like transition hypersurface. The
transition time for a given slice is determined by the time
when the energy density ε in every cell of this slice has dropped
below five times the nuclear ground state energy density, i.e.,
below ∼730 MeV/fm3. As a result we obtain a longitudinal
iso-eigentime transition with an almost rapidity independent
maximum switching temperature for beam energies above√

sNN ≈ 10 GeV.1 In a given slice the hydrodynamic fields are
transformed to particle degrees of freedom via the Cooper-Frye
equation:

E
dN

d3p
= gi

∫
σ

fi(x, p) pμ dσμ (6)

on an isochronous time-like hypersurface in the computational
frame [the hypersurface normal is dσμ = (d3x, 0, 0, 0)]. Here
fi(x, p) are the distribution functions and gi the degeneracy
factors for the different particle species i, which in our case
are given by the appropriate Bose or Fermi distributions. The
particle distributions explicitly depend on the local values of
the temperature T and baryon chemical potential μB . T and
μB are obtained by converting the local energy- and baryon-
densities via the equation of state.

The above transition procedure conserves baryon number,
electric charge, the total net strangeness and the total energy
on an event-by-event basis. After the particles are created they
evolve according to a hadronic cascade (UrQMD) where final
rescatterings and decays are calculated until all interactions
cease. A more detailed description of the hybrid model
including parameter tests and results can be found in Ref. [49].

A. Particle yields and the temperature distribution

The description of particle production in heavy ion col-
lisions using statistical methods, such as thermal models
[57–59] and fluid dynamical models with a sudden freeze-out,
are usually based on the assumption that for a given incident
beam energy chemical freeze-out occurs at a fixed temperature
and chemical potential. As we have discussed above (see
also [54]) we transform full transverse slices at a given time t ,
using the Cooper-Frye prescription. This implies that contrary
to an isothermal transition particles are emitted over a range of
temperatures/densities. While this may no be a standard proce-
dure it has been shown in several publications [49,60–64] that
this hybrid model is very well suited to describe particle ratios
and yields over a wide range of energies. In addition, recent
comparisons of an isothermal 3 + 1-dimensional hypersurface
[65] indicate that deviations only occur at large transverse
momenta (p⊥ > 1 GeV), corresponding in our freeze-out
prescription to very cold and fast cells which are being treated
as equilibrated for an extended period of time. Since all

1This ensures that all cells have passed through a potential mixed
phase of the equation of state and the effective degrees of freedom
at the transition are hadronic. As mentioned above we use a hadron
resonance gas EoS for our present study which does not include a
phase transition. However, we could include an EoS with a phase
transition, even though most bulk observables have shown to be
insensitive on the specific choice of the EoS [53–55].
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FIG. 1. (Color online) Probability distributions P (TCF) for pions
(black solid line) and �−’s (red dashed line) to be produced from a
cell with a give temperature TCF. The results shown are for central
collisions of Pb nuclei with a beam energy of

√
sNN = 17.3 GeV.

observables we discuss in this paper are mainly determined at
lower momenta our results hold also for the isothermal case.
The comparison also implies that both dynamical descriptions,
transport and hydrodynamics, give equivalent results for the
fireballs expansion in the transition region considered.

Figure 1 shows the resulting probability distributions
P (TCF) for pions and �−’s to be produced from a cell with a
given temperature TCF. Note that TCF is the temperature that
enters into the Cooper-Frye equation (6). The results shown are
for central collisions of Pb nuclei at a center-of-mass energy
of

√
sNN = 17.3 GeV. One can clearly see that the pions, due

to their smaller mass, are generally emitted/produced at lower
temperatures than the �’s. In other words, because we allow
for emission from all local temperatures the heavier particles
are preferentially emitted from regions of higher temperatures.
The lower plot of Fig. 2 illustrates how the average value of
TCF changes as a function of the particle mass for different
hadron species. Results for Pb + Pb/Au + Au collisions at√

sNN = 17.3 and 200 GeV are shown. One observes a clear
trend of increasing TCF with the particle mass, as shown
explicitly for the pion and �.

We also observe a mass dependence of the average trans-
verse flow 〈v⊥〉, defined as the average of the hydrodynamical
radial flow velocity over the production points of the particles.
Results for the different particle species are depicted in the
upper part of Fig. 2. It is clear that hot and dense cells usually
have a smaller flow velocity because they tend to be located
at the center of the collision zone. The colder cells are more
peripheral and therefore have acquired more flow.

At lower beam energies, the finite baryon density (chemical
potential) plays an important role. Because the proton has a
large chemical potential, it is much more abundant at lower
temperatures than it’s anti-particle, resulting in a distinctly
different value of 〈TCF〉, defined as the average of temperatures
over the production points of the particular particles. Figure 3
depicts the averaged ratio of anti-protons over protons, taken
at the last time step of an Au + Au collision at a beam
energy of

√
sNN = 11.5 GeV, p̄/p = exp(−2μB/T ), as a

FIG. 2. (Color online) The average transverse flow velocity 〈v⊥〉
(a) and TCF (b) at the Cooper Frye transition, as a function of the
particle mass for different hadron species. Results for most central
Pb + Pb/Au + Au collisions at

√
sNN = 17.3 (black squares) and

200 GeV (red circles) are shown. Note the anti-proton mass has
been shifted for visibility.

function of radius (red dashed line). Clearly the p̄/p ratio
is largest in the center of the collision zone where the radial
flow has its minimum. The transverse flow velocity v⊥ of
the hydrodynamic fluid (black solid line), extracted from
our hydrodynamical calculation, increases linearly with the

FIG. 3. (Color online) Average transverse hydrodynamical flow
velocity (black solid line) and the scaled ratio of protons over anti-
protons ≈ exp (−2μB/T ) (red dashed line) as a function of transverse
radius. The results shown are for the central transverse plane at the end
of a hydrodynamical calculation for Au + Au at

√
sNN = 11.5 GeV.
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distance from the center of the collision. Consequently the
anti-protons will acquire a smaller average transverse flow as
compared to the protons, even though their transverse velocity
for any given r is identical. The conclusion that protons and
anti-protons acquire a different average flow velocity also
holds true for an iso-thermal transition because the ratio p̄/p

will in general not be constant over the hypersurface. The
quantitative difference however might very well depend on
the definition of the transition hypersurface. It is therefore
interesting to extend the current investigation to different
hypersurfaces.2

Note that the same argument should also hold for other con-
served charges, such as strangeness and the third component of
the isospin. Because the colliding nuclei have more neutrons
than protons the third component of the isospin is finite, and
negative in the produced fireball. Therefore, we expect the
ratio π+/π− to depend on the radius similar to the p̄/p ratio,
which in consequence will lead to a different transverse flow
velocity of π+ compared to π−. However the effect will be
much weaker for pions since it depends on the ratio of the
fugacities exp(−2μI/T ) and the isospin chemical potential
is considerably smaller then the baryon chemical potential
−μI < μS < μB . For the top SPS energy a thermal model
analysis found values of: μI = −5.0 MeV, μS = 71.1 MeV
and μB = 266 ± 5 MeV [66].

B. Centrality dependence of freeze-out parameters

An ideal fluid dynamical treatment of the expansion implies
that for a given freeze-out criterion the particle abundances
are fixed by the total entropy per baryon (S/A) produced
in the very early stage of the collision, since the subsequent
expansion is isentropic.

In all models used to describe the properties of the early
stage of an heavy ion collision (Glauber model, geometrical
overlap, hadronic transport) the initial state is defined by the
total energy and baryon number deposited in the fireball.
In a Glauber model [1,10,67] the energy deposition in the
transverse plane is proportional to the number of wounded
nucleons:

e(x, y; τ0)

= K

{
TA

(
x+b

2
, y

)[
1 −

(
1 − σTB

(
x− b

2 , y
)

B

)B]

+ TB

(
x−b

2
, y

)[
1 −

(
1 − σTA

(
x+ b

2 , y
)

A

)A]}
, (7)

where TA and TB are the nuclear thickness functions of the
incoming nuclei A and B, σ is an energy dependent cross
section, and K is a proportionality factor. If we further assume
that the initial baryon density is proportional to the initial

2For these further studies we need to apply a hypersurface finder for
our full 3 + 1D calculation including local density fluctuations. Such
a tool has recently been developed [65] and can be applied for future
studies.

FIG. 4. (Color online) (a) Centrality dependence of the entropy
per baryon produced. (b) Corresponding baryon chemical potential
for a given fixed temperatures Tf .

energy density [10],

n(x, y; τ0) = C(
√

sNN ) · e(x, y; τ0) , (8)

the initial energy per baryon (E/A)(r) as a function of the
transverse radius is a constant which only depends on the
collision energy. At the same time the energy and baryon
densities drop rather quickly as a function of radius r . Since
E/A is constant, a decreasing energy density implies that
the entropy per baryon S/A must vary as a function of r as
the entropy density in general does not scale with the energy
density,

s(x, y; τ0)

e(x, y; τ0)
�= constant. (9)

In addition the average energy density varies as a function of
centrality. Since E/A is constant we also expect a centrality
dependence of the total entropy per baryon.

Figure 4 exemplifies the effects of the initial geometry
on the final chemical composition of the fireball. Figure 4(a)
shows the total entropy per baryon produced in collisions of Au
nuclei at energies of

√
(sNN ) = 7.7–19.6 GeV, as a function

of impact parameter b. The entropy per baryon is calculated,
averaging over 1000 UrQMD initial state events (although
it has been shown that S/A does only vary weakly on an
event-by-event basis [50]). A hadron resonance gas (HRG)
equation of state is used to estimate the values for the entropy
per baryon as it best resembles the active degrees of freedom
at the particle freeze-out. We find that the produced S/A

increases with the impact parameter, simply because of the
different initial geometry. Using the HRG we can determine
the baryonic chemical potential μB , corresponding the value
of S/A when fixing the temperature to any given value Tf . For
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the thermal models of particle production this temperature
corresponds to the chemical freeze-out temperature. The
resulting values for μB are shown in Fig. 4(b) as a function of
b. It is clear that μB decreases with increasing b. We note that
such an effect has been observed in experiment [68], where
thermal fits to different centrality selections show a decreasing
μB with centrality which is of comparable magnitude to our
results shown here. This observation indicates that the systems
created in heavy ion collisions of fixed energy but varying
centrality cannot be characterized by single values for the
thermal parameters.

III. THE SLOPE PARAMETER

After discussing the integrated yields, let us next discuss
the transverse momentum spectra, which are considered to
be more sensitive to the kinetic decoupling temperature, Tth,
and transverse flow than average yields. Taking Eq. (6) and
neglecting any flow the transverse momentum distribution (for
pz → 0) is given by

1

m⊥

dNi

dm⊥dy
∝ m⊥(exp ((m⊥ − μi)/T ) ± 1)−1 (10)

with the transverse mass m⊥ =
√

(m2
i + p2

⊥). The negative
slope of log( 1

m2
⊥

dNi

dm⊥dy
) gives the so called effective temperature

Teff [69,70], which, however, does not correspond to the actual
kinetic decoupling temperature Tth since the spectra are blue
shifted due to transverse flow. To account for the flow the
effective temperature can be related to the kinetic decoupling
temperature by Teff = Tth + mi〈v⊥〉2.

These type of fits to experimental data typically result
in a nonmonotonic behavior in Teff as a function of particle
mass, which cannot be accounted for with a fixed temperature
freeze-out [30,71,72]. Note that in our calculation we cannot
directly extract a value for the kinetic freeze-out temperature
Tth, because we treat the kinetic decoupling as a dynamical
process within the UrQMD transport model.

In addition to flow effects resonance decays as well
as scattering processes in the hadronic phase affect the
extracted value of Teff as a function of mass [30,69,73,74]. To
successfully interpret the experimental results one, therefore,
has to disentangle the different contributions to the transverse
spectra in a consistent approach.

Using the UrQMD hybrid model we can disentangle all the
important contributions and explore what information about
the hot and dense phase can be extracted from the spectra.
Figure 5 shows the midrapidity (|y| < 0.5) m⊥ spectra of
pions protons and �’s, divided by m2

⊥, for the most central
collisions of Pb nuclei at

√
(sNN ) = 17.3 GeV. We compare

the final spectra (black squares) with the ones obtained directly
after the Cooper Frye transition, without any UrQMD final
state, where we either let all resonances decay at the transition
(red circles labeled as ‘no afterburner’) or do not allow for
resonance decays at the transition. (green triangles labeled as
‘no resonance feed down’). The two latter cases are interesting
to distinguish because they show the effect of the final
state rescattering on the momentum distribution functions,

FIG. 5. (Color online) Transverse mass distributions of pions
protons and �’s at midrapidity |y| < 0.5, divided by m2

⊥, for most
central collisions of Pb nuclei at

√
sNN = 17.3 GeV. We compare the

distributions from the hybrid model extracted at the final state (black
squares) with those directly at the Cooper-Frye transition with (red
circles) and without (green triangles) resonance decays. Data from 1
the NA49 experiment are depicted as large blue circles [75–77].

indicating that the final hadronic state is not a mere decay
of resonances. For comparison we also show the experimental
data by the NA49 collaboration [75–77] as blue circles.

We see that the spectra of both pions and protons are
significantly modified due to hadronic interactions and res-
onance decays. We further find deviations of the spectra from
an exponential shape already at the Cooper-Frye transition,
when no resonance decays are taken into account. This is a
result of the blue shift due to the finite flow already present
at the transition, as shown in Fig. 2, and is also connected to
our freeze-out treatment of summing up thermal distributions
with different temperatures, which was first discussed in
Refs. [78–80].

We note that similar modifications of the p⊥ spectra due to
final state interactions were obtained in an earlier calculation
[30], where the UrQMD model was used for the final state of
a hydrodynamical calculation with an isothermal freeze-out.

In both calculations, ours as well as that of Ref. [30], only
the � does not change noticeably during the afterburner phase
because of it’s small hadronic cross section. Furthermore there
are no resonance states in the model that contribute to the �

spectrum.
Resonances change the momentum spectra mainly at low

momenta, because of the restricted phase space of the decays
and their effects should become negligible at some point.
This is demonstrated in Fig. 6 where we show the ratio
of the transverse mass spectra after the resonance decays
to those before the decays for four different particles. The
strongest modification of the spectra is observed for the pions
and protons: they are enhanced by a factor of three at low
momenta. However, we find that the effect of resonances
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FIG. 6. (Color online) Ratios of transverse mass distributions
after to before resonance decays, shown for pions protons kaons
and �’s, as a function of m⊥.

is still considerable even for m⊥ − m0 > 1 GeV, which
is consistent with previous works [69,73]. Therefore, it is
questionable that an exponential fit below a transverse mass of
m⊥ − m0 < 1 GeV is in any way justified, and even at higher
transverse masses one would expect small deviations from the
exponential form.

In Fig. 7 we show the exponential fits to spectra
obtained with the hybrid model over a mass range of

FIG. 7. (Color online) Extracted slope parameters Teff from the
hybrid model for different particle species. We compare final state
results (full symbols) with results obtained at the Cooper-Frye
transition without resonance decays (open symbols).

1 < m⊥ − m0 < 2 GeV. The filled symbols correspond to
fits of final state spectra, including resonance decays and the
UrQMD afterburner, for most central PbPb/AuAu collisions at√

(sNN ) = 17.3 GeV (black squares) and
√

(sNN ) = 200 GeV
(green diamonds) GeV. The red open circles correspond to fits
to spectra directly after the Cooper-Frye transition without
resonance decays. One clearly observes a nonmonotonic
behavior in the effective slope parameter as a function of the
particles mass. It was shown in earlier publications [30] that
such a behavior can also be accounted for when UrQMD
is used as the afterburner for an isothermal transition. In
that work the scattering processes in the transport phase
create a situation where the actual dynamical decoupling
takes place over a range of densities/temperatures leading
to results comparable with our study. As indicated before,
the hydrodynamical and transport description give equivalent
results over a certain range of densities and our non-isothermal
transition is generally not ruled out. The question whether there
is a sharp transition, as in the isothermal case, or a certain
transition region may be further investigated by carefully
studying the spectra of the φ and �, which emerge at the
transition from the collective phase to the hadronic phase
and do not rescatter significantly in the transport phase. Their
final state observables, therefore, contain the information from
the transition surface, without interference from the hadronic
phase of the collision.

To estimate how well the approximation Teff = Tth +
mi〈v⊥〉2, with 〈v⊥〉 taken from Fig. 2, compares with our fit
results, we plotted the simple estimates of Teff as black crosses.
They should be compared with the open red circles because we
estimated the flow effect on Teff at the Cooper-Frye transition
where Tth = TCF, as we cannot explicitly extract Tth from
our calculation. It is obvious that the simple formula fails to
describe the slope parameter for most of the light mesons and
works more reliably for the heavy baryons, indicating that the
final hadronic stage is important for the complete description
of final particle spectra.

IV. ELLIPTIC FLOW

The elliptic flow parameter v2 has long been proposed as a
probe for the properties of the hot and dense system created
in a heavy ion collisions [1–4,7–9,11,81–83]. The elliptic
flow parameter v2 is defined as the coefficient of the second
Fourier component of the azimuthal distribution of the emitted
particles:

dN

p⊥dp⊥d�
= 1

2π

dN

p⊥dp⊥
[1 + 2v2(p⊥) cos(2�)

+2v4(p⊥) cos(4�) + · · ·], (11)

where the azimuthal angle � = φ − ψRP is measured with
respect to the direction of the reaction plane, ψRP

The average or integrated elliptic flow coefficient, v̄2, is
defined as

v̄2 = 〈cos[2(�)]〉 (12)

044903-6



HYDRODYNAMICS AT LARGE BARYON DENSITIES: . . . PHYSICAL REVIEW C 86, 044903 (2012)

and is given in terms of the azimuthal distribution as

v̄2 =
∫

dp⊥
∫ 2π

0 d� dN
dp⊥d�

cos(2�)∫
dp⊥

∫ 2π

0 d� dN
dp⊥d�

(13)

= 1

N

∫
dp⊥

∫ 2π

0
d�

dN

dp⊥d�

p2
x − p2

y

p2
⊥

(14)

= 1

N

〈
p2

x − p2
y

p2
x + p2

y

〉
. (15)

The integrated elliptic flow is related to the p⊥ dependent
elliptic flow by

v̄2 =
∫
dp⊥v2(p⊥) dN

dp⊥∫
dp⊥ dN

dp⊥

. (16)

To calculate v̄2 in fluid dynamics one usually performs a
Cooper-Frye freeze-out and then uses the above definitions.

Alternatively one can use the energy momentum tensor Tμν

and directly extract the flow anisotropy from the hydrodynam-
ical computation [84,85]:

v̄2,T = 〈Txx − Tyy〉
〈Txx + Tyy〉 (17)

=
∫

d3r
∫
d3p

(p2
x−p2

y )
p0

f (r, p)∫
d3r

∫
d3p

(p2
x+p2

y )
p0

f (r, p)
. (18)

Here, f (r, p) is the phase space distribution, and Txx, Tyy are
the appropriate components of the energy momentum tensor.
This prescription is different from the actual definition of v̄2

which is given by Eq. (14). It has an additional weighting
of p2

⊥/p0 in front of dN
dp⊥d�

. However, it was empirically
found [84] that the pion elliptic flow can be related to v̄2,T

as 2 v̄2 ≈ v̄2,T . Assuming that v2(p⊥) ∝ p⊥ and that f (r, p)
is represented by a Boltzmann distribution on can easily show
that 3

2 v̄2 ≈ v̄2,T . However, the distribution function for pions is
considerably distorted by resonance decays and far from being
of Boltzmann type, especially at small transverse momenta.
This brings the factor relating the two definitions close to the
observed value of 2.

In Fig. 8 we show results for the integrated v̄2 of different
particle species, pions protons and anti-protons, as a function
of time, extracted from the hydrodynamical phase of the
hybrid model. For this calculation we used a non-fluctuating
initial condition created by averaging 1000 UrQMD events
of collisions of Au nuclei at an

√
sNN = 11.5 GeV and an

impact parameter of b = 8 fm. The symbols denote values of
v̄2 extracted from sampling the Cooper-Frye equation on an
isochronous hypersurface at each time step, hence representing
the correct definition of v̄2. The lines represent values of v̄2,T

extracted from the hydrodynamical energy momentum tensor
as described in equation (17). For the pion elliptic flow we
used the full energy momentum tensor and multiplied v̄2,T by
a factor of 0.5 as suggested in Ref. [84] and one can observe a
very good agreement of the methods. To extract the proton and
anti-proton flow we used the partial energy momentum tensor
of the protons and anti-protons and multiplied them by 2/3 as
suggested above. The partial Tμν’s for protons and anti-protons

FIG. 8. (Color online) Elliptic flow as a function of time for an
averaged UrQMD initial condition of two Au nuclei colliding at√

(sNN ) = 11.5A GeV and an impact parameter of b = 8 fm. The
lines correspond to v̄2 extracted using the energy momentum tensor
Eq. (17), and the symbols denote results from a sampling of the
Cooper-Frye equation.

are related simply by

T p̄
μν = exp (−2μB (x, y)/T (x, y)) · T p

μν (19)

(μB and T being the baryon chemical potential and tempera-
ture, respectively).
The resulting proton and anti-proton v̄2’s are in reasonable
qualitative agreement for both methods presented.

In either case we observe that the integrated elliptic flow
of protons is systematically larger than that of the anti-
protons. This difference is also observed in recent preliminary
experimental data from the STAR Collaboration [86]. Below
a collision energy of

√
sNN < 60 GeV the measured elliptic

flow of particles is considerably different from that of their
antiparticles and the difference increases with decreasing beam
energy and correspondingly increasing net baryon density.
A recent transport calculation was able to explain such
an effect qualitatively by the inclusion of mean field type
nuclear potentials [87]. Our calculations, however, indicate
that the average flow of, e.g., anti-protons is different from
that of protons simply because their local ‘weight’, given by
exp (−2μB (x, y)/T (x, y)) in the evaluation of, e.g., Eq. (19),
varies due to the finite net baryon density. As shown in Fig. 3
the ratio of p̄/p is large for the cells in the center of the collision
which have a high temperature and small flow velocity, and it
is small for the colder cell at the surface, which carry high flow
velocities. As a result the average transverse flow for protons
is larger than that for anti-protons resulting in a larger value
for v̄2 of protons.

Let us next quantify the discussed difference in elliptic
flow and investigate to which extent our result is modified
when we apply the full hybrid model including event-by-event
fluctuations, resonance decays as well as an afterburner stage.
Figure 9 shows the difference of particle-antiparticle v̄2 of
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FIG. 9. (Color online) Difference of particle and antiparticle v̄2

as a function of beam energy for different particle species. The open
symbols denote results at the Cooper-Frye transition while the full
symbols represent results with the full UrQMD afterburner stage.

different particle species as a function of
√

sNN for collisions
of Au + Au nuclei at an impact parameter of b = 8 fm.
In the plot the full symbols correspond to results obtained
after the UrQMD final state while the open symbols denote
results after the Cooper-Frye transition, including resonance
decays. In general the difference in elliptic flow is most
pronounced directly after the Cooper Frye transition out
of the hydrodynamical evolution and is washed out by the
subsequent UrQMD transport phase. For baryons we observe
a considerable increase in the difference of v̄2 between particles
and antiparticles with decreasing beam energy. The value of
v̄2 is essentially the same for π+ and π−. For the kaons we
observe a trend, which is opposite to the one found in data [86],
showing that K− v̄2 seems larger than that of K+. However,
this is only the case after the final UrQMD transport stage.
Directly after the hydrodynamical evolution kaons appear to
have the same flow. The observed phenomenon can therefore
be interpreted as a natural result of a net density and a
chemically equilibrated phase.

Many transport descriptions fail to even qualitatively
describe the phenomenon because they lack certain interaction
channels which are important at the energies considered here.
For example the difference in the Kaon elliptic flow could
be explained by missing strangeness exchange reactions in
the final state. For the antiparticles the inclusion of all pair
creation processes is important. Since antiparticles are very
rare in low energy collisions, their flow is sensitive to their
explicit interactions, i.e., annihilation and recreation, in the
transport phase. At the highest beam energies a large number
of antiparticles is produced at hadronization and regeneration
has only a small effect on their abundance (seen in LHC
data [88,89]). However when the beam energy is decreased,
only few antiparticles are produced and the pair creation

FIG. 10. (Color online) Effect of the final hadronic state on
particle and antiparticle v̄2 as a function of beam energy. 	v2 is
defined as the gain of the elliptic flow coefficient obtained in the final
transport phase: v̄Final

2 − v̄CF
2 .

due to multi pion reactions becomes non negligible for the
antiparticles bulk properties [90–93].

To illustrate the effect of the hadronic transport phase on
the elliptic flow, in Fig. 10 we show the difference between
the value of v̄2 in the final state to that obtained right after the
Copper-Frye transition for protons, anti-protons and charged
pions. Clearly, at low energies the value for v̄2 for anti-protons
increases appreciably during the hadronic transport phase. This
is simply an effect of the annihilation process. Anti-protons
moving in the out-of-plane (y) direction encounter more
protons to annihilate with than those moving in the in-plane (x)
direction. Since there are many more protons than anti-protons,
the annihilation only affects the anti-protons. Because the
reverse process nπ → p + p̄ is not included in the transport
model it is not clear how meaningful the final state effects (in
the UrQMD phase) are for the antiparticle v̄2.

Note that in our calculation the difference between proton
and anti-proton elliptic flow is caused solely by the nonzero net
baryon number density, and chemical potential, and therefore a
similar effects should be be observed for a finite isospin and net
strangeness chemical potential at midrapidity [94] if included
properly in the model. As discussed at the end of Sec. II the
difference in the (elliptic) flow of particles and antiparticles is
due to the different local weighting exp(−2μi(x, y)/T (x, y))
when evaluated over the hypersurface. We can assume that
the chemical potentials μi have a different magnitude −μI <

μS < μB and therefore we expect the effect becomes weaker
for kaons and even more for pions. This is in fact the case
for the experimental data, as π− show more v̄2 than π+ and
K+ more than K−, where the difference is smallest for the
pions. Since the isospin chemical potential is negative due to
the higher abundance of neutron in the colliding nuclei, this
also explains why, contrary to the protons, in case of the pions
the elliptic flow of the antiparticle, i.e., π−, is larger than that
of the particle (π+).
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FIG. 11. (Color online) Elliptic flow of protons, anti-protons, and
pions as a function of p⊥. We show results from an averaged UrQMD
initial state (lines) as well as from the full hybrid model calculations
after the Cooper-Frye transition (no final state interaction) (symbols).

In Fig. 2 we see that, during the hydrodynamical evolution,
the average transverse momentum of p̄ is smaller than that of
p. Therefore, part of the difference in the integrated v̄2 can
be understood as weighting v2(p⊥) at higher values of p⊥
in case of the protons [see Eq. (16)]. On the other hand the
preliminary data by STAR indicate that also the differential
elliptic flow parameter, v2(p⊥), differs between protons and
anti-protons. To investigate this in Fig. 11 we compare the
differential elliptic flow for protons, anti-protons and pions
after the Cooper-Frye transition. The lines represent results
with the averaged initial conditions as described above, where
we sampled the freeze-out hypersurface to obtain sufficient
statistics. We indeed observe a small difference for v2(p⊥)
between p̄ and p. From the event-by-event calculations we
obtain results depicted as symbols. Here we also only observe
a small difference, within the still considerable errors. In any
case, in our calculation we find the effect due to the different
〈p⊥〉 to be dominant.

Another effect which can artificially increase the observed
asymmetry of baryon vs. anti-baryon elliptic flow, and in
particular the difference in p⊥ dependent v2, may arise from the
way v2 is measured in experiment. While in our calculation the
reaction plane is well defined, experiments have to reconstruct
the so-called event plane in order to infer the reaction Pplane
angle �RP. This analysis method involves correlating the
azimuthal angle φ of each particle with an event plane angle
�EP which is defined by the other particles of that event [95].
Due to fluctuations, the event plane is usually not perfectly
aligned with the reaction plane (see, e.g., [96]).

Furthermore, as a result of baryon number fluctuations
an event plane direction, �

[p]
EP , defined only by protons may

deviate from that defined solely by anti-protons, �
[p̄]
EP . As a

consequence, the elliptic flow for anti-protons calculated with
respect to the event plane of the protons would be slightly
smaller than if it were calculated with respect to the event

FIG. 12. (Color online) Integrated elliptic flow of protons and
anti-protons for any given definition of the event plane angle �EP.

plane of the anti-protons. To illustrate this we have plotted
in Fig. 12 the integrated v̄2 for protons and anti-protons as
a function of a trial event plane angle �EP.3 Obviously, for
�EP = �

[p]
EP and �EP = �

[p̄]
EP the values of v̄2 are maximal for

protons and anti-protons, respectively, indicating the correct
direction of the respective event planes. Furthermore, one can
clearly see that the maxima for protons and anti-protons are
separated by a finite angle.

Since at low collision energies protons are much more
abundant than anti-protons, it is likely that the determination
of the event plane is biased towards the direction of the proton
event plane, �

[p]
EP . As a consequence, in each event the value

extracted for v2 of anti-protons will be less than the maximum,
as shown in Fig. 11. Thus, the event averaged value for the
integrated elliptic flow for anti-protons will be systematically
smaller than that of protons, even if their true values would be
the same.

At (nearly) vanishing net baryon densities this is not of
importance because one has as many baryons as antibaryons
and there is no bias towards either the proton or anti-proton
event plane. In the case of baryon antibaryon asymmetry
however, the event plane definition will always be biased
towards the particle plane. In the energy range considered
we estimated this effect to contribute to the difference of the
flow by about 5–10%, by averaging the relative difference of
the peak positions over many events. Note however, that this
effect could be excluded if the event plane/reaction plane can
be measured independently, e.g., from the spectator fragments,
thus eliminating any bias.

V. SUMMARY

We have presented results calculated within the URQMD
hybrid model for various observables from heavy ion

3The curves are obtained by calculating one event and evaluating
v̄2 = 〈cos[2(φ − �EP)]〉 for values of −π < ψEP < π .

044903-9



J. STEINHEIMER, V. KOCH, AND M. BLEICHER PHYSICAL REVIEW C 86, 044903 (2012)

collisions. The hybrid model is able to take into account the
initial stopping, the explicit propagation of the baryon number,
and the nonequilibrium transport in the hadronic phase, all of
which are essential ingredients for studies of relativistic heavy
ion collisions at large net baryon densities.

We find the observed nonmonotonic behavior of Teff with
hadron mass to be a direct consequence of the nonequilibrium
transport in the hadronic phase. Observations like the centrality
dependence of freeze-out parameters and the difference in
particle and antiparticle spectra and elliptic flow, on the other
hand, can, at least partially, be explained by the conservation
of baryon charge.

We have argued that the observed difference in the elliptic
flow between positively and negatively charged pions and
kaons may likely be a consequence of the conserved net
strangeness and isospin. Thus, future theoretical studies of
heavy ion collisions at low energies should take into account
the explicit conservation of these charges in addition to the
baryon number conservation. We further pointed out that a
transport treatment of the final hadronic phase should include
both proton–anti-proton annihilation and production processes

to ensure detailed balance. This is essential to draw firm
conclusions about the physics leading to subtle difference
between particle and antiparticle observables at low collision
energies, such as the observed difference in the elliptic flow.
Finally, we have pointed out that local fluctuations of the
baryon number may lead to a biased determination of the
event plane which may result in artificial differences between
particle and antiparticle flow observables.
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