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Asymptotic normalization coefficients (ANCs) are fundamental nuclear constants playing an important role in
nuclear reactions, nuclear structure, and nuclear astrophysics. In this paper the physical reasons for the Coulomb
renormalization of the ANC are addressed. Using the Pinkston-Satchler equation the ratio for the proton and
neutron ANCs of mirror nuclei is obtained in terms of the Wronskians from the radial overlap functions and
regular solutions of the two-body Schrodinger equation with the short-range interaction excluded. This ratio
allows one to use microscopic overlap functions for mirror nuclei in the internal region, where they are the most
accurate, to correctly predict the ratio of the ANCs for mirror nuclei, which determine the amplitudes of the tails
of the overlap functions. Calculations presented for different nuclei demonstrate the Coulomb renormalization
effects and independence of the ratio of the nucleon ANCs for mirror nuclei on the channel radius. This ratio is
valid both for bound states and resonances. One of the goals of this paper is to draw attention to the possibility
of using the Coulomb renormalized ANCs rather than the standard ones, especially when the standard ANCs are

too large.
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I. INTRODUCTION

The asymptotic normalization coefficient (ANC) is a
fundamental nuclear characteristic of bound states [1,2] and
resonances (the partial resonance width is also expressed
in terms of the ANC) [3,4] and plays an important role in
nuclear reaction and structure physics. The ANSs determine
the normalization of the peripheral part of transfer reaction
amplitudes [1,2] and overall normalization of the peripheral
radiative capture processes [5—8]. In the R-matrix approach the
ANC determines the normalization of the external nonresonant
radiative capture amplitude and the channel radiative reduced
width amplitude [3,9,10].

The ANC enters the theory in two ways [1]. In the scattering
theory the residue at the poles of the elastic scattering S matrix
corresponding to bound states [11,12] or resonances [4] can
be expressed in terms of the ANC,

Js k= ks Ay JB
SZB Jils j k—k ey
aA
with the residue
g _ _:21g+]1 Limnl, (B 2
Iy jg = 1 e (Cantyjnsa) 2

where C2, 1y js 1, 18 the ANC for the virtual or real decay
B — a + A in the channel with the relative orbital angular
momentum /z of a and A, the total angular momentum jp of
a, and total angular momentum Jp of the system a + A. If
B = (a A) is a bound state,

Map SNgpx = —— 5 )
is the Coulomb parameter for the bound state B = (a A),k?, =
ikB, kB =+v2p.ae8, is the bound-state wave number,
€8, =m, +my —mp is the binding energy for the virtual

decay B — a+ A, Z; e and m; is the charge and mass of
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particle i, and . 4 is the reduced mass of a and A. Throughout
the paper I use the system of units in which 7 = ¢ = 1. Note
that singling out the factor ¢! ™ar in the residue makes the
ANC for bound states real (see Sec. III B).

If B is a resonance, that is the decay B — a + A is real,
then

) ZoZp € pan
=i o= DAk
aA(R)

is the Coulomb parameter for the resonance state with complex
relative momentum k., = kaa (r)s kaa(®) = /2 an Ean(r)»
E,s(r) 1s the resonance energy in the system a 4+ A of
the resonance state B = (aA). Equations (1) and (2), being
universally valid for both bound-state poles and resonances [4],
provide the most general and model-independent definition of
the ANC.

In the case of the Breit-Wigner resonance (Im k,4 gy <
Re kya(r) = k(a) A R)) the residue of the elastic scattering S-
matrix element in terms of the resonance width is

Js. :—iezjé/’;fﬂfB(kgA) Faa
IpjB 0

Caalpjss &)
kaA (R)

where 8,"; s Js (kg 4) s the potential (nonresonance) scattering

phase shift at the real resonance relative momentum £?, (R)-
In the meantime, Eq. (2) in the Breit-Wigner resonance case
takes the form
Jg  _ _20p41 ,—an (~B 2

AZB jp = L e 4 (CaAZB JB JE) ’ (6)
where 1} = Zy Za € ttaa/ k3, (- Then the ANC and the
partial width of the resonance are related by

B 2 O iysP K0 /J,AF Alg jp J,
(Coary Jn ) = (= 1)l ™ Man " 20 iy 15 Rance) %
aA(R)

)
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In the case of the subthreshold resonance (the resonance
which is a bound state in the entry channel and a resonance
in the exit channel) the connection between the ANC and the
partial width, calculated at the relative momentum of particles
a and A kg4, is given by [3]

Canty jp gy (kan)

2 B
anz;,tm/z(z anRan)

HaA RaA

2
= P, (kaa Ran) (szAlgngB) )

where P, (ksa Rsa) is  the Dbarrier penetrability,
Wi 14122 kB R,x) is the Whittaker function for
the bound state B = (@A) and R,, is the channel radius.
Correspondingly, the reduced width is determined by

2 B
W2 e 1ys12 (2K Raa)

2l’(/uA RaA

2
Yaa Ig jeJp —

(CaBAlB JB 13)2' (9)

Note that in the R-matrix method the peripheral part of the
radiative capture amplitude is expressed in terms of the reduced
width rather than the ANC. However, the reduced width is
model dependent, because it depends on the channel radius
R, 4, while the ANC is not.

However, in the Schrodinger formalism of the wave
functions the ANC is defined as the amplitude of the tail of the
overlap function of the bound-state wave functions of B, A,
and a. The overlap function is given by

IaBA(raA) = (% | (pB(EAv Sa; raa))
= Z <JAMAijjB|JBMB)

lelH ijjR
X (JaMa leIB |ijjB)

X Ylgm,B G:aA) IthlBjB Jk(raA)~ (10)

Here

Ye= Y

mjpmiy MaM,

X ZaA{(pA(‘i:A) (pa(i:a) YIB mi (FaA)}

(JaMy jpmj, | JpMp){Jo My lgmy, | jpm )

(1)

is the two-body a + A channel wave function in the jj
coupling scheme, (j;m;joma|jm) is the Clebsch-Gordan
coefficient, A,4 is the antisymmetrization operator between
the nucleons of nuclei a and A, ¢;(§;) represents the fully
antisymmetrized bound-state wave function of nucleus i
with & being a set of the internal coordinates including
spin-isospin variables, and J; and M; are the spin and spin
projection, respectively, of nucleus i. Also, r,4 is the radius
vector connecting the centers of mass of nuclei a and A,
Faa = TYau/Tan, Vi, miy (Ff44) is the spherical harmonics, and
IaBAlB in s (raq) is the radial overlap function. The summation
over lg and jp is carried out over the values allowed by
the angular momentum and parity conservation in the virtual
process B — A +a.
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The radial overlap function is given by

B
]aAlBjB ]B(ruA)

= (Aaa {0an) 0a(€a) Yigm, ®an)} @5 (En. Ea: Tan))

- (2‘) (PG u(Ea) Vi sy )| 08, i Tan)-
(12)

Equation (12) follows from a trivial observation that, because
op is fully antisymmetrized, the antisymmetrization operator
A, 4 can be replaced by the factor

()

In what follows, in contrast to Blokhintsev et al. [1], we absorb
this factor into the radial overlap function.

The tail of the radial overlap function (r,4 > R,4) in the
case of the normal asymptotic behavior is given by

B
anz‘;,ml/z(z KaAr“A)
TaA

B b. B .
e KanTar— Ngp (2K 5ran)

B raa>Ran B
Loaty iy 15 (ran) = Caat, iy 1y

TaA—> 00 B
— Cantyjsis
TaA
(13)
Correspondingly, for the resonance case,
B
IﬂAlB Js B (ran)
ras>Ran B Wik tg172(=2 i kaa(r)Tan)
Canty j 1y
TaA
raA—>00 B &l Kaar Taa—i 15 IN(=21 kaa(r )
Caa lgjsJs (14)

TaA

The proof of the fundamental connection between the
residue AZJBB j, in the bound-state pole of the elastic scattering
S matrix and the amplitude C5, 15757, OF the tail of the
overlap function was presented for the first time in Ref. [11]
and later on in Refs. [13-16]. The proof of this relationship
for nonspherical potentials was given in Ref. [17] and for
charged particles in Ref. [12]. Finally, generalization of this
relationship for general case of bound state and resonances for
charged particles was presented in Ref. [4].

The first comprehensive review about the overlap functions
and ANC was given in Ref. [1], in which the theory of the
ANC and its role in the nuclear reaction theory was presented.
In another review paper [2], the role of the ANC in the theory
of nuclear reactions with charged particles was addressed.
The role of the ANC in nuclear astrophysics was discussed
for the first time in Refs. [5,6], where it was underscored
that the ANC determines the overall normalization of the
peripheral radiative capture reactions. These two works cleared
the way for using the ANC method as an indirect method in
nuclear astrophysics (see also Ref. [18]). The ANC can be
determined from peripheral transfer reactions and can be used
to calculate peripheral radiative capture reactions. It constitutes
a powerful indirect ANC method in nuclear astrophysics.
The ANC method was extensively used in the analysis of
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many important astrophysical reactions (see, for example,
Refs. [8-10,19-24] and references therein). The role of the
ANC in nuclear astrophysics has been once again underscored
in the review [25].

Recently, it was shown that in the exact approach the only
model-independent quantity, which can be determined from
the analysis of nuclear reactions, is the ANC rather than
the spectroscopic factor [26]. Moreover, in Ref. [27] a new
formalism of the deuteron stripping based on the surface
integral formalism and generalized R-matrix approach has
been developed. It makes the role of the ANC in nuclear
reactions theory even more important than it was thought to
be before. In this formalism the amplitude of the deuteron
stripping reactions populating bound states and resonances is
paremetrized in terms of the ANC rather than the spectroscopic
factors.

In Ref. [28] the charge symmetry of strong interactions was
used to relate the proton and neutron ANCs of the one-nucleon
overlap integrals for light mirror nuclei. Equation (7) from
Ref. [28], determining the ratio of the proton and neutron
ANCs of mirror nuclei, allows us to find one of the ANCs
if another one is known. This relation extends to the case of
real proton decay where the mirror analog is a virtual neutron
decay of a loosely bound state. In this case, a link is obtained
between the proton width and the squared ANC of the mirror
neutron state. The relation between mirror overlaps was used to
study astrophysically relevant proton-capture reactions based
on information obtained from transfer reactions with stable
beams [29,30].

In Ref. [31] the impact of the particle continuum on the
proton and neutron ANCs for mirror p- and d-shell nuclei
within the framework of the real-energy and complex- energy
continuum shell-model approaches. The authors consider the
basic properties of the single-particle ANCs for charged and
neutral particles as functions of the Coulomb parameter,
binding energy and the orbital angular momentum. The authors
investigate the validity of the ratio of the proton and neutron
mirror ANCs given by Eq. (7) from Ref. [28]. The main finding
of Ref. [31] is that the key factor affecting the ratio of the mirror
ANC:s is the distribution of the spectroscopic strength.

In Ref. [32] the model independence of the ratio of the
proton and neutron ANCs for mirror nuclei was tested within
a phenomenological model, where the valence nucleon moves
in a deformed mean field of the core which is allowed to excite.

The calculations show that the ratio of the proton and neu-
tron ANC:s (see Table II from Ref. [28]) increases dramatically
with decrease of the proton binding energy and the charge
of the core. This is the result of the impact of the Coulomb
barrier, which blocks the proton bound-state wave function in
the nuclear interior, significantly decreasing its tail. Because
the wave function is still normalized to unity, the drop of the
radial tail is compensated by a corresponding increase of
the amplitude of the tail. For loosely bound states and high
charges the conventionally determined ANC becomes enor-
mously huge, creating problems in computations. For example,
the square of the proton ANC 2'Na(1/2%, 2.425 MeV) —
Ne + p is 6.14 x 10** fm~! [21]. The square of the ANC
for 70(6.356 MeV, 1/27) — BC + «ais ~ 10'%® fm~! [33].
In this paper I give a physical insight into factors determining
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the Coulomb renormalization of the ANC, making it easier
to compare the ANCs of mirror nuclei. The analysis of
the Coulomb renormalization of the ANC is done using
two approaches: the model-independent analytic structure of
the scattering amplitude and the Pinkston-Satchler equation
[34,35]. All the factors, which affect the ANC owing to
the Coulomb interaction, are analyzed. As a result of this
research I suggest using in the future analysis of the data on
the renormalized proton ANC, in which the main Coulomb
renormalization factor is excluded. It is especially useful in
cases of high nuclei charges and low binding energies. I
provide also a new expression for the ratio of the mirror
ANC:s based on the transformation of the expression for the
overlap function obtained from the Pinkston-Satchler equation
in terms of the Wronskian. This expression is especially
useful when microscopic overlap functions are available.
These microscopic overlap functions are usually accurate in
the nuclear interior, which is enough to determine the ratio
of the ANCs of the mirror nuclei expressed in terms of the
Wronskian. Then if one of the ANCs is known experimentally,
the second one can be determined.

II. COULOMB RENORMALIZATION OF THE ANC FROM
ANALYTIC STRUCTURE OF THE SCATTERING
AMPLITUDE

First, I address the Coulomb renormalization of the ANC
from analytic structure of the scattering amplitude [2]. Let
us consider the scattering of two charged spinless particles
a and A (we disregard the spins because they do not affect
the Coulomb renormalization). The analytic properties of the
on-the-energy-shell Coulomb-nuclear partial wave scattering
amplitude was investigated in Refs. [36-40]. The elastic
scattering S-matrix element is given by

Sty (kan) = 1+ 20 py,(kaa) Fiy(kaa), (15)

where py,(kaa) = kZ/lfH. The partial elastic scattering S-
matrix element can be written as

Sy (kan) = €% = Sf (kan) + St (kaa)[ SN (kaa) — 1], (16)

Clp+1—inga)

which is the Coulomb elastic scattering S-matrix element and

SC (k) = e a7

SN(kas) = €' (18)

is the Coulomb-modified nuclear elastic scattering S-matrix
element, n,4 = Z1 Z» €* ttan /kaa is the Coulomb parameter
of particles a and A in continuum, §;, is the total scattering
phase shift in the partial wave /g, and 57 = 8, — 8, is the
Coulomb-modified nuclear scattering phase shift. We rewrite
the Coulomb-modified elastic scattering S-matrix element
StN(kaa) as

» oCN
SiN(kan) = €' =14 2i pr(kan) FN(Kkan).  (19)

The Coulomb-modified nuclear partial wave scattering am-
plitude F,SN(kaA) is not an analytical function in the k,4
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plane [37]. Following Refs. [2,37] we can present

FfN(kan) = 5 TN (kan). (20)

[AE (kan)]

Here

c Ip! €7 Naasen[Rekas]
hlﬁ(kaA) = T - (21)
(Ip+1+inqa)

is the normalized [A{, (ko) Jaazog 1] Coulomb Jost function.
At real k,4 > O this definition coincides with a conventional
definition of the Coulomb Jost function. Owing to the presence
of the factor sign [Re k4], ;S (kqa) has singularity along the
imaginary axis in the k,4 plane, which splits FZ(B:N(ka 4) into
two parts corresponding to Rek,4 > 0 and Rek,4 < 0.

However, the singled-out renormalized Coulomb-modified
nuclear partial wave scattering amplitude TIEN(ka 4) has the
same analytical properties on the first (physical) sheet of the
Riemann surface (Im k,4 > 0) as the pure nuclear partial wave
scattering amplitude: right-hand unitarity cut (0 < k 4 < 00)
and left-hand (E,4 < 0) dynamical cut [2]. T,SN(ka A), Similar
to the pure nuclear scattering amplitude, has a pole at k,4 =
i "fA’

koa—>ik? AZ
TN (k, - L, 22
Ip ( A) kaA _ l. KfA ( )
where the residue in the pole
x . ~ 2
Ay, =—=i*(CE ) (23)

Correspondingly, the residue of E‘;N (kgn) is

Al '

o [T+ 141027
et it [W} (C5, ). 4

Here C fA I is the renormalized ANC, which is connected,
according to Eq. (21), to the standard ANC [2]:

Llg+1+n2)
CfAlg = IB‘ A CaBAlB' (25)
As we can see, the standard ANC contains the Coulomb barrier

Cp+1+12) .
factor ——-. Correspondingly,

(CE,) =R (CE,,)% (26)

where the renormalization factor in Eq. (26) is

Fls+ 1+ 027
Ri = [—(B+, - ""A)} , @7
B:

TABLE I. The squared proton ANCs (C5

PAlpjgJp

)2 and Coulomb renormalized ANCs (C?
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which is derived only from consideration of the analytic
properties of the elastic scattering amplitude. This factor
is the main Coulomb renormalization factor (CRF) of the
conventional ANC owing to the Coulomb barrier. It increases
with increasing of charges and decreasing of the binding
energy and can be quite huge.

Now we can rewrite the reduced width as (recovering the
spins)

2 W2 1yr1p(20aRan) 2
YaAlg jpJp = 21tanRon (CaAlB s JR) . (28)
where
W2 w12 (260a Raa)
_ F(IB+W W2 (26 Ras)- (29)

The reduced width is given by the product of two factors.
When the charge of nucleus increases and binding energy
ef ', decreases, the Coulomb barrier also increases, decreasing
significantly the tail of the Whittaker function. However, owing
to the conservation of the normalization of the bound-state
wave function of nucleus B, the amplitude of the tail of
the overlap function (its ANC) also significantly increases.
Renormalization of the ANC and the Whittaker function, as is
done in Eq. (29), decreases the ANC and increases the tail of
the Whittaker function. This renormalization does not change
the reduced width but allows one to operate with smaller
ANCs than the standard ones and I draw the attention of
the experimentalists to the possibility of using the Coulomb
renormalized ANCs rather than the standard ones when the
latter become too big.
I demonstrate the renormalization of the ANC in Table I.

III. ANC FROM PINKSTON-SATCHLER EQUATION

A. Coulomb renormalization of ANC from source term
expression

Here we obtain the main CRF of the ANC using the equation
for the ANC containing the source term [6,42]. To make it
more clear, first we consider the derivation of this expression
following Refs. [6,42] from the Pinkston-Satchler equation
[34,35]. Note that the overlap function is not an eigenfunction
of any Hermitian Hamiltonian. To derive the equation for the
overlap function containing the source term, we start from
the Schrodinger equation for the bound state of the parent

)? of the overlap functions 1

B .
PAlpjpJB PAlpjgJp’

(I jpJp) are the quantum numbers of the removed proton and the total spin of nucleus B; eﬁ 4 1s the binding energy for the virtual decay

B — p+A.

B A Igjs Jg spBA (MeV) (C[‘?AIM.B)2 fm~! (C‘l’i”BjB)2 fm™!
2INa 2'Ne(0.0 MeV) S12 1/2 0.0071 6.5 x 10* [21] 2.66
STCu 3Ni(0.0 MeV) D32 3/2 0.7 1.77 x 108 [41] 135
1328n BIn(0.0 MeV) 892 0 15.71 9.03 x 108 [41] 1.22 x 10°
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nucleus A:

(=65 —Ta =Ty —Tys — Va = Va — Van)9p(Ea, Ea5Tan) = 0

(30)

Here, f’, is_the internal motion kinetic energy operator of
nucleus i, 7,4 is the kinetic energy operator of the relative
motion of nuclei a and A, V; is the internal potential of nucleus
i, Va4 is the interaction potential between a and A, and ¢p is
the total binding energy of nucleus B.

Multiplying the Schrodinger equation (30) from the left by

12
A .
( ) > (JaMyjem; | JsMp)(JaMy lgmy,

a
m_,-BmIBMAMa

X 1M jg) Yy, ®an) 93(64) 95 (Ea) €1y

and taking into account Eq. (12) we get the equation for the
radial overlap function with the source term [42]

B 7 centr
(_8aA - TruA - VZB UaA) aAlp jp jB(raA)

= QiyjpdadaisTan)- (32)

Here, TraA is the radial relative kinetic energy operator of the
particles @ and A, V;}"f““ is the centrifugal barrier for the
relative motion of @ and A with the orbital momentum /z;

01y jpJadnds(Taa) is the source term,

Olyjpdidnds(Tan)

= 2

mjgmig MaMa

(JaMyjpm, |JpMp){J. M, lgmy, | jpm;,)

AN2
y (a) / A, (@alEn) aGED Van

Ugal Yo, ®an)@p(as a3 ¥an))-

The integration in the matrix element (@, (£,) a(€4)|Vaa —
U [Bm, Tua)@Eq, Ea31aa)) in Eq. (33) is carried out over
all the 1nterna1 coordinates of nuclei ¢ and A. Note that we
replaced the antisymmetrization operator A, 4 in Eq. (31) with

(2)°

because the operator Ep — fA — T"a — ﬁA — V,— Va—Vuu
in Eq. (30) is symmetric over interchange of nucleons of a
and A, while ¢p is antisymmetric. For charged particles it
is convenient to single out the channel Coulomb interaction
U aCA(ru ) between the center of mass of nuclei ¢ and A.
Equation (33) can be rewritten in the integral form:

00
l ’ C o, B
/0 draA Faa GZR (VHA’ Faas _SaA)

(34)

(33)

15, . 5. (raa) =
Alp jp Jp\"aA
aAlp Jp JB TaA

X QIBjBJaJAJB(r;A)'
The partial Coulomb two-body Green’s function is given
by [43]
c . B
GIB (r“A’ rz/zA’ _8aA)
. C(H) /s
QOICB (ikBran<) 1, (+)(l kB rans)

C(+)(l KaA)

= —2lan . (35
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where r,a< =min{rsa,7,,} and rga> = max({r.a,7,,}.
. C . B .

The Coulomb regular solution ¢y, (i k,, raa) of the partial

Schrodinger equation at imaginary momentum i k2, is

(pli (l KfA raA)
1

= ~5B [LC( )(z /caA) flCH)(l KaA,raA)
KaA

LC(H(Z /caA) flC( )(l KaA raA)]
= rlnt e i ran By (g 4+ 1405, 215 + 2,245, ra4)
lU/B Fl (l KaA’ raA)

B b
lKaA

= T2 LI (i k) (36)

where

e Fi (i k2 ran)

il /2 Pls +1+ ngy
2r(213+2)

X 1 Fi(lg + 1+ 05, 215 4+ 25 262, ran).

. g+l _ B
=e (2lKaBA}’aA)B e KanTan

(37
Also,

flc(i) (l KaA, raA) e

bs

—imny W:an’:q,lg-ﬁ-l/z(:l:ZKfA raA)
(38)

are the Jost solutions (singular at the origin r,4 = 0), and

1 b ;
Llc,;(i)(l P A) (ZiKB )[B e*tnnﬁA/Z e:tznlB/Z

aA

T2l +2)

&) 39
“T(ls+1£07,) (39

are the Jost functions.
The asymptotic behavior of the overlap function is correct
because it is governed by the Green’s function:

B
IgAlB iz JE(raA)

W—anJBH/z(ZKfZ Fan) e~iT /2
LC(+)(l P A)

Ip

FaA—> 00

~ _ZMaA

TaA

YaA
I / C(:, B ’
X '/0 draA Tan Py (l Kaa raA) QlEjBJaJAJB(r(JA)‘ (40)

Taking into account Eq. (13) we get the ANC expressed in
terms of the source Qy, j,7,7,75(Faa) [6,42]:
1
CH+)
L ( i K, A)

Ip

CB ) Wan e*iﬂ 772{,‘/2

aAlg jpJg —
o0
Cc(: B
X/ draAraAQDIB(l ki ran) Qlyjndadnts(Fan).
0

(41)

Owing to the presence of the short-range potential operator
Vaa — U, A (potential V,4 is the sum of the nuclear vy 4 and
the Coulomb V5, potentials and subtraction of U, removes
the long-range Coulomb term from V,4) the source term is
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also a short-range function and we approximate Eq. (41) with
1

—iwyb2
CH)(: B
LIB (l KKZA)

B ~
CaAlB jsds "~ —2 Uqp e

RaA
C(:; B
X / draa raa @f, (i kg Tan) Qlyjstesns(ran),
0
(42)

where R, is the channel radius. This equation provides the
ANC, which, as shown below, depends on R, and may not
be accurate enough because we cut the integration over r,4
at the channel radius R,4. However, here we are interested
in the ratio of the mirror proton and neutron ANCs and, as
demonstrated below, this ratio is practically insensitive to the
value of the channel radius.

[L,CR(Jr)(i «B,)]17! contains the same barrier ['(l5 + 1 + 0,
[see Eq. (39)], which has been found in Sec. II based on
the general principle of analyticity of the elastic scattering
amplitude. Hence, following Eq. (25), we introduce the
renormalized ANC

Tz +1)

CB — 7
T2lg +2)

~ B \!s
il iy dp 2 Man (2644)
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The conventional ANC is related to the renormalized one as

CB _ F(IB +1+ 772;) CB

aAlp jp Jp | aAlg jp Jp*

I (44)

B. ANC in terms of Wronskian

The advantage of Eq. (42) is that to calculate the ANC one
needs to know the overlap function only in the nuclear interior
where the ab initio methods such as no-core-shell-model [44—
46], variational Green’s function Monte Carlo method [47-49],
and coupled-cluster method [50] are more accurate than in
the external region. Now we transform the radial integral in
Eq. (42) into the Wronskian at r,4 = R,4. The philosophy
of this transformation is the same as in the surface integral
formalism [51-53] applied here only for bound states.

First we rewrite

VaA _ UaCA =V 4+ V[(;entr _ Va _ VA _ Vlcentr _ UaCA

B

45)
and take into account equations
(—ep — Tu = Ta = T,,) 0, (i k54 Tan) 9a(Ea) 9a(60)
= (US4 + VE™ + Va+ Va) of (i k24 ran) 9a(€a) 0a(En)

Raa
X f dran ran of, (i k2 ran) Quyipsisnss(Fan). (46)
0
(43) and
|
(—ep — To = Ta = T,,,) (Yigmy, ®an)l@s) = (Vaa + Va + Va + V) (Yiym,, Fan)l @) . 47)
where f",“A is the radial kinetic energy operator. Then we get
B —imn )2 1 Raa Cc(: B iy 2
Caty jy 1y X =2 Hane " LED(ikt,) Jo draaran @i, (i Kga Tan) Quujnsisnss(ar) = —2pan e "
Ip aA
1 172 Raa
X O (JaMajsm|JsMp) (S My Lgmi,] jsm,) <a> / draa ran @f, (i K2y ran)
LIB (l KaA) mjpmig MaM, 0
< <~ < e = =
x / A, () PaEN Ty + T ot Ta— T o= T a— T ,,1%,, Fan) 95(Ed. EaiTan))

i 1
__2M(,Aemwzm 3

Ip aA mjpmiy MaM,

a

. bs
— 2 ppgn e TIA?

CH(; B
LIB (l KLIA

Taking into account that

<2 —2
Jx) ﬁ_ﬁ g(x)
_d [ A de)
P R

AN R <
x( ) / Qo ran 0C (i K5, o) f A0, (0aE) 0aEDI T 1,
0

fus C(: B Y =z B
) / draaraa (28 (l Kaa raA) (T raa — T r,,A) IaAZB s JB(raA)'
0

(JaMy jpm i, |JgMp){J .My lgmy, | jgm,)

=
-T TaA |Yl>:;m13 GﬂA)@B(éﬂv %‘A’ ruA))

(48)

we arrive at the final expression for the ANC in terms of the
‘Wronskian,

1

L3, (i kfa)

B _ o —imn® 2
CGA[B jsJs T ¢ ¢

X W[IaBAIB i JB (raA)’ (pli (l KfA r”A)] ’ (50)

raa=Raa
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where the Wronskian
. B B C(: B
Wa(l Kia raA) = W[IQAZB i jE(raA)v 9013 (l Kia raA)]

d(plCB (i KfA raA)

B
= IaAlB B JB(raA) drgA
dIBA[ in ] (raa)
Y e
FaA

It is straightforward to see that determined here ANC is
a real quantity because ¢ (i«2, r.a) given by Eq. (36),

B —imn? /2 1 : ~
Lo, s Js (rqya),and e aA () (i = ) are real at pure imag
Ip ah

inary momentum k.4 = i x2,. Correspondingly, the Coulomb
renormalized ANC is given by

. gz TUg+1)
Canty jndp = (2 K”A) ' m
X W[IfAlB JjB JB (raA)’ (plCB (l KfA raA):|
raa=Rga
(52)

We know that the Wronskian calculated for two inde-
pendent solutions of the Schrodinger equation is constant
[43]. Because the radial overlap function IfAlB is JB(ra A) 1S
not a solution of the Schrodinger equation in the nuclear
interior, the Wronskian and, hence, the ANC determined
by Eq. (48) depend on the channel radius R,g4, if it is not
too large. However, if the adopted channel radius is large
enough, we can replace the radial overlap function with its
asymptotic term [see Eq. (13)] proportional to the Whittaker
function, which determines the radial shape of the asymptotic
radial overlap function and is a singular solution of the
radial Schrodinger equation. Thus, because €01CB @i KfA Taa) 18
an independent regular solution of the same equation, at large
R4, where nuclear a — A interaction can be neglected and
asymptotic Eq. (13) can be applied, taking into account that
WL KE, ran), £ 7 k8, raa)] = 2&2, and Eq. (36)

B
we get at large R4

Cbs 1
—imn, 2 - B
¢ ! LC(+)(~ B W[IuAIB JjB JB(raA)v
ikk)

Ip

_ B
- CGA[B JjeJB"

oL (il ran)] (53)

raA=Raa
Hence, Eq. (50) at large R, 4, as expected, turns into identity
and proof of it is an additional test that Eq. (50) is correct.
However, our idea is to use Eq. (48) at R, 4, which does not
exceed the radius of nucleus B = (aA). In the nuclear interior
the contemporary microscopic models provide quite accurate
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overlap functions. The ANC calculated using Eq. (48) may
depend on the adopted channel radius R,4 but the ratio of
the mirror ANCs, as shown below, practically is not sensitive
to R,4. It allows us to analyze the impact of the Coulomb
effects on the ANC by separating different scales of these
effects.

IV. COMPARISON OF MIRROR PROTON AND NEUTRON
ANCS AND COULOMB EFFECTS

In this section we compare the mirror proton and neutron
ANC:s and analyze the Coulomb effects which are responsible
for the difference between these ANCs. In what follows
we simplify the notations for the proton and neutron ANCs
omitting the quantum numbers and using just C, and C,,
correspondingly. From Eq. (50) we get the ratio of the squares
of the proton and neutron ANCs for mirror nuclei,

( 2, )’B C(ls + 1+ 1%,)

C2
LY (Rya) = == =
pmRya) = 5 KA T(g + 1)

=

, 2
W, (i KfA Rya) :| ’ (54)

Wi Ro)

where W,(i kB, Rya) (Wai k" Rya)) is the Wronskian
calculated for the proton (neutron) at the channel radius
Rya. To get the proton (neutron) Wronskian we can
just replace in Eq. (51) a — p (a — n). For the neu-
tron Wronskian ¢, (i Kﬁrl Tna) = r,ll‘j:rl e~k u 1Filg +
A+1

1,205 +2; 224 r,0), where kA = /2 4 25! s the

wave number of the bound state A + 1 = (n A) of the isobaric
analog state of the bound state B = (p A).

Calculation of the ratio of the mirror nucleon ANCs requires
knowledge of the microscopic radial overlap functions. In
the meantime, in Ref. [28] another expression for the mirror
nucleon ANCs ratio was obtained, which can be used when the
overlap functions are not available. I show here how simple
this derivation when using Eq. (54). First, as it was pointed
out in Ref. [28], in the nuclear interior Coulomb interaction
varies very little in the vicinity of Ry, and its effect leads
only to shifting of the nucleon binding energy. Hence, we
assume that ¢, (i k2, roa) and ¢, (i k2, ra4) behave similarly
at rya =~ Ry, except for the overall normalization, that is,

@i, (i ks Rya)
@1, (i ke Ryva)

Then Eq. (54) reduces to

o (i KBy rpa) = o, (i k5 rpa). (55)

l ) . B . A+l
LW/(R )= C12) N KfA ? F(IB +1+ U?A) q)lCB (l KfA RNA) W[IpA Iy ju ]R(rpA)’ Dip (lKnA rpA)] rpa=Rya 56)
NA) — 5 ™~ R R .
p C? kA CUs+1D g, ikt Rya) W[LE i 25 na), @1, (i K raa) | r—Rs

Neglecting further the difference between the proton and the neutron mirror overlap functions in the nuclear interior
we obtain the approximate ratio of the squares of the mirror ANCs from [28] (in the notations of the current
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paper):

C2 - (K[?A )lB F(ZB + 1 +7]ZSA) (pICB(inA RNA) (57)

P
Lpn(Rya) C? KA L +1) o1, (i A Rya4)
In descending accuracy I can rank Eq. (54) as the most accurate, then Eq. (56) and then Eq. (57). Taking into account that the
microscopic overlap functions (calculated in the no-core-shell-model [44—46], the variational Monte Carlo method [47-49], or
the oscillator shell-model [41]) are more accurate in the nuclear interior, using Eq. (54) one can determine the ratio of the mirror
ANC:s quite accurately. Then follows Eq. (56), in which only one approximation (55) is used, and finally Eq. (57), in which two
approximations are used. Equations (54) and (56) require knowledge of two mirror overlap nucleon functions, while to calculate
Eq. (57) one does not need overlap functions and it is the simplest to estimate. As we see below, while ratio (54) practically does
not depend on the channel radius Ry 4, ratios (56) and (57) show some evident dependence on Ry 4.
Now we explain physics causing the difference between the proton and neutron mirror ANCs. First of all the proton ANC
is affected by the main CRF R [see Eq. (27)]. Eliminating this major factor from the proton ANC we obtain the ratio of the
squares of the Coulomb renormalized proton and neutron ANCs:

~ 1 .
iv (Rua) C; "fA B W[,(l KfA RNA) (58)
NA) = — = - )
pn C,% K;‘:l Wn(lK,?IIRNA)
B . A+l 2
N L A A B )
Ly, (Rya) = rer ATl T AT R A+l AT ' 69
" Kna o1 (1 %1 Rva) w1, RGN (AN /YY) R
'nA=KNA
and
2
~ 1 .
[ G | kpa\ " #hlikg Rua) 60)
pn an Kr,:}AH o, (l Krﬁ:rl RNA)
[
These ratios still may be far from unity. After we removed and
the main CRF, there are two more remaining CRFs, which . B b
determine the difference between the proton and neutron SW Wy (’ Kpa Ry A) (63)
mirror ANCs. The second factor appears because of the 3 W (ikfy Rya)

difference in the proton and neutron binding energies. The _

dependence of the ANC on the binding energy is exponential  To calculate the binding energy effect R} on the ANCs ratio
[39]. Because the binding energy of the neutron analog state it is enough to replace in Eq. (58) the proton Wronskian
is larger than the corresponding proton binding energy, the W, @ KfA Rya) with the neutron one W, (i KEA Rya) but
renormalized squared proton ANC C,z) is lower than C2, and calculated at the proton binding energy. To calculate the impact
the second CRF decreases the proton ANC: the bigger the  of the fine Coulomb effects it is enough to consider the ratio
difference sﬁrl — &8, the stronger is the decrease of the of the squared proton and neutron Wronskians both calculated
proton ANC. The third CRF, which increases the proton  at the proton binding energy. Similarly we can estimate these
ANC compared to the neutron one, is generated by the fine renormalization effects for LIV,Vn'(RN ). For the ratio of the
Coulomb effects (the effects left after removal the main CRF ANCs L on considered in Ref. [28] we get

and difference in the binding energies) and is minor compared

to the first two CRFs. Now after this discussion we can rewrite Lpw =TRaRs, (64)
Eq. (58) as where
= SW A xB lB(p(iKBR)Z
L} (Rya) =Ry RY, (61) Ro=| (24 bl pa M (65)
KnA (plB (l KnA RNA)
where is the CRF determining the effect of the binding energy, while
C(: B 2
. o (ik2, R
Ry = | oo —pa T4 (, rA n4) (66)
o1, (i KA Rya)

2
i B \" W, (ik® R
Ry = ( pA) e (62)

A+ A+
Kna Wi (i k4" Rnva) is the CRF determining the fine Coulomb effects.
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Thus, we can express the squared proton ANC in terms of
the mirror squared neutron one as

C,=RiRY RY C; (67)
or
C,=RiRR3C;, (68)

depending on whether we use the Wronskian approach or more
simple renormalization from [28]. Here we took into account
that the quantum numbers of the proton and neutron analog
states are the same.

Because I do not have all the required overlap functions,
which are necessary to calculate the CRFs, only the renormal-
ization factors R, and R are estimated in Sec. V.

V. CALCULATIONS

In this section we consider some cases applying both
Wronskian formalism and Egs. (56) and (57).

Comparison of ANCs for *Sc(lf7/2; 0.0 MeV) —
40Ca(0.0 MeV) + p and 41Ca(1f7/2; 0.0 MeV) —
40Ca(0.0 MeV) +n. 1 start from analysis of the mirror
proton and neutron ANCs for 48e(1 f12; 0.0MeV) —
40Ca(0.0MeV) + p and “Ca(1 f12; 0.0MeV) —
40Ca(0.0MeV) + n, correspondingly. Both ANCs correspond
to isobaric analog states in the mirror nuclei and we can apply
the formalism discussed in the previous section. The overlap
functions are taken from [41].

In Fig. 1 is shown the ratio of the ANCs calculated using
the Wronskian formalism and approximations (56) and (57).
While the ratio obtained in the Wronskian formalism remains
practically constant, both approximated ratios depend on the
channel radius Ry4. Note that the results obtained using
approximations (56) and (57) are valid only at Rya < Ry,
where R4 ~ 4.5 fm is the radius of A = *’Ca. Equation
(56) agrees better with the exact Wronskian expression than

70 - -

65_ o e o T

60 |- E

551 ¢ IR

2
(c/c,)

45 - -

40} 4

35 n 1 n 1 n 1 n 1
4 5
Ry, (fm)

FIG. 1. (Color online) Ratio of the square of the proton ANC
for the virtual decay *'Sc(1 f7/2; 0.0 MeV) — *°Ca(0.0 MeV) + p
to the square of the neutron ANC for the mirror nucleus virtual
decay 41Ca(1f7/2; 0.0 MeV) — *°Ca(0.0 MeV) + n. Solid red line,
Wronskian method [Eq. (54)]; green dashed line, obtained using
Eq. (56); dotted blue line, obtained using Eq. (57) as in Ref. [28].
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FIG. 2. (Color online) (a) Solid red line, dependence on
Rya of the square of the proton ANC for the virtual decay
4Sc(1 f1/2; 0.0 MeV) — “°Ca(0.0 MeV) + p calculated using the
Wronskian expression given by Eq. (50). (b) Blue dotted line,
dependence on Ry 4 of the square of the neutron ANC for the virtual
decay *!Ca(1 f7/2; 0.0 MeV) — “0Ca(0.0 MeV) + n calculated using
the Wronskian expression given by Eq. (50).

Eq. (57). The latter has the smallest deviation from the exact
result at Rya ~ 4.4.

In Fig. 2 the dependence on Rys of the square
of the proton and neutron ANCs for the virtual
decays 418c(1f7/2; 0.0 MeV) — “°Ca(0.0 MeV) + p and
#Ca(l f1/2; 0.0 MeV) — “°Ca(0.0 MeV) + n calculated us-
ing the Wronskian expression given by Eq. (50). Comparison
of Figs. 1 and 2 is very instructive. As we can conclude from
the latter the ANCs calculated using the Wronskian method
reach their correct values at Ry4 > 7 fm. In other words,
only at Ry4 > 7 fm the proton and neutron overlap functions
can be replaced by their asymptotic terms. However, the
ratio of the ANCs calculated using the Wronskian formalism
remains constant practically at all R,4 > 2, allowing one to
calculate this ratio even in the nuclear interior, where the
overlap functions cannot be replaced by their asymptotic
terms. Calculated using the Wronskian method, the proton
and neutron ANCs and their ratios are in excellent agreement
with the calculations in Ref. [41].

Now we consider how the Coulomb renormalization affects
the proton ANC C? =286.9 fm™". There are three CRFs.
Dividing the the proton squared ANC by each of these
factors we can eliminate step by step all three Coulomb
effects eventually arriving at the neutron squared ANC.
To estimate the different CRFs I use Egs. (65) and (66).
The Wronskian formalism also could be used but not all
the needed overlap functions are available. The main CRF
in the case under consideration is R; = 14311.9. Hence,
the Coulomb renormalized square of the proton ANC is
C; =C3/R; =0.02 fm™'. Now we take into account the
remaining two CRFs coming from difference in the proton and
neutron binding energies and the residual Coulomb effects.
Because at Ry4 = 4.45 fm the ratio of the proton and
neutron ANCs obtained using Eq. (57) is the closest to the
one obtained by the Wronskian method, the remaining two
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Coulomb renormalizations are calculated at Ry, = 4.45 fm.
The binding energy of the proton in *!Sc(0.0 MeV) is

'S¢ =1.085 MeV, while the neutron binding energy in
piCa
41Ca(0.0 MeV) is E:E)éa = 8.362 MeV. This large difference

in the neutron and proton binding energies leads to significant
renormalization of the proton ANC compared to the neutron
one. Dividing C‘IZ, by the CRF R, =0.0011 we get the
renormalized proton ANC at the neutron binding energy:
(:’;,2 = 18.18 fm~!. Finally, dividing it by the CRF R; = 4.16,
reflecting the residual Coulomb effects, we get the square of
the neutron ANC C? = 4.37 fm~!. These calculations clearly
demonstrate the scale of the different CRFs leading to the
difference between the mirror proton and neutron ANCs.

Let us consider now the ratio of the proton and neutron
reduced widths for the mirror nuclei:
y2 W21 Rua) C) )
Vnz Wg 13+1/2(2Kn Rya) C,%

For the case under consideration this ratio is yg Jy}=1.1at
Rya = 4.45 fm and gradually increasing with Ry, increase
(see Fig. 3), demonstrating model dependence of the reduced
widths. Because the ratio of the nucleon ANCs remains
constant, the channel radius dependence comes entirely from
the channel radius dependence of the Whittaker functions.
The higher binding energy of the neutron generates stronger
channel radius dependence of the neutron Whittaker func-
tion, which is actually proportional to the spherical Hankel
function.

Comparison of ANCs for '"F(1ds;,) — '°0(0.0 MeV) +
p and 170(1(15/2; 0.0 MeV) — '°0(0.0 MeV) +n. As in
the previous case, the overlap functions are nodeless
at rya >0 and I demonstrate how the Wronskian
method works compared to approximated equations.
I start from the analysis of the proton and neu-
tron ANCs for 17F(1d5/2; 0.0 MeV) — '0(0.0 MeV) + p
and '70(1ds2; 0.0 MeV) — '°0(0.0 MeV) + n, correspond-

7 ROIAR)

Ry, (fm)

FIG. 3. The dependence on the channel radius of the ratio of
the proton and neutron reduced widths for *'Sc(1 f; 125 0.0MeV) —
40Ca(0.0MeV) + p and *'Ca(l fy; 0.0MeV) — *Ca(0.0MeV) +
n, correspondingly. The nucleon ANCs calculated using the Wron-
skian expression given by Eq. (50).
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FIG. 4. (Color online) Ratio of the square of the proton ANC
for the virtual decay '"F(1ds/,; 0.0 MeV) — '90(0.0 MeV) + p to
the square of the neutron ANC for the mirror nucleus virtual
decay '"O(1ds)»; 0.0 MeV) — '90(0.0 MeV) + n. Solid red line, the
Wronskian method [Eq. (54)]; green dashed line, obtained using
Eq. (56); dotted blue line, obtained using Eq. (57) as in Ref. [28].

ingly. Both ANCs correspond to isobaric analog states in
mirror nuclei and we can apply the formalism discussed
in the previous section. The overlap functions are taken
from [41].

In Fig. 4 the dependence on Ry4 of the square of the
ratio of the mirror proton and neutron ANCs for the virtual
decays '"F(1ds;2) — '°0(0.0 MeV) + p and '7O(1ds;) —
160(0.0 MeV) + n calculated using the Wronskian formalism
and Egs. (56) and (57) is shown. While the ratio obtained in the
Wronskian formalism remains practically constant, Egs. (56)
and (57) provide the ratios which depend on the channel radius
Ry 4. Equation (56) agrees very well with the exact Wronskian
method at Ry 4 < 3 fm. The assumption that the mirror proton
and neutron overlap functions are close to each other in the
nuclear interior is the basis for both approximate equations
for the ANC:s ratio. It is clear from Fig. 5 that with the Ry4

Ipz(rNA)/Inz(rNA)

1, (fim)

FIG. 5. Ratio of the square of the proton and neutron radial over-
lap functions for '"F(1ds;; 0.0 MeV) — '°0(0.0 MeV) + p and
70(1ds,2; 0.0 MeV) — '°0(0.0 MeV) + n. The overlap functions
are from [41].
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FIG. 6. (Color online) Dependence on Ry 4 of the square of the
proton (solid red line) and neutron (blue dotted line) ANCs for the
virtual decays '"F(1ds/;) — '°0(0.0 MeV) + p and 70O(1ds/,) —
160(0.0 MeV) + n, correspondingly, calculated using the Wronskian
expression given by Eq. (50).

increase the square of the ratio of the mirror overlap functions
deviates from unity.

A comparison of Figs. 4 and 6 is very instructive and shows
the power of the Wronskian method. As is clear from Fig. 6,
the proton and neutron ANCs calculated using the Wronskian
equation reach their plateau only at Ry 4 > 6 fm. However, the
ratio of the ANCs calculated using the Wronskian formalism
[Eq. (54)] remains constant practically at all R,4 > 2 fm,
allowing one to calculate this ratio even in the region where the
overlap functions cannot be replaced by their asymptotic terms.
The ratio of the proton and neutron ANCs calculated using
approximated Eq. (56) agrees very well with the Wronskian
method at R,4 < 3 fm, which is well in the nuclear interior,
while Eq. (57) gives the ratio below the Wronskian method.

Now we consider how the Coulomb renormalization affects
the proton ANC C[% =0.58 fm~!. To estimate the different
CRFs I use, as in the previous case, Egs. (65) and (66). The
main CRF in the case under consideration is R; = 42.01.
Hence, the Coulomb renormalized square of the proton ANC
is C'g = Ci/Rl =0.0138 fm~!. Now we take into account
the remaining two CRFs coming from difference in the
proton and neutron binding energies and the residual Coulomb
effects. Because at Ry4 = 4.0 fm the ratio of the proton and
neutron ANCs obtained using Eq. (57) is the closest to the
one obtained by the Wronskian method, the remaining two
CRFs are calculated at Ry4 = 4.0 fm. The binding energy of

the proton in '"F(0.0 MeV) is 8;{10 = 0.605 MeV, while
170

the neutron binding energy in '70(0.0 MeV) is €, 160 =
4.14 MeV. This large difference in the neutron and proton
binding energies leads to significant renormalization of the
proton ANC compared to the neutron one. Dividing C‘f, by
the CRF R, = 0.015 we get the renormalized proton ANC
at the neutron binding energy: C’;z =0.92 fm~!. Finally,
dividing it by the CRF Rz = 1.97, reflecting the residual
Coulomb effects, we get the square of the neutron ANC
C? = 0.467 fm~!. These calculations once again demonstrate

PHYSICAL REVIEW C 86, 044615 (2012)
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FIG. 7. Dependence on the channel radius of the ratio of the
proton and neutron reduced widths for "F(1ds; 0.0 MeV) —
160(0.0 MeV) + p and '"O(1ds)»; 0.0 MeV) — '60(0.0 MeV) + n,
correspondingly. The nucleon ANCs calculated using the Wronskian
expression given by Eq. (50).

the scale of the different CRFs leading to the difference
between the mirror proton and neutron ANCs.

The ratio of the proton and neutron reduced widths y 5 [¥i=
0.29 at Ry4 = 4.0 fm and gradually decreasing with Ry4
increase (see Fig. 7), demonstrating model dependence of the
reduced widths. In this case the proton Whittaker function
drops faster than the neutron one.

Comparison of ANCs for "F(2s12) — '°0(0.0 MeV) + p
and 17O(2s1/2) — 10(0.0 MeV) + n. In this section analyze
the ratio of the proton and neutron ANCs for "F(2s, ) =
160(0.0 MeV)+ p and '70(2s12) — °0(0.0 MeV) + n,
correspondingly. Both ANCs correspond to isobaric analog
states in the mirror nuclei and we can apply the formalism
discussed in the previous section. The overlap functions are
taken from [41]. It is a special case because of the very
low proton binding energy, S;ZIFGO = 0.105 MeV. Besides, the
overlap functions have one node at ry4 > 0 and it will be
interesting to see how the Wronskian method works in this
case. The ratio of the square of the proton and neutron overlap
functions I;(rNA)/Inz(rNA) > 1 atall ry, (see Fig. 8). Hence,
both approximations (56) and (57) fail.

Itis seen from Fig. 9 where the ratios of the ANCs calculated
using the Wronskian formalism and Egs. (56) and (57) are
shown. While the ratio obtained in the Wronskian formalism
remains practically constantat Ry 4 > 4 fm, the ratios obtained
using Egs. (56) and (57) depend on the channel radius Ryx
and at the best radius Ry4 = 5 fm underestimate the exact
ratio (Wronskian equation) by 30%. The anomalous behavior
of the Wronskian expression at Ry4 < 4 fm is the result of
the nodes of the overlap functions.

InFig. 10 the dependence on R 4 of the square of the mirror
proton and neutron ANCs for the virtual decays "F(2s, ) —
10(0.0 MeV) + p and '70(2s12) — '°0(0.0 MeV) + n cal-
culated using the Wronskian expression given by Eq. (50).
Owing to the low nucleon binding energies the nucleon overlap
functions reach their asymptotic tail (the ANCs reach their
plateau) only at Ry, > 7 fm (see Fig. 10). However, the
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FIG. 8. Ratio of the square of the proton and neutron radial over-
lap functions for "F(2s;,2) — '®0(0.0 MeV) + p and 'O(2s,5) —
160(0.0 MeV) + n.

ratio of the ANCs calculated using the Wronskian formalism
(see Fig. 9) remains practically constant at all R,4 > 5 fm,
allowing one to calculate this ratio even in the region where the
overlap functions cannot be replaced by their asymptotic terms.
Note that, according to the calculations using the Wronskian
method, the proton and neutron ANCs and their ratios are in
excellent agreement with the calculations in Ref. [41].

The ratio of the proton and neutron reduced widths )/,f / 7/,12 =
1.71 at Ry4 = 5.0 fm and gradually increasing with Rya
increase (see Fig 11), demonstrating model dependence of the
reduced widths. In this case the neutron Whittaker function
drops slightly faster than the proton one.

Comparison of ANCs for 8B(1p3/2; 0.0 MeV) —
"Be(0.0 MeV) + p and 8Li(1p3/2; 0.0 MeV) —
7Li(0.0 MeV) + n. To analyze the mirror proton and neutron
ANCs for 8B(1p3/2; 0.0 MeV) — "Be(0.0 MeV) + p and
8Li(1p3/2; 0.0 MeV) — "Li(0.0 MeV) + n I use the overlap
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FIG. 9. (Color online) Ratio of the square of the proton ANC for
the virtual decay "F(2s;,,) — '90(0.0 MeV) + p to the square of
the neutron ANC for the mirror nucleus virtual decay '"O(2s; 2) —>
160(0.0 MeV) + n. Solid red line, the Wronskian method [Eq. (54)];
green dashed line, obtained using Eq. (56); dotted blue line, obtained
using Eq. (57) as in Ref. [28].
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FIG. 10. (Color online) (a) Red solid line, dependence on Ry
of the square of the proton ANC for the virtual decay '"F(2s; n) =
160(0.0 MeV) + p calculated using the Wronskian expression given
by Eq. (50). (b) Blue dotted line, dependence on Ry 4 of the square of
the neutron ANC for the virtual decay '7O(2s;,) — '00(0.0 MeV) +
n calculated using the Wronskian expression given by Eq. (50).

functions obtained from the variational Monte Carlo wave
functions using the Green’s function method [54].

In Fig. 12 the ratios of the square of the proton and neutron
ANC:s calculated using the Wronskian formalism and Egs. (56)
and (57) are shown. The ratio obtained in the Wronskian
formalism remains almost constant (the observed oscillations
are related with the accuracy of the Monte Carlo method). The
ratios obtained using Eqgs. (56) and (57) in the internal region
at Rya < 3.5 fm are practically constant and lower than the
exact ratio. The mean value of the calculated ratio of the square
of the proton and neutron ANCs using the Wronskian method
in the interval 3.4-4.6 fm is 1.24, which is slightly higher
then the experimental ratio 1.06 £ 0.11 [55] and the ratio 1.15
obtained using Eq. (57).

1, ROAR,)

R, (fm)

FIG. 11. The dependence on the channel radius of the ratio of
the proton and neutron reduced widths for "F(2s;,2; 0.0 MeV) —
160(0.0 MeV) + p and "O(2sy,2; 0.0 MeV) — '°0(0.0 MeV) + n,
correspondingly. The nucleon ANCs calculated using the Wronskian
expression given by Eq. (50).
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FIG. 12. (Color online) Ratio of the square of the proton ANC
for the virtual decay $B(1ps/2; 0.0 MeV) — "Be(0.0 MeV) + p to
the square of the neutron ANC for the mirror nucleus virtual
decay 8Li(1 p3)»; 0.0 MeV) — "Li(0.0 MeV) + n. Solid red line, the
Wronskian method [Eq. (54)]; green dashed line, obtained using
Eq. (56); dotted blue line, obtained using Eq. (57).

In Fig. 13 is shown the dependence on Ry, of the
square of the proton and neutron ANCs for the vir-
tual decays ®B(1ps2; 0.0 MeV) — "Be(0.0 MeV) + p and
8Li(1p3/2; 0.0 MeV) — 7Li(0.0MeV) + n, correspondingly,
calculated using the Wronskian expression given by Eq. (50).
As we can see, in contrast to the previous cases, the calculations
using the Wronskian approach never reach plateau, which
reflects the fact that the Monte Carlo overlap functions do
not have correct asymptotic radial shape. Nevertheless, the
ratio of the mirror proton and neutron ANCs, as is shown in
Fig. 12, remains practically stable confirming once more that
this ratio can be calculated with the overlap functions, which
are correct only in the nuclear interior.

Once again we can estimate all the Coulomb renormal-
ization effects on the proton ANC. We adopt the square

T T T T T T T T T
0.5} e
0.4} E
03} E
O
NQQ 02F 1
0.1}F i
0.0 e
1 1 1 1
0 2 4 6 8 10

Ry (fm)

FIG. 13. (Color online) Red (blue) solid line, dependence
on Ry, of the square of the proton (neutron) ANC
for the virtual decay 8B(1p3/2; 0.0 MeV) — "Be(0.0 MeV) + p
(®Li(1p3,2; 0.0 MeV) — "Li(0.0 MeV) + n) calculated using the
Wronskian expression given by Eq. (50).
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FIG. 14. Dependence on the channel radius of the ratio of
the proton and neutron reduced widths for 8B(1 P32 0.0 MeV) —
"Be(0.0 MeV) + p and 3Li(1ps,2; 0.0 MeV) — "Li(0.0 MeV) + n,
correspondingly. The nucleon ANCs calculated using the Wronskian
expression given by Eq. (50).

of the ANC Ci = 0.43 fm~! obtained from the Wronskian
expression at Ry4 = 4 fm. The main CRF in the case under
consideration is R; = 13.66. The Coulomb renormalized
square of the proton ANC is C = 0.0315 fm~". Now we take
into account the remaining two Coulomb renormalizations
coming from difference in the proton and neutron binding
energies and the residual Coulomb effects. The binding
energy of the proton in 8B(0.0 MeV) is 8;]37]36 = 0.1375 MeV,

while the neutron binding energy in *Li(0.0 MeV) is ei%iu =
2.03 MeV. The difference between the proton and neutron
binding energies leads to renormalization of the proton ANC
compared to the neutron one. Dividing C‘; by the CRF at
Ryas =4 fm R, = 0.053 we get the renormalized proton
ANC at the neutron binding energy: C ;,2 = 0.59 fm~!. Finally,
dividing it by the CRF at Ry4 = 4 fm R3 = 1.61, reflecting
the residual Coulomb effects, we get the square of the neutron
ANC C2 =0.37 fm~ .

The ratio of the proton and neutron reduced
widths for ®B(1p3; 0.0 MeV) — "Be(0.0 MeV) + p and
8Li(1p3/2; 0.0 MeV) — "Li(0.0 MeV) + n, correspondingly
(see Fig. 14), gradually increases with Ry 4 increase.

VI. SUMMARY

The first goal of this paper is to analyze the Coulomb
renormalization of the ANC. It is shown that the Coulomb
renormalization of the proton ANC compared to the neutron
one of the mirror nucleus consists of three factors. First is the
main CRF given by Eq. (27). The second CRF is the result
of the decrease of the proton binding energy compared to
the neutron one and the third CRF is the result of the fine
Coulomb effects (residual Coulomb effects after removing the
main CRF). The scale of each CRF is determined for different
cases. I also draw attention to the possibility of using the
renormalized ANC when the standard one becomes too large.
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The second important result of this paper is the derivation
of a new expression for the ratio of the proton and neutron
ANCs for isobaric analog states of the mirror nuclei. This
equation is obtained from the Pinkston-Satchler equation and
given by the ratio of the Wronskians taken from the radial
overlap functions and regular solutions of the two-body N + A
radial Schrodinger equation with the short-range interaction
excluded. It is shown that, by using microscopic overlap
functions, which are more accurate in the nuclear interior, one
can determine the ratio of the mirror nucleon ANCs which
are the amplitudes of the tails of the corresponding overlap
functions. It allows us to obtain one of the nucleon ANCs if
other is known. The results of this paper can be extended for

PHYSICAL REVIEW C 86, 044615 (2012)

the resonance states (when the overlap functions for resonance
states will be available) and for the arbitrary mirror ANCs for
the systems a + A, for example, for a = «.
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