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Quantifying short-range correlations in nuclei
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Background: Short-range correlations (SRC) are an important ingredient of the dynamics of nuclei.
Purpose: An approximate method to quantify the magnitude of the two-nucleon (2N) and three-nucleon (3N)
short-range correlations and their mass dependence is proposed.
Method: The proposed method relies on the concept of the “universality” or “local nuclear character” of the SRC.
We quantify the SRC by computing the number of independent-particle model (IPM) nucleon pairs and triples
which reveal beyond-mean-field behavior. It is argued that those can be identified by counting the number of
nucleon pairs and triples in a zero relative orbital momentum state. A method to determine the quantum numbers
of pairs and triples in an arbitrary mean-field basis is outlined.
Results: The mass dependence of the 2N and 3N SRC is studied. The predictions are compared to measurements.
This includes the ratio of the inclusive inelastic electron scattering cross sections of nuclei to 2H and 3He at large
values of the Bjorken variable. Corrections stemming from the center-of-mass motion of the pairs are estimated.
Conclusions: We find that the relative probability per nucleon for 2N and 3N SRC has a soft dependence with
mass number A and that the proton-neutron 2N SRC outnumber the proton-proton (neutron-neutron) 2N SRC.
A linear relationship between the magnitude of the EMC effect and the predicted number of proton-neutron SRC
pairs is observed. This provides support for the role of local nuclear dynamics on the EMC effect.
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I. INTRODUCTION

We define the nuclear packing factor (NPF) as the fraction
of the nuclear volume that is occupied by nucleons. A rough
order of magnitude estimate of the NPF can be arrived at
using uniform spheres for the nuclear and nucleon density.
The nuclear radius RA can be reasonably determined from
RA = 1.2(fm) A1/3. It is not obvious what value of the nucleon
radius rN should be used. In models of relativistic heavy-ion
collisions, it is customary [1] to use expulsion distances d,
which simulate the hard-core NN repulsion, of the order of
1 fm, corresponding with rN ≈ 0.5 fm. This leads to NPF =
0.07. A recent reanalysis of electron scattering data resulted in
a root-mean-square charge radius of the proton rc

p =
√

〈r2
p〉 =

0.897(18) fm [2]. Assuming that the rc
p is an estimate of the

proton and neutron radius, one arrives at NPF = (
rc
p(fm)
1.2 )3 =

0.42. It is clear that the computed NPF is very sensitive to
the adopted value of the nucleon radius. The estimate of the
NPF on the basis of rc

p should be considered as an upper limit.
Indeed, the established value of the nuclear saturation density
of 0.17 nucleons/fm corresponds with a mean internucleon
distance of 1.8 fm, implying that rN � 0.9 fm.

From the above, it is clear that one expects that the nucleus
is more like a saturated quantum liquid than a gas of freely
moving nucleons. Accordingly, the nuclear wave functions re-
ceive large corrections from short-range (SRC) and long-range
correlations. These days it is common practice to implement
the effect of SRC in nuclear computations. Examples include
the calculations of matrix elements for double-β decay [3], of
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event simulations in heavy-ion collisions [4], and of hadron
transparencies in nuclei [5].

The EMC effect [6] is the reduction of the cross section for
leptonic scattering off a nucleon bound in a nucleus relative
to that of a free nucleon (mass MN ). The EMC effect was
observed in deep inelastic scattering (DIS) experiments on
nuclei at high virtual-photon virtualities Q2 = q2 − ω2 � 2
GeV2 for Bjorken xB = Q2

2MN ω
in the range 0.3 � xB � 0.7.

The ratio of per nucleon cross sections is denoted by R = 2
A

σA

σD

where σA is the cross section for leptonic scattering from the
target A. The magnitude of the EMC effect can be quantified
by means of the slope − dR

dxB
[7]. Another remarkable feature

of the ratio R is that it adopts a constant value [this factor is
commonly referred to as the SRC scaling factor a2(A/D)]
for 1.5 � xB � 2 and moderate values of Q2 [8–10]. It has
been suggested [11] that the a2(A/D) can be related to the
high-momentum components of the nuclear wave functions.
A phenomenological linear relationship between the a2(A/D)
and the magnitude of the EMC effect expressed as − dR

dxB
has

been observed [12–14]. This indicates that the magnitude of
the European Muon Collaboration (EMC) effect may be driven
by SRC. In this picture, the magnitude of the EMC effect is
(partly) related to the temporal local density fluctuations which
are induced by the high virtualities of the leptonic probe.
Recent measurements [7] corroborate this relation between
the local nuclear environment and the magnitude of the EMC
effect.

Given an arbitrary nucleus A(N,Z), we address the issue
of quantifying the number of two-nucleon (2N) pairs prone to
SRC and the number of three-nucleon (3N) triples prone to
SRC. Along the same lines, we investigate to what extent the
mass dependence of the NN SRC can be captured by some
approximate principles. We wish to develop a robust method
which is applicable to any nucleus from He to Pb. From this
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method we expect, for example, that it allows one to study the
mass dependence of the SRC without combining results from
various types of calculations.

Momentum distributions contain the information about
1N, 2N, 3N, . . . properties of the nuclear ground state.
Over the years, various methods to compute the nuclear 1N
and 2N momentum distributions have been developed. Ab
initio calculations which solve the Schrödinger equation with
realistic nucleon-nucleon interactions are available for light
nuclei such as 4He [15–17]. For medium-weight nuclei (12 �
A � 40), truncation schemes based on cluster expansions can
be adopted [18]. Correlated basis function theory has been
applied to compute ground-state densities and momentum
distributions for doubly closed-shell nuclei from 12C to 208Pb
[19,20]. Thanks to the enormous progress in theoretical
many-body nuclear physics and the availability of nuclear
momentum distributions in a broad mass range, times are ripe
to learn more about SRC, for example, by mapping its A and
isospin dependence. It remains notoriously difficult, though,
to establish quantitative relationships between observables and
the computed momentum distributions [11,21–25]. Here, we
do not attempt a high-precision calculation of momentum
distributions. Our goal is to gather insight into the mass
and isospin dependence of the SRC from stylized facts of
momentum distributions.

In a mean-field model, fluctuations are completely ignored.
The SRC induce spatiotemporal fluctuations from the mean-
field predictions for the nuclear density distributions, for exam-
ple. As a result of SRC, realistic nuclear wave functions reflect
the coexistence of single nucleon (mean-field) structures and
cluster structures. The clusters account for beyond-mean-field
behavior. As the nucleon-nucleon interaction is short ranged,
the clusters attributed to SRC are predominantly 2N. The
central result of this paper asserts that the amount of 2N and
3N SRC in nuclei can be reasonably quantified by counting
the number of nucleon pairs and triples in a zero relative
orbital state in a mean-field ground-state wave function. In
order to quantify the isospin dependence of the 2N and 3N
correlations, additional information about the spin dependence
of the clusters is necessary.

This paper is organized as follows. Section II is devoted
to a discussion of momentum distributions and of how they
can be used to quantify the mass and isospin dependence
of SRC. In Sec. III, we address the issue as to whether
inclusive electron scattering data can be linked to the number
of correlated 2N and 3N clusters. Thereby, we deal with

both the a2(A/D) coefficient and the magnitude of the EMC
effect.

II. QUANTIFYING NUCLEAR CORRELATIONS

In this section, we start from stylized facts of nuclear
momentum distributions in order to arrive at criteria to quantify
the 2N and 3N SRC in nuclei. Our focus is on their mass
dependence.

A. Nuclear momentum distributions

In this section, we provide the definitions and normalization
conventions of the nuclear momentum distributions used here.
For the sake of the simplicity of the notations, we will only
consider the positional degrees of freedom. Unless stated
otherwise, the spin and isospin degrees of freedom are not
explicitly written in the expressions.

The one-body momentum distribution of nuclei is defined
as

P1(�k) = 1

(2π )3

∫
d�r1

∫
d�r ′

1 ei�k·(�r1−�r ′
1 )ρ1(�r1, �r ′

1 ), (1)

where ρ1(�r1, �r ′
1 ) is the one-body nondiagonal density matrix

ρ1(�r1, �r ′
1 ) =

∫
{d�r2−N } �∗

A (�r1, �r2, �r3, . . . , �rA)

×�A(�r ′
1 , �r2, �r3, . . . , �rA). (2)

Here, �A is the ground-state wave function of the nucleus A

and the notation

{d�ri−N } = d�rid�ri+1 . . . d�rA (3)

has been introduced. For 〈�A|�A〉 = 1, one has that∫
d�kP1(�k) = 1. (4)

We introduce relative and center-of-mass (c.m.) coordinates
of nucleon pairs in coordinate (�r12, �R12) and momentum space
(�k12, �P12),

�r12 = �r1 − �r2√
2

, �R12 = �r1 + �r2√
2

, (5)

�k12 =
�k1 − �k2√

2
, �P12 =

�k1 + �k2√
2

, (6)

and define the two-body momentum distribution in the
standard fashion as

P2(�k12, �P12) = 1

(2π )6

∫
d�r12

∫
d �R12

∫
d�r ′

12

∫
d �R ′

12e
i�k12·(�r12−�r ′

12)ei �P12·( �R12− �R ′
12)ρ2(�r12, �R12; �r ′

12,
�R ′

12). (7)

Here, ρ2(�r12, �R12; �r ′
12,

�R ′
12) is the two-body nondiagonal density matrix

ρ2(�r12, �R12; �r ′
12,

�R ′
12) = ρ2

(
�r1 = +�r12 + �R12√

2
, �r2 = −�r12 + �R12√

2
; �r ′

1 = +�r ′
12 + �R ′

12√
2

, �r ′
2 = −�r ′

12 + �R ′
12√

2

)
=

∫
{d�r3−N } �∗

A (�r1, �r2, �r3, . . . , �rA) �A

(�r ′
1 , �r ′

2 , �r3, . . . , �rA

)
. (8)

044619-2



QUANTIFYING SHORT-RANGE CORRELATIONS IN NUCLEI PHYSICAL REVIEW C 86, 044619 (2012)

One has the normalization condition∫
d�k12

∫
d �P12P2(�k12, �P12) = 1. (9)

In a spherically symmetric system, the two-body momentum
distribution P2(�k12, �P12) depends on three independent vari-
ables. One of the most obvious choices [26] is

(|�k12|, | �P12|, θ�k12 �P12
), (10)

where θ�k12 �P12
is the angle between �P12 and �k12.

The distributions P1(�k) and P2(�k12, �P12) reflect all informa-
tion about one-nucleon and two-nucleon properties contained
in the ground-state wave function. Other quantities can be
directly related to them. Here, we list some of the most
frequently used ones.

The two-body c.m. momentum distribution is defined as
(d �P12 = P 2

12dP12d	P12 )

P2(P12) =
∫

d�k12

∫
d	P12P2(�k12, �P12). (11)

The quantity P 2
12P2(P12)dP12 is related to the probability of

finding a nucleon pair in A with c.m. momentum P12 =
| �P12| irrespective of the value and direction of the relative
momentum �k12 of the pair. The P2(P12) receives contributions
from the proton-proton, neutron-neutron, and proton-neutron
pairs

P2 (P12) = P
pp
2 (P12) + P nn

2 (P12) + P
pn
2 (P12) . (12)

In a spherically symmetric nucleus, it is convenient to
introduce the quantities

n1(k) =
∫

d	kP1(�k), (13)

n2 (k12, P12) =
∫

d	k12

∫
d	P12P2(�k12, �P12). (14)

The quantity n1(k)k2dk gives the probability of finding
a nucleon with a momentum in the interval [k, k + dk].
The n2(k12, P12)k2

12dk12P
2
12dP12 is the combined proba-

bility of finding a nucleon pair with a relative mo-
mentum in [k12, k12 + dk12] and c.m. momentum in
[P12, P12 + dP12].

B. Mean-field approximation and beyond

A time-honored method to account for the effect of corre-
lations in classical and quantum systems is the introduction of
correlation functions. Realistic nuclear wave functions |�〉 can
be computed after applying a many-body correlation operator
to a Slater determinant |�MF〉:

|�A〉 = 1√〈
�MF

A

∣∣Ĝ†Ĝ
∣∣�MF

A

〉 Ĝ∣∣�MF
A

〉
. (15)

The nuclear correlation operator Ĝ is complicated but as far as
the short-range correlations are concerned, it is dominated by

the central, tensor, and spin correlations [27]

Ĝ ≈ Ŝ
[

A∏
i<j=1

(1 − gc(rij ) + ftτ (rij )Sij �τi · �τj

+ fsτ (rij )�σi · �σj �τi · �τj )

]
, (16)

where gc(r12), ftτ (r12), fsτ (r12) are the central, tensor, and
spin-isospin correlation function, Ŝ the symmetrization oper-
ator, and S12 the tensor operator:

S12 = 3

r2
12

�σ1 · �r12 �σ2 · �r12 − �σ1 · �σ2

=
√

24π

5

∑
ML

(−1)MLY2ML

(
	r12

)
[�σ1 ⊗ �σ2]2−ML

. (17)

The operator S12 admixes relative two-nucleon states of
different orbital angular momentum, is operative on triplet
spin states only, and conserves the total angular momentum of
the pair.

We stress that the correlation functions can not be consid-
ered as universal and that in some many-body approaches, par-
ticularly for light nuclei, they do not appear. The momentum
distributions which result from the calculations depend on the
interplay between many factors, including the choices made
with regard to the nucleon-nucleon interaction, the single-
particle basis (if applicable), the many-body approximation
scheme, etc. As a matter of fact, different nucleon-nucleon
interactions and many-body approaches may produce, particu-
larly in the region of SRC (short distances and high momenta),
momentum distributions which are very similar (see, e.g.,
Refs. [15,17,28,29]).

The gc(r12) quantifies how strongly two pointlike nucleons
treated as quasiparticles are spatially correlated when they
are a distance r12 apart. The gc(r12) gives rise to local
density fluctuations about the mean-field predictions from
the reference state |�MF

A 〉. The GD gc(r12) (computed for
nuclear matter) from Fig. 1 is not very different from the one
for monoatomic molecules in a liquid. Indeed, for r12 → 0,
one has that the GD gc(r12) → 1 which reflects the fact that
nucleons have a finite size (or, in other words, they are subject
to a nucleon-nucleon interaction with a hard core). For values
of r12 which are larger than a few times the diameter of a
nucleon, the gc(r12) → 0. From this we conclude that the
fluctuations from the mean-field (MF) densities are confined
to short internucleon distances. Therefore, the 2N SRC are a
highly local property and are insensitive to the properties of
the other surrounding nucleons. This is the fundamental reason
why SRC can be considered as “universal” [17]. Whereas a
large model dependence for the gc is observed, the ftτ seems
to be much better constrained. We have added the squared
D-wave component of the deuteron wave function �D(k12) in
Fig. 1. Obviously, the momentum dependence of |ftτ (k12)|2
and the deuteron momentum distribution nD ≡ |�D(k12)|2 are
highly similar.

The effect of the correlation functions on the momentum
distributions can be roughly estimated from their squared
Fourier transforms. The effect of the tensor correlation
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FIG. 1. (Color online) The radial and momentum dependence of a
central and some tensor correlation functions. The central correlation
function “GD” is for nuclear matter and from Ref. [30]. The tensor
correlation function “Pieper” is for 16O and from Ref. [28], the “CBF”
one is for 16O and from Ref. [29], and the “cluster” one is for 16O and
from Ref. [31], �D (k12) is the l = 2 component of the nonrelativistic
deuteron wave function generated with the Paris potential [32,33]
(not to scale).

function is largest for moderate relative momenta (100 �
k12 � 500) MeV. For very large k12, the gc is the dominant
contribution. The harder the gc(r12), the stronger the effect
of correlations. We stress that in the plane-wave impulse
approximation, the SRC contribution to the (e, e′pp) cross
section is proportional to |gc(k12)|2 [25].

After introducing the wave functions of Eq. (15), the one-
and two-body momentum distributions of Eqs. (1) and (7) can
be written as

P1(�k) = P
(0)
1 (�k) + P

(1)
1 (�k), (18)

P2(�k12, �P12) = P
(0)
2 (�k12, �P12) + P

(1)
2 (�k12, �P12). (19)

The P
(0)
1 and P

(0)
2 are the mean-field parts and are fully

determined by the Slater determinant |�MF
A 〉. After inserting

the expressions (1) and (2) into Eq. (13), one obtains

n
(0)
1 (k)

=
∫

d	kP
(0)
1 (�k)

= 2

π

∑
nhlhjh

(2jh + 1) Snhlhjh

(∫
dr r2jlh (kr)ψnhlhjh

(r)

)2

,

(20)

where jl(r) is the spherical Bessel function of the first
kind and the sum extends over all occupied single-particle
states. The 0 � Snhlhjh

� 1 is the occupation probability of
the corresponding single-particle state. The presence of short-
and long-range correlations leads to occupation probabilities
smaller than one. With the adopted normalization convention
of Eq. (4), one typically obtains that∫

dk k2n
(0)
1 (k) ≈ 0.6−0.8 (21)
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FIG. 2. (Color online) The computed k2n
(0)
1 (k) versus k for the

nuclei 12C, 56Fe, and 208Pb and a Boltzmann fit including the error
bars. The extracted values of kT are 12.0 ± 0.5 MeV (C), 14 ±
1 MeV (Fe), and 16 ± 1 MeV (Pb). The calculations are performed
with WS single-particle states. The adopted normalization convention
is

∫
dk k2 n

(0)
1 (k) = 1.

or about 60%–80% of the nucleons are mean field like. We
stress that a considerable fraction of this depletion can be
attributed to long-range correlations, an effect which is not
considered here.

The distribution k2n
(0)
1 (k) as it can be computed from

Eq. (20) is reminiscent for a phenomenon which is confined
to a certain scale or, in other words, it is Gaussian like.
The typical scale is determined by the Fermi momentum
kF ≈ 250 MeV. This is illustrated in Fig. 2 where we show
the momentum dependence of the k2n

(0)
1 (k) for 12C, 56Fe, and

208Pb as computed with Woods-Saxon (WS) wave functions.
For the sake of curiosity, we have fitted the computed k2n

(0)
1 (k)

with a Boltzmann distribution

4π

(2πMNkT )3/2 k2 exp − k2

2MNkT
. (22)

The results of the one-parameter fit are shown in Fig. 2. The fit
is remarkably good for carbon and gets increasingly inaccurate
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with increasing mass number. From the fit of the Boltzmann
distribution, we obtain kT ≈ 12 MeV (C), kT ≈ 14 MeV
(Fe), kT ≈ 16 MeV (Pb). Accordingly, for the IPM part of
the momentum distribution, the typical energy exchange per
momentum degree of freedom 1

2kT is of the order of 6–8 MeV.

The correlated part k2n
(1)
1 (k), on the other hand, is remi-

niscent of the nucleus as a system of interdependent nucleons
and is obviously non-Gaussian. In contrast to the mean-field
part n

(0)
1 , the correlated part n

(1)
1 extends over “all” momentum

scales. Or, in other words, the 2N, 3N, . . . correlations generate
a fat momentum tail to the n1(k). The high-momentum tails
to n1(k) have a very similar form for all nuclei, including
the deuteron, which alludes to some universal character of
SRC [17].

It has been theoretically predicted [34–36] and experi-
mentally confirmed in semiexclusive A(e, e′p) measurements
[37] that the major fraction of the n

(1)
1 (k > kF ) strength is

contained in very specific parts of the single-nucleon removal
energy-momentum phase space, namely, those where the
ejected nucleon is part of a pair with high relative and small
c.m. momentum. This is the so-called ridge in the spectral
function [35], which reflects the fact that high-momentum
nucleons in the one-body momentum distribution are related
to 2N dynamics with two nucleons which are close and
move back-to-back with approximately equal and opposite
momenta.

From recent calculations [26] of the two-body momentum
distributions in 3He and 4He, the following conclusions could
be drawn. At high relative momenta and small c.m. momenta,
the c.m. and relative motion of the pair are decoupled, an
effect which is reminiscent of 2N SRC. For the correlated
pn pairs, the relative motion can be described by the high-
momentum part of the deuteron wave function. This suggests
the following expression for the correlated part of the pn two-
body momentum distribution:

n
(1)
2 (2kF � k12, P12 � 150 MeV)

≈ apn (A,Z) nD (k12) F pn (P12) , (23)

where apn(A,Z) is a proportionality factor related to the
number of correlated proton-neutron pairs in the nucleus AZ

relative to the deuteron and nD(k12) is the high-k12 deuterium
momentum distribution. Further, the F pn(P12) is the c.m.
distribution of the correlated pn pairs. It corresponds with
that part of P2(P12) of Eq. (11) that stems from pn pairs with a
zero relative orbital angular momentum l12 = 0 and a total spin
S = 1. The proposed scaling behavior (23) can be attributed
to the dominance of the tensor correlations at medium relative
momenta and the fact that |ftτ (k12 > kF )|2 ∼ |�D(k12)|2, two
qualitative observations which can made from Fig. 1.

C. Quantifying two-nucleon correlations

We suggest that the significance of 2N correlations in a
nucleus A(N,Z) is proportional to the number of relative
l12 = 0 states [21]. There are experimental results support-
ing this conjecture. First, in high-resolution 16O(e, e′pp)14N
measurements performed at the electron accelerators in

Amsterdam [38] and Mainz [39], the quantum numbers of
the target nucleus and the residual nucleus are unambiguously
determined. For the transitions to low-lying states in the
residual nucleus, the eightfold differential cross section for
the exclusive (e, e′pp) reaction has been studied as a function
of the initial c.m. momentum P12 of the proton-proton pair
which is involved in the reaction process. This has provided
insight into the quantum numbers of the pairs involved in the
reaction process. We denote by |l12(�r12),�12( �R12)〉 the orbital
wave function corresponding with the relative and c.m. motion
of a nucleon pair. For the ground-state (g.s.) to g.s. transition,
for example,

16O(0+, g.s.) + e −→14 C(0+, g.s.) + e′ + pp, (24)

the active diproton resides in a state with quantum numbers
|l12 = 0,�12 = 0〉 at lower P12 and |l12 = 1,�12 = 1〉 at
higher P12. Two independent calculations from the Pavia and
Ghent groups have demonstrated that the largest contributions
from SRC to the eightfold cross section are confined to
low-P12 values [39]. This provides direct evidence of pp
correlations being confined to |l12 = 0,�12 = 0〉 pairs. In that
sense, the 16O(e, e′pp)14N measurements nicely confirmed the
back-to-back picture of SRC: diprotons are subject to SRC
whenever they happen to be close (or in a relative l12 = 0
state) and moving back-to-back (or in a state with P12 ≈ 0
which corresponds with �12 = 0).

High-resolution (e, e′pn) measurements which have the po-
tential to access the pn correlations are very challenging [40].
Theoretical (e, e′pn) calculations [35,41,42] have predicted
that the tensor parts of the SRC are responsible for the fact
that the correlated pn strength is typically a factor of 10
bigger than the correlated pp strength. Calculations indicated
that the tensor correlations are strongest for pn pairs pairs
with “deuteronlike” |l12 = 0, S = 1〉 relative states [41,42].
Recently, the dominance of the pn correlations over pp and nn
ones has been experimentally confirmed [43,44].

Accordingly, a reasonable estimate of the amount of
correlated nucleon pairs in A(N,Z) is provided by the number
of pairs in a l12 = 0 state. In order to determine that number
for a given set of single-particle states, one needs a coordinate
transformation from (�r1, �r2) to (�r12 = �r1−�r2√

2
, �R12 = �r1+�r2√

2
). For

a harmonic oscillator (HO) Hamiltonian, this transformation
can be done with the aid of Moshinsky brackets [45]

|n1l1 (�r1) n2l2 (�r2) ; LML〉
=

∑
n12l12N12�12

〈n12l12N12�12; L|n1l1n2l2; L〉

× |n12l12(�r12)N12�12( �R12); LML〉. (25)

We define the interchange operator for the spatial, spin, and
isospin coordinate as

P12 = P12 (�r1, �r2)P12 (�σ1, �σ2)P12 (�τ1, �τ2) . (26)

After introducing the spin and isospin degrees of freedom, in
a HO basis a normalized and antisymmetrized two-nucleon
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state reads as [αi ≡ (niliji ti)]

|α1α2; JM〉na = 1√
2(1 + δα1α2 )

(1 − P12) |α1 (�r1) α2 (�r2) ; JM〉

=
∑
LML

∑
n12l12

∑
N12�12

∑
SMS

∑
T MT

1√
2
(
1 + δα1α2

) [
1 − (−1)l12+S+T

] 〈n12l12N12�12; L|n1l1n2l2; L〉

×ĵ1ĵ2L̂Ŝ

⎧⎨⎩
l1 l2 L
1
2

1
2 S

j1 j2 J

⎫⎬⎭〈LMLSMS |JM〉
〈

1

2
t1

1

2
t2

∣∣∣∣T MT

〉
|[n12l12 (�r12), N12�12( �R12)]LML, SMS, T MT 〉, (27)

where we have used the shorthand notation ĵ ≡ √
2j + 1.

With the above conventions, one has that the total amount
of proton-neutron pairs can be obtained from a sum over all
pn pairs in the nuclear ground state∑

JM

∑
α1�α

p

F

∑
α2�αn

F

na〈α1α2; JM|α1α2; JM〉na = NZ, (28)

where α
p

F and αn
F denote the Fermi level for the proton and

neutron. Similar expressions hold for the number of proton-
proton and neutron-neutron pairs:

Z(Z − 1)

2
=

∑
JM

∑
α1�α

p

F

∑
α2�α

p

F

na〈α1α2; JM|α1α2; JM〉na,

(29)

N (N − 1)

2
=

∑
JM

∑
α1�αn

F

∑
α2�αn

F

na〈α2α2; JM|α1α2; JM〉na.

(30)

Starting from Eq. (27), one can compute in a HO single-particle
basis how much a pair wave function with quantum numbers

|[n12l12(�r12), N12�12( �R12)]LML, SMS, T MT 〉 (31)

contributes to the sum rules of Eqs. (28), (29), and (30). This
can also be done for any other basis |nljm〉 of nonrelativistic
single-particle states. In that case, the adopted procedure
involves an extra expansion of |nljm〉 in a HO basis

|nljm〉 =
∑
mlms

〈
lml

1

2
ms

∣∣∣∣jm

〉
ψnlj (r)Ylml

(	) χ 1
2 ms

=
∑
nH

(∫
dr r2φ∗

nH l(r)ψnlj (r)

)
|nH ljm〉, (32)

where φnH l(r) are the radial HO wave functions. A two-nucleon
state can then be expressed in a HO basis for which the
Eq. (27) can be used to determine the weight of the pair wave
functions of Eq. (31).

The IPM pp pairs are mainly subject to the central SRC
which requires them to be close. This implies that a reasonable
estimate of the number of IPM pp pairs which receive
substantial corrections from the SRC is given by an expression
of the type

Npp(A,Z)

=
∑
JM

∑
α1�α

p

F

∑
α2�α

p

F

na〈α1α2; JM|P l12=0
�r12

|α1α2; JM〉na, (33)

where P l12=0
�r12

is a projection operator for two-nucleon relative
states with l12 = 0. A similar expression to Eq. (33) holds for
the nn pairs. For the pn pairs it is important to discriminate
between the triplet and singlet spin states

Npn(S)(A,Z)

=
∑
JM

∑
α1�α

p

F

∑
α2�αn

F

na〈α1α2; JM|P l12=0
�r12

PS
�σ |α1α2; JM〉na.

(34)

In Fig. 3, we display some computed results for the Npp,
Nnn, and Npn(S) for 11 nuclei. The selection of the nuclei is
motivated by the availability of inclusive electron-scattering
data and covers the full mass range from helium to gold.
We have opted to display the results relative to the sum-rule
values of Eqs. (28) and (29), which allow one to interpret
the results in terms of probabilities: Given an arbitrary pair
wave function, what is the chance that it has zero orbital relative
momentum and a specific spin quantum number? In a naive
IPM picture for 4He, the pp pair is in a |l12 = 0, S = 0, T = 1〉
state. As this 2N configuration is prone to central SRC effects,
the corresponding probability is 1. The physical interpretation
is that for 4He “all” IPM pp-pair wave-function combinations
receive corrections from SRC. For a medium-heavy nucleus
such as 56Fe or 63Cu, we find Npp

Z(Z−1)
2

≈ 0.1, which leads one to

conclude that about 90% of the IPM pp pair wave functions
do not receive corrections from central SRC. For the heaviest
nucleus considered here (Au) 2Npp

Z(Z−1) = 0.06, which means that
only about 190 out of the 3081 possible pp pair combinations
are subject to SRC.

By comparing the mass dependence of the pp and nn results
of Fig. 3, one observes similar trends. For the pn results, a
softer decrease with increasing A is predicted. There are about
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FIG. 3. (Color online) The computed values for 2
Z(Z−1) Npp,

2
N(N−1) Nnn, and 1

(NZ) Npn(S) which represent the predicted fraction of
the pairs which are prone to SRC. The results are obtained for HO
single-particle wave functions with h̄ω(MeV) = 45A− 1

3 − 25A− 2
3

and for the target nuclei 4He, 9Be, 12C, 16O, 27Al, 40Ca, 48Ca, 56Fe,
63Cu, 108Ag, and 197Au.

three times as many pn(T = 0) states than pn(T = 1) states
with l12 = 0. This would be trivial in a system with only spin
and isospin degrees of freedom. In a system in which the
kinetic energy plays a role and in which there are spin-orbit
couplings, we can not see any trivial reason why this should be
the case. In this respect, we wish to stress that for most nuclei
discussed, N 
= Z. A stronger criterion for selecting nucleon
pairs at close proximity is imposing n12 = 0 in addition to
l12 = 0, and we have added also those results to Fig. 3. We
find the results of Fig. 3 robust in that the A dependence and
magnitudes are not very sensitive to the choices made with
regard to the single-particle wave functions. All the results of
Fig. 3 are displayed on a log-log plot and can be reasonably
fitted with a straight line, pointing towards a power-law mass
dependence Aα for the Npp, Npn, and Npn(S).

FIG. 4. (Color online) Use of Jacobi coordinates in the ppn system.

D. Quantifying three-nucleon correlations

In order to quantify the magnitude of the 3N correlations
for an arbitrary A(N,Z), we build on a recent paper by
Feldmeier et al. [17]. There, it is pointed out that 3N
correlations can be induced without introducing genuine three-
body forces. In terms of the correlation operators of Sec. II B,
three-body correlations will naturally emerge in cluster ex-
pansions by means of operators of the type gc(r12)gc(r13),
gc(r12)ftτ (r13), . . . .

The strongest source of three-nucleon correlations is the
tensor correlation operator acting on the (S = 1, T = 0) chan-
nel of the pn states of Eq. (27). We consider ppn configurations
and explain one possible mechanism to create a correlated
state (see also Fig. 4). In the uncorrelated wave function,
one has a n(1)p(2) pair in a |l12 = 0 S12 = 1; T12 = 0〉 state
and a p(2)p(3) pair in a |l23 = 0 S23 = 0; T23 = 1〉 state.
Accordingly, both pairs are in relative l = 0 states. In Ref. [17],
it is explained that these two pairs can be brought into a
correlated three-nucleon status by flipping the spin of proton
2. In the correlated part of the wave function, one has an
n(1)p(2) pair in a |l12 = 2 S12 = 1; T12 = 0〉 and an p(2)p(3)
pair in a |l23 = 1 S23 = 1; T23 = 1〉 state. This configuration
can be energetically favorable through the presence of the
strong tensor correlation in the pn pair. Indeed, the energy
gain through the tensor induced n(1)p(2) correlation can
compensate for the energy loss of breaking the pairing in the
p(2)p(3) pair.

Given A(N,Z), we propose to find all the antisymmetrized
3N states with orbital quantum numbers

(n12 = 0 l12 = 0 n(12)3 = 0 l(12)3 = 0) (35)

in the IPM wave function and identify them as the dominant
contributors to 3N SRCs. This corresponds with seeking
for those 3N wave-function components where all three
nucleons are “close.” This can be technically achieved by
constructing antisymmetrized 3N states starting from a MF
Slater determinant, and performing a transformation from
the particle coordinates (�r1, �r2, �r3) to the internal Jacobi
coordinates (�r12, �r(12)3, �R123)

�r(12)3 =
�R12 − √

2�r3√
3

, �R123 =
√

2 �R12 + �r3√
3

. (36)
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One readily finds for uncoupled three-nucleon states in a HO basis [45]∣∣n1l1ml1 (�r1) , n2l2ml2 (�r2) , n3l3ml3 (�r3)
〉

=
∑
LML

∑
n12l12

∑
N12�12

∑
L1ML1

∑
n(12)3l(12)3

∑
N123�123

∑
ml12 m�12

∑
ml(12)3 m�123

〈
l1ml1 l2ml2

∣∣LML

〉〈
l12ml12�12M�12

∣∣LML

〉
×〈

�12M�12 lcmlc

∣∣L1ML1

〉〈
l(12)3ml(12)3�123M�123

∣∣L1ML1

〉〈n12l12N12�12; L|n1l1n2l2; L〉〈n(12)3l(12)3N123�123;

L1|N12�12n3l3; L1〉β
∣∣n12l12ml12 (�r12)

〉|n(12)3l(12)3ml(12)3 (�r(12)3)〉|N123�123M�123 ( �R123)〉, (37)

where we have adopted the notation 〈. . . | . . .〉β for the standard
transformation brackets (STB) [45].

Antisymmetrized (a) uncoupled three-nucleon states can
be obtained from the three-nucleon wave functions of Eq. (37)
using the interchange operator of Eq. (26):

|αama, αbmb, αcmc〉a
= [1 − P12] |αama (�r1) , αbmb (�r2) , αcmc (�r3)〉

+ [1 − P12] |αbmb (�r1) , αcmc (�r2) , αama (�r3)〉
+ [1 − P12] |αcmc (�r1) , αama (�r2) , αbmb (�r3)〉. (38)

The total number of ppn triples can now be expressed as

N
Z(Z − 1)

2
=

∑
αa,αb�α

p

F

∑
αc�αn

F

∑
mambmc

na〈αama,

αbmb, αcmc|αamaαbmbαcmc〉na, (39)

which allows for a stringent test of the analytical derivations
and their numerical implementation. Along similar lines to
those used to derive the number of correlated 2N clusters in
Eq. (33), the number of ppn triples with the orbital quantum
numbers of Eq. (35) can be obtained from

Nppn(A,Z) =
∑

αa,αb�α
p

F

∑
αc�αn

F

∑
mambmc

na〈αama, αbmb,

αcmc|Pn12=0,l12=0
�r12

Pn(12)3=0,l(12)3=0
�r(12)3

×|αama, αbmb, αcmc〉na. (40)

We associate the Nppn(A,Z) with the number of ppn SRC
triples. The A dependence of Nppn(A,Z) is displayed in
Fig. 5. There is striking linear correlation between the
logarithm of the mass number and the logarithm of the number
of ppn triples which are close in the MF ground-state wave
function.

III. RESULTS

In this section, we discuss how our predictions for the
number of correlated 2N pairs and correlated 3N triples can be
connected with experimental results from inclusive electron
scattering.

A. Separation of the correlation and mean-field contributions

We start with illustrating that the separation of the mean-
field and correlated contributions to the inclusive A(e, e′) cross
sections is feasible. In order to achieve this, we use stylized
features of the n1(k) in Monte Carlo (MC) simulations to
illustrate that a separation between the mean-field n

(0)
1 (k) and

the correlated n
(1)
1 (k) part can be made in the A(e, e′) signal.

We assume that quasielastic single-nucleon knockout
e + A → e′ + (A − 1) + N is the major source of A(e, e′)
strength. With q(ω, �q), pA(MA, �0), pA−1(EA−1, �pA−1),
pf (EN, �pf ), we denote the four-momenta of the virtual
photon, of the target nucleus, of the residual A − 1 system, and
of the ejected nucleon. From energy-momentum conservation

q + pA − pA−1 = pf , (41)

one can deduce for A = 2 a relation between the minimum
of the missing momentum �pm = �pf − �q and the Bjorken
scaling variable xB for fixed Q2 [46]. The results are shown in
Fig. 6. Obviously, for Q2 � 1.5 GeV2 and xB > 1.5, one
mainly probes nucleons with a momentum well above the
Fermi momentum for the deuteron. For finite nuclei, the
situation is more involving as A − 1 represents an additional
degree of freedom which can carry a fraction of the transferred

 1
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 10  100

N
um
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of
 p
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 tr

ip
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0.28 A1.58

ppn

FIG. 5. (Color online) The mass dependence of the amount of ppn
triples with quantum numbers |n12 = 0 l12 = 0, n(12)3 = 0 l(12)3 = 0〉.
The results can be reasonably fitted with a power law 0.28A1.58±0.20.
The results are obtained for HO single-particle wave functions with
h̄ω(MeV) = 45A− 1

3 − 25A− 2
3 and for the nuclei 4He, 9Be, 12C, 16O,

40Ca, 48Ca, 56Fe, 63Cu, 108Ag, and 197Au.
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FIG. 6. (Color online) Relation between the minimum of the
missing momentum |pmin

m | for the deuteron and xB at various values
of the four-momentum transfer Q2.

four-momentum. We have performed MC simulations for a
fixed energy of the impinging electron beam εi and a fixed
electron scattering angle θe. The pm for a mean-field nucleon
is drawn from the MF part n

(0)
1 (k) of n1(k). For a correlated

nucleon, the pm is drawn from n
(1)
1 (k). Parametrizations for

n
(0)
1 (k) and n

(1)
1 (k) are obtained from [34]

n
(0)
1 (k) = A(0)e−B(0)k2

[1 + O(k2)], (42)

n
(1)
1 (k) = A(1)e−B(1)k2 + C(1)e−D(1)k2

, (43)

where A(0), B(0), A(1), B(1), C(1), and D(1) depend on A.
In Fig. 7, we compare the xB distribution of simulations for

the mean-field and correlated part of one-nucleon knockout in
12C. As stated in Eq. (21), the number of events is normalized as∫

dk k2n
(0)
1 (k) = 0.7. For xB > 1.5, the events originate almost

uniquely from n
(1)
1 (k).

B. Two-body correlations

Following the experimental observation [9,10,47] that the
ratio of the inclusive electron scattering cross sections from a

FIG. 7. (Color online) Simulation of one-nucleon knockout in
12C with separated mean field and correlated momentum distribution.
The number of events is normalized as in Eq. (21). The electron
kinematics is determined by εi = 5.766 GeV and θe = 18◦.

target nucleus A and from the deuteron D

σA(xB,Q2)

σD(xB,Q2)
(44)

scales for 1.5 � xB � 2 and moderate Q2, it has been
suggested [47] to parametrize the σA in the following form:

σA(1.5 � xB � 2,Q2) = A

2
a2(A/D)σ2(A, xB,Q2), (45)

where σ2(A, xB,Q2) is the effective cross section for scattering
from a correlated 2N cluster in nucleus A. Assuming that σ2

is some local function which does not depend on the target
nucleus A,

σ2(A, xB,Q2) ≈ σ2(A = 2, xB,Q2) ≈ σD(xB,Q2), (46)

one can rewrite Eq. (45) as

a2 (A/D) = 2

A

σA(xB,Q2)

σD(xB,Q2)
(1.5 � xB � 2). (47)

In this simplified reaction-model picture, which ignores among
other things the c.m. motion of pairs in finite nuclei, the
quantity A

2 a2(A/D) can be connected with the number of
correlated pairs in the nucleus A. Assuming that all pn pairs
contribute, one would expect that for the relative amount of
correlated two-nucleon clusters a2(A/D) ∼ A. Based on the
observed dominance of correlated pn pairs over pp and nn pairs
[43], and the universality of the deuteronlike high-momentum
tail of the correlated two-body momentum distribution (23), we
suggest that the correlated pn pairs contributing to the a2(A/D)
are predominantly (T = 0, S = 1) pairs and that a2(A/D) is
proportional to the quantity Npn(S=1)(A,Z) defined in Eq. (34).

In Ref. [48], the ratio of Eq. (44) has been calculated
with spectral functions obtained from state-of-the-art nuclear
matter calculations in the local density approximation for the
correlated part and A(e, e′p) scattering data for the mean-
field part [49,50]. The calculations suggested large final-state
interactions (FSI) effects, while the plane-wave calculations
did not exhibit the scaling present in the data at 1.5 � xB .
In Refs. [11,22], it is argued that a complete treatment of
FSI in this kinematics needs to include inelastic channels in
the rescattering and that this cancels part of the elastic FSI
contribution included in Ref. [48]. The results in Ref. [48]
seem to refute the validity of Eq. (45), which hinges on
the assumption that the FSI effects on correlated pairs in a
nucleus are almost identical to those in the deuteron in a
high-momentum state. This requires that for 1.5 � xB , the FSI
is primarily in the correlated pair and that the remaining A − 2
nucleons act as spectators. Such a behavior is suggested by the
calculation of the quasielastic cross sections in Ref. [51] and by
a space-time analysis of the nuclear FSI at xB > 1 carried out
in Ref. [11] where it is stressed that the reinteraction distances
are �1 fm, supporting the idea that the first rescattering
should be very similar to FSI in the deuteron (see a recent
discussion in Ref. [22]). Therefore, the assumption of Eq. (45)
seems a reasonable one for light nuclei where the amount
of rescatterings is of the order of 1. For medium-heavy and
heavy nuclei, the average amount of rescatterings is larger than
1 and it has to be verified if the assumption still holds. The
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settlement and clarification of all the cited issues related to the
role of FSI in inclusive reactions requires further studies with
a full reaction model.

In a finite nucleus, correlated pairs can have a nonzero
c.m. momentum. This c.m. motion is a correction factor when
connecting the measured a2(A/D) to the number of correlated
pn pairs Npn(S=1)(A,Z). We aim to provide an estimate for
this correction factor. Therefore, we consider the two-nucleon
knockout reaction e + A → e′ + (A − 2) + N + N following
the breakup of a correlated 2N cluster. For an inclusive cross
section, the tensor correlated pn(S = 1) pairs dominate the
signal [43,44,52].

As pointed out in Refs. [11,25], the cross section for the
exclusive (e, e′NN) reaction can be written in a factorized form
as

σA(e, e′NN) = KF NN(P12)σeNN(k12), (48)

where P12(k12) is the c.m. (relative) momentum of the
correlated pair on which the photoabsorption takes place
and K is a kinematic factor. The above expression is valid
in the plane-wave and spectator approximation for electron
scattering on a pair with zero relative orbital momentum.
The σeNN stands for the elementary cross section for electron
scattering from a correlated 2N pair with relative momentum
k12. The σeNN contains the Fourier-transformed correlation
functions gc(k12) and ftτ (k12). An analytic expression for σepp

is contained in Ref. [25] and has been tested against data in
Ref. [53].

As argued above, in order to link the exclusive cross section
of Eq. (48) to the inclusive ones contained in Eq. (45), one
assumes that σepn ≈ σeD and one introduces a proportionality
factor Npn(S=1)(A,Z) which counts the number of correlated
pn pairs in A. With the scaling relation of Eq. (48) for the
(e, e′pn) reaction, one can transform the ratio of Eq. (47) into
a form which accounts for the c.m. motion of the pair

a2(A/D)

= 2

A

∫
PS d�k12d �P12Npn(S=1)(A,Z)F pn(P12)σeD(k12)∫

PS d�k12σeD(k12)
,

≈ 2

A
Npn(S=1)(A,Z)

∫
PS

d �P12F
pn(P12), (49)

where the integrations extend over those parts of the c.m.
momentum phase (PS) included in the data. A basic assump-
tion underlying the above equation is that the factorization of
Eq. (23) approximately holds. The computed widths of the c.m.
momentum distributions for the correlated pn pairs contained
in Table I indicate that the major fraction of the pn pairs has
P12 � 150 MeV, which is within the ranges for the validity of
Eq. (23).

In line with our assumption that the correlated pairs
are dominated by pn in a relative 3S1 state, F pn(P12) can
be expressed as the conditional two-body c.m. momentum
distribution

F pn(P12) = P
pn
2 (P12|3S1). (50)

Figure 8 shows calculations for the P
pn
2 (P ) and P

pn
2 (P |3S1)

for 12C. The c.m. distribution of correlated pn pairs [F pn(P12)]
can be well parametrized in terms of a Gaussian distribution.

TABLE I. The second column gives the width of the c.m.
distribution of correlated pn pairs. The third column provides the
computed c.m. correction factor. The errors represent the dependence
on the choice of correlation function.

A σc.m. c.m. correction factor

12C 115 MeV 1.64 ± 0.23
56Fe 128 MeV 1.70 ± 0.27

208Pb 141 MeV 1.71 ± 0.29

The widths σc.m. obtained from a Gaussian fit to P
pn
2 (P12|3S1)

are given in Table I.
To estimate the c.m. correction factor, we have performed

MC simulations of pn knockout with and without inclusion
of the c.m. motion. This amounts to drawing the c.m.

momentum from F pn(P12) = δ(P12) and F pn(P12) ∼ e
− P 2

12
2σ2

c.m. ,
where σc.m. is the A-dependent width. For 1.5 � xB � 2, the
initial momentum distribution of the correlated pair is given
by correlated part of the two-body momentum distribution
n

(1)
2 (k12, P12). Equation (23) states that the n

(1)
2 (k12, P12) can

be considered universal. As illustrated in Fig. 1, one has
nD (k12) ∼ |ftτ (k12)|2. As the relative momentum distribution
is approximately proportional to the tensor correlation func-
tion, we draw k12 from the distribution k2

12|ftτ (k12)|2. Energy
conservation reads as

(q + pA − pA−2 − ps)
2 = p2

f = m2
N, (51)

where q(ω, �q), pA(MA, �0), and pA−2[EA−2,−( �ps + �pm)] are
the four-momenta of the virtual photon, target nucleus,
and residual A − 2 system, respectively. The virtual photon
interacts with one of the nucleons, resulting in a fast nucleon
pf (Ef , �pf ) with �pf = �pm + �q and a slow nucleon ps(Es, �ps).
With the aid of Eq. (51), one can calculate the xB distribution of
the simulated events. We apply the kinematics of the Jefferson
Lab (JLab) experiment E02-019 [10]: εi = 5.766 GeV and
θe = 18◦. The average 〈Q2〉 of the generated events (including
c.m. motion) in the xB region of interest is 2.7 GeV2. This
value, which is A independent, agrees with the one quoted in
Ref. [10].
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pn (P12) for 12C. The calculations are

performed with HO single-particle states and adopt the normalization
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∫
dP12 P 2

12P
pn
2 (P12) = NZ.
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FIG. 9. (Color online) The k12 − xB scatter plot of 12C(e, e′pn) MC simulations with [F (P12) ∼ e
− P 2

12
2σ2

c.m. ] and without [F (P12) ∼ δ(P12)]
inclusion of c.m. motion. For the sake of comparison, the solid line shows the minimum relative momentum kmin

12 for Q2 = 2.7 GeV2 in the
deuteron.

The results of our simulations are summarized in Figs. 9 and
10. Figure 9 shows the xB − k12 scatter plot of 106 simulated
events with and without inclusion of c.m. motion for 12C. In
both situations, the mass difference between initial and final
state causes a small shift to lower xB compared to the deuteron
case. Second, we observe considerable shifts in the distribution
of the events in the (k12, xB ) plane due to c.m. motion. In
Fig. 10, one can observe how c.m. motion considerably
increases the number of events with 1.5 � xB � 2. The
impact of the c.m. corrections increases with growing xB .
Experimentally, the a2(A/D) coefficient is determined by
integrating data for 1.5 � xB � 1.85. We estimate the c.m.
correction factor by the ratio

# simulated events with inclusion of c.m. motion

# simulated events without inclusion of c.m. motion
(52)

in this xB region. The resulting correction factor for several
nuclei is contained in Table I. We performed the simulations
with the three different correlation functions ftτ in Fig. 1. The
dependence of the result on the choice of correlation function
is represented by the error of the c.m. correction factor.

Figure 3 quantifies the fraction of all possible pn pairs which
are prone to SRC relative to the total amount of possible pn

FIG. 10. (Color online) Histogram of the xB distribution of

12C(e, e′pn) MC simulations with [F (P12) ∼ e
− P 2

12
2σ2

c.m. ] and without
[F (P12) ∼ δ(P12)] inclusion of c.m. motion. The kinematics is the
one of the JLab experiment E02-019 [10]: εi = 5.766 GeV and
θe = 18◦.

pair combinations. In our picture, one has Npn(S=1) = 1 for D.
This means that we do interpret the l12 = 0 component of the
deuteron wave function as the IPM part which receives large
corrections from tensor SRC. The per nucleon probability for
a pn SRC relative to the deuterium can be defined as

2

N + Z

Npn(S=1)(A,Z)

Npn(S=1)(A = 2, Z = 1)
= 2

A
Npn(S=1)(A,Z). (53)

Similar expressions hold for the per nucleon pp SRC and the
per nucleon nn SRC:

2

Z
Npp(S=0)(A,Z),

2

N
Nnn(S=0)(A,Z). (54)

The results of the per nucleon probabilities are collected in
Fig. 11. Relative to 2H, the per nucleon probabilities of pn
SRC are 2.20, 3.63, 4.73 times larger for carbon, iron, gold.
Along similar lines, relative to the “free” pp system, the per
nucleon probabilities of pp SRC are 1.39, 2.34, 3.11 times
larger for carbon, iron, gold.
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FIG. 11. (Color online) The mass dependence of the per nucleon
probability for pn SRC relative to the deuterium.
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FIG. 12. (Color online) The computed values for the a2(A/D) for
various nuclei. The data are from Refs. [9,10,14]. The shaded region
is the prediction after correcting the computed values of a2(A/D) for
the c.m. motion of the pair. The correction factor is determined by
linear interpolation of the factors listed in Table I. The width of the
shaded area is determined by the error of the c.m. correction factors.

In Fig. 12, we compare our predictions computed with the
aid of Eq. (49) with the extracted values of a2(A/D). We
have opted to correct the predicted a2 coefficients and not
the data for c.m. motion. We stress that the c.m. correction
factor can not be computed in a model-independent fashion.
For light nuclei, our predictions tend to underestimate the
measured a2. This could be attributed to the lack of long-
range clustering effects in the adopted wave functions. Indeed,
it was pointed out in Ref. [54] that the high-density cluster
components in the wave functions are an important source of
correlation effects beyond the mean-field approach. For heavy
nuclei, our predictions for the relative SRC probability per
nucleon do not saturate as much as the data seem to indicate.
In Ref. [11], the authors estimated the mass dependence of
a2 by means of an expression of the type a2 ∼ ∫

d3�r ρ2
MF(�r).

Using Skyrme Hartree-Fock densities ρMF(�r), a power law
of A0.12 emerged. After normalizing to the measured value for
a2(12C/D), the predicted power-law dependence agrees nicely
with the data.

We stress that final-state interactions (FSI) represent an-
other source of corrections which may induce an additional
A-dependent correction to the data. FSI of the outgoing
nucleons with the residual spectator nucleons could shift part
of the signal strength out of the cuts applied to the experimental
phase space (or likewise move strength in) and decrease (or
increase) the measured cross section and the corresponding a2

coefficient.
In Fig. 13, we display the magnitude of the EMC effect,

quantified by means of − dR
dxB

versus our predictions for the

quantity 2
A
Npn(S=1) or the “per nucleon probability for pn

SRC relative to the deuteron.” We stress that the numbers
which one finds on the x axis are the results of parameter-free
calculations. We consider the “per nucleon probability for pn
SRC relative to the deuteron” as a measure for the magnitude of
the proton-neutron SRC in a given nucleus. Obviously, there
is a nice linear relationship between the quantity which we
propose as a per nucleon measure for the magnitude of the
SRC and the magnitude of the EMC effect.
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FIG. 13. (Color online) The magnitude of the EMC effect versus
the computed per nucleon number of correlated pn pairs. The data are
from the analysis presented in Refs. [7,14,55]. The fitted line obeys the
equation − dR

dxB
= (0.108 ± 0.028) + 2

A
Npn(S=1) · (0.074 ± 0.010).

C. Three-body correlations

The measurements of Refs. [9,10] indicate that the ratio of
the inclusive cross sections

σA(xB,Q2)

σ
3He(xB,Q2)

(55)

approximately scales for 2.25 � xB � 3.0. Along similar lines
as those used in quantifying the 2N SRC in Sec. III B, it has
been suggested [9] to parametrize the inclusive A(e, e′) cross
section in the following form:

σA(2.25 � xB � 3,Q2) = A

3
a3(A/3He)σ3(xB,Q2), (56)

where σ3(xB,Q2) is the cross section for scattering from a
correlated 3N cluster which is once again assumed to be A

independent. Inserting Eq. (56) into (55), one obtains

a3(A/3He) = 3

A

σA(xB,Q2)

σ
3He(xB,Q2)

(2.25 � xB � 3.0). (57)

Notice that in the kinematic regime where 3N correlations are
expected to dominate (2.25 � xB), the experimental situation
is unsettled. For example, the recently measured a3(4He/3He)
ratios [10] are significantly larger than those reported in
Ref. [9].

Similar to the per nucleon pn SRC of Eq. (53), we define
the per nucleon probability for a ppn SRC relative to 3He as

3

A

Nppn (A,Z)

Nppn (A = 3, Z = 2)
= 3

A
Nppn (A,Z) , (58)

where we used the fact that Nppn (A = 3, Z = 2) = 1 in our
framework. The results of the per nucleon probability of ppn
SRC are collected in Fig. 14.

The quantity of Eq. (58) can be linked to a3(A/3He) under
the condition that corrections stemming from c.m. motion of
the correlated ppn triples, FSI effects, etc., are small. Under
those idealized conditions, one would have

a3(A,3He) ≈ 3

A
Nppn(A,Z) . (59)

In the naive assumption that all 3N pairs contribute to the
a3(A/3He) ratio, one expects an A2 dependency. We suggest
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FIG. 14. (Color online) The mass dependence of the per nucleon
probability for ppn SRC relative to 3He. We stress that neither the data
nor the theoretical calculations have been corrected for c.m. motion
and FSI effects. The data are from Ref. [9].

that only ppn triples in a “close” configuration contribute
and we count the number of SRC triples with the aid of
Eq. (40). The ppn contributions will be larger than the pnn
ones due to the magnitude of the electromagnetic coupling.
Correlated triples should have at least one pn pair due to
the dominant character of the tensor component. In Fig. 14,
we show the predictions for the a3(A/3He) coefficient as
computed with Eq. (59) and compare it to the data. We stress
that the experimental situation is largely unsettled and that
neither the data nor the theoretical calculations have been
corrected for c.m. motion and FSI effects. For helium and
carbon, our predictions are in line with the experimental value.
For iron, the prediction is about a factor of 2 larger than
the experimentally determined ratio of cross sections. Our
parameter-free calculations reproduce the fact that the mass
dependence is much softer than the A2 dependence that one
would expect on naive grounds.

IV. CONCLUSION

We have provided arguments that the mass dependence
of the magnitude of the NN and NNN correlations can be
captured by some approximate principles. Our method is
based on the assumption that correlation operators generate
the correlated part of the nuclear wave function from that
part of the mean-field wave function where two nucleons are
“sufficiently close.” This translates to computing those parts of

the two- and three-nucleon wave functions with zero relative
orbital momentum in order to identify short-range correlated
pairs and triples.

We have calculated the number of pn, pp, and nn l12 = 0
SRC pairs and studied their mass and isospin dependence.
The A dependence of the magnitude of the pp, nn, and
pn SRC manifests itself in a power-law dependence. We
found a significant higher per nucleon SRC probability for
pn pairs than for pp and for nn. To connect the computed
number of SRC pairs to the measured a2 (A/D) corrections
are in order. Published experimental data include the radiation
and Coulomb corrections. The correction factor stemming
from final-state interactions and from the c.m. motion of the
correlated pair, however, is far from established. We proposed
a method to estimate the c.m. correction factor based on
general properties of nucleon momentum distributions. Using
Monte Carlo simulation, we find a correction factor of about
1.7 ± 0.3. Our model calculations for a2 are of the right order
of magnitude and capture the A dependence qualitatively. For
small A, our predictions underestimate the data, while we do
not find the same degree of saturation for high A that the
(scarce) data seem to suggest.

To compute the number of 3N SRC in a nucleus, we count
the ppn states with three nucleons which are close. We have
quantified the number of 3N SRC and provided predictions for
the measured a3(A/3He) coefficients. Our model calculations
for the a3 are of the same order of magnitude as the (scarce)
data but overestimate the 56Fe data point. In this comparison,
no corrections for c.m. motion and FSI effects have been
made, and it remains to be studied in how far they can blur
the connection between inclusive electron-scattering data and
the SRC information. We find a linear relationship between the
magnitude of the EMC effect and the computed per nucleon
number of SRC pn pairs. This may indicate that the EMC effect
is (partly) driven by local nuclear dynamics (fluctuations in the
nuclear densities), and that the number of pn SRC pairs serves
as a measure for the magnitude of this effect.
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