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The shape, deformation, and orientation dependence as well as in-medium effects are investigated for the
reaction cross sections of 16,19C + C systems within the optical Glauber theory, which is currently used to deduce
information about the structure of exotic nuclei. A density- and energy-dependent effective nucleon-nucleon
reaction cross section is used locally to study in-medium effects. The projectile deformation is treated by a
deformed Fermi shape with quadrupole and hexadecapole deformations, where the deformation parameters of
16C and 19C are calculated from the Lagrangian density of the relativistic mean-field (RMF) model. A strong
prolate deformation is predicted for 16C while a more stronger oblate shape is predicted for 19C. Medium
effects are found to be important for extracting reliable information about the nuclear densities and radii. The
deformations and orientations strongly affected the reaction cross section. The difference in the reaction cross
section calculated at orientation angle π/2 and at zero degree is of the order of 400 mb. The integrated reaction
cross section over all orientation angles (angle average), including in-medium effects, predicted the experimental
reaction cross section of 19C + 12C. For 16C + 12C the rms radius of 16C is increased to about 7% than that
predicted by the RMF model in order to predict the experimental data. This greater increase in the rms radius of
16C, to about 3 fm, indicates a neutron halo structure for this nucleus. The deduced spherical Fermi distributions
which fit the experimental data of 16,19C + 12C systems are in fact a prediction of the angle average cross sections.
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I. INTRODUCTION

The reaction cross-section measurements at intermediate
and high energies have been extensively used to estimate the
size and matter distributions of unstable light exotic nuclei that
are produced in high-energy fragmentation reactions [1–10].
The optical-limit approximation to Glauber theory [11–15]
has been used in these analyses. However, in most of these
calculations deformation as well as medium effects have been
neglected. For example, the reaction cross section of a 19C
projectile at an incident energy of 960 MeV/nucleon on a 12C
target has been studied in Ref. [15] using the few-body Glauber
theory as well as the optical limit and it has been found that
the reaction cross section calculated in the few-body Glauber
model is smaller than that calculated in the optical limit and the
difference between the two calculated cross sections depends
on the model assumed for the ground-state configuration of
19C and the one-neutron separation energy, which is not well
known.

The reaction cross section of a 16C projectile on 12C has
been measured in Ref. [16] using a different experimental
method and the Glauber model has been used to study this
reaction. The larger enhancement of the 16C reaction cross
section at the low energy has been used to investigate the
density distribution of 16C, assuming a spherical configuration.

In this work we study the effect of deformation and
orientation as well as medium effects on the reaction cross
section of 16,19C + 12C at intermediate and high energies. This
study is interested in answering the important question of
whether intrinsic deformation of neutron-rich nuclei should
be taken into account in determining their structure from
measurements of reaction cross sections. Indeed, can we get
information about the deformation parameters from these
measurements? To answer these questions we used the optical
limit in this calculation where deformations and orientation

angles can directly be included through the nuclear densities.
Medium effects are included through a density- and energy-
dependent effective nucleon-nucleon reaction cross section.
The projectile deformation is treated by a deformed Fermi
shape with quadrupole and hexadecapole deformations, where
the deformation parameters β2 and β4 of 16C and 19C are
derived from the Lagrangian density of the relativistic mean-
field (RMF) model using the relativistic effective interaction
NL-RA1, which well describes spherical [17] and deformed
nuclei [18]. Other interactions like NL3 and NLSH are also
used for comparison.

In fact, the 19C nucleus has attracted much attention after it
was suggested to be a one-neutron halo candidate following the
observed narrow momentum distribution Ref. [19]. The small
one-neutron separation energy for 19C, which suffers from
a large uncertainty (Sn = 162 ± 112 keV [20], Sn = 240 ±
100 keV [21], or Sn = 530 ± 130 keV [22]), could also provide
important but incomplete evidence for the halo structures. The
ground-state spin parity of this nucleus is not well determined
experimentally. Some measurements suggested the presence
of a halo structure ground-state configuration of 19C [23]
as well as of 16C [16]. Experimental reinvestigation of the
longitudinal momentum distribution of this nucleus with a
12C target around 910 MeV/nucleon [24], however, presents a
different view, where the narrowing of the shell gap has been
found to change the ground-state spin from 1/2+ to 5/2+.
On the other hand, self-consistent models of nuclear structure
such as deformed relativistic mean-field and Hartree-Fock
calculations would also provide important information about
the structure of 16C and 19C. The paper is organized as follows:
The RMF description and calculation of 16C and 19C isotopes
are presented in Sec. II. The description of the Glauber-type
calculation is presented in Sec. III. The results for reactions
between carbon isotopes are presented in Sec. IV.
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II. RELATIVISTIC MEAN-FIELD DESCRIPTION
OF 16,19C ISOTOPES

The Lagrangian density of the RMF theory is used to derive
the deformation parameters and rms radii of the neutron-rich
carbon nuclei, using a deformed configuration and employing
the NL-RA1 interaction [17,18]. In this Lagrangian, Dirac
nucleons interact with the scalar self-coupling σ -meson field
�, the self-coupling neutral vector ω-meson field Vμ(μ =
0, 1, 2, 3), the isovector-vector ρ-meson field −→ρ μ, and the
electromagnetic fields Aμ:

L = ψi(γ
μi∂μ − M)ψi + 1

2
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2
m2
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Vectors in isospin space are denoted by arrows. The Dirac
spinor ψi represents the nucleon with mass M and oscillates
with the single-particle energies εi . mσ , mω, and mρ are
the masses of the σ -meson, the ω-meson, and the ρ-meson,
respectively. The meson-nucleon coupling constants, gσ , gω,
and gρ , and the meson masses are parameters adjusted to
fit nuclear matter data and some static properties of finite
nuclei. τ3 is the third component of the isospin. The field
tensors of the vector mesons and the electromagnetic fields are
defined as

�μν = ∂μVν − ∂νVμ, (2)

�Bμν = ∂μ �ρ ν − ∂ν �ρ μ − gρ ( �ρ μ × �ρ ν) , (3)

Fμν = ∂μAν − ∂νAμ. (4)

From the relativistic Lagrangian density (1), we get the mean-
field equations for mesons and nucleons. These equations
are solved by expanding the upper and lower components
of the Dirac spinors and the boson field wave functions
with some initial deformation in a reasonably large deformed
harmonic-oscillator basis [18]. For light nuclei the number of
shells for both fermionic and bosonic wave functions is taken to
be 12. The difference in the results with 14 shells is negligible
and therefore calculations for isotopes with Z = 10–24 were
performed in a 12-shell harmonic-oscillator expansion. The set

of coupled Dirac, Klein-Gordon, and Poisson field equations,
which are obtained from the RMF Lagrangian density, Eq. (1),
by means of the variational principle, are solved numerically
by the self-consistent iteration method for the case of deformed
axially symmetric systems of nucleons to obtain Dirac spinors
ψi of the nucleons and the fields of σ , ρ, and ω mesons
and the photon. The quadrupole deformation parameter β is
evaluated from the resulting quadrupole moment Q using the
formula

Q = Qn + Qp =
√

9

5π
AR2β, (5)

where R = 1.2A1/3 fm.
Pairing is a very crucial quantity for open-shell nuclei

in determining the nuclear properties, although it does
not contribute significantly to the lighter-mass region. The
constant-gap, BCS-pairing approach is reasonably applicable.
In order to take care of the pairing effects in this work, we
use the constant gap for the proton and neutron, as given in
Refs. [10,25]:

�p = CBse
sI−tI 2

/Z1/3, (6)

�n = CBse
−sI−tI 2

/A1/3, (7)

with C = 5.72, s = 0.118, t = 8.12, Bs = 1, and I =
(N − Z)/(N + Z). This type of prescription for pairing
effects, both in the RMF- and Skyrme-based approaches, has
already been used by many authors, and it is shown that
the results for binding energies and quadrupole deformations
are almost identical with the predictions of the relativistic
Hartree-Bogoliubov (RHB) approach [10,25]. The results for
the binding energies, radii, quadrupole, and hexadecapole
deformation parameters calculated using NL-RA1 of 16C and
19C are listed in Table I. Tables II and III present the results
of NL3 and NLSH interactions, which nearly give similar
results. As seen in Table I we get an oblate shape for 19C with
β2 = −0.426 and β4 = 0.185 and prolate shape for 16C with
β2 = 0.33 and β4 = 0.15. The large negative value of β2 refers
to the strong oblate shape predicted for 19C. The rms radii are of
the order 3 fm for 19C and 2.778 fm for 16C. There is another but
higher minima with prolate shape for 19C with β2 = 0.377 and
β4 = 0.01 and with a slightly smaller rms radius of 2.97 fm.
For the case of 16C we get at the second-highest minima an
oblate shape with β2 = −0.19 and β4 = 0.054 nearly with the
same rms radius of 2.775 fm.

TABLE I. The predictions of NL-RA1 relativistic interaction for the binding energy, radii, and deformation parameters for 16C and 19C. For
each nucleus the first row gives the results at the first minima, while the second gives the results of the second minima.

Nucleus E (MeV) rc (fm) rp (fm) rn (fm) rM (fm) β2 β4

16C 113.1 2.6 2.5 2.93 2.778 0.33 0.15
112.44 2.58 2.49 2.93 2.775 − 0.19 0.054

19C 120.9 2.62 2.52 3.17 2.98 − 0.426 0.186
119.3 2.6 2.5 3.17 2.97 0.337 0.01
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TABLE II. Same as Table I but for the NL3 interaction.

Nucleus E (MeV) rc (fm) rp (fm) rn (fm) rM (fm) β2 β4

16C 112 2.61 2.51 2.95 2.8 0.33 0.17
111.4 2.6 2.5 2.95 2.78 − 0.188 0.066

19C 119.7 2.62 2.53 3.19 3 − 0.43 0.19
118.2 2.6 2.5 3.18 2.98 0.38 0.008

III. DESCRIPTION OF GLAUBER-TYPE CALCULATION

The reaction cross sections of 16,19C + 12C are calculated
assuming a deformed Fermi shape for both 16C and 19C with
quadrupole and hexadecapole deformations. We define the
orientation angle β as the angle between the symmetry axis
z′ of the projectile nucleus and the line joining the centers
of the two colliding nuclei; that is, the vector R, where
R = √

b2 + Z2 and b is the impact parameter. The symmetry
axis of the projectile z′ is assumed to be parallel to the z

coordinate, and R is assumed to be lying in the x-z plane.
The optical-limit reaction cross section for a fixed orienta-

tion angle β of the incident projectile can be written as

σR(β) = 2π

∫ ∞

0
db b[1 − e−χ(b,β)], (8)

where

χ (b, β) =
∫

dZ

∫
d3rσ NN(E, ρ)ρP (| r − R |)ρT (r), (9)

where σ NN(E, ρ = ρT (r) + ρP (| r − R |)) is the isospin aver-
age nucleon-nucleon (NN) cross section, which depends on the
total density of the two interacting nuclei and incident energy.
The functional form of this dependence can be written as [26]

σ NN (E, ρ) = ZP NT σnn + ZP ZT σpp + NP ZT + NT ZP σnp

AP AT

,

σpp = σnn = f1 (u)
1 + 7.772E0.06ρ1.48

1 + 18.01ρ1.46
,

σnp = f2 (u)
1 + 20.88E0.04ρ2.02

1 + 35.86ρ1.9
, (10)

f1 (u) = 13.73 − 15.04u−1 + 8.76u−2 + 68.67u4,

f2 (u) = −70.67 − 18.18u−1 + 25.26u−2 + 113.85u,

where E is the energy per nucleon of the projectile and
the velocity u = (1 − 1/γ 2)1/2, where γ = E/931.5 + 1. In
Ref. [26], a global constant central density ρ(0) is considered
for the density dependence of the average NN cross section.
This global density approximation has been tested in Ref. [27]
and has been found to be inadequate. In this work we used

the exact local density dependence of the NN cross section
in the expressions (10), where the density is taken as the sum
of the target and projectile density in each volume element
being considered (i.e., the local density at each point along the
trajectory).

It is worth mentioning that the present approximation of
the choice of the coordinate axes, where the symmetry axis
makes an angle β with the line joining the two centers of the
two nuclei and this axis is parallel to the z axis, is called
the rotating-frame approximation and is normally used in
calculations of low-energy fusion reactions [28] and not in
high-energy reactions. It is used in this work for convenience
and is tested by comparing with the work of Christley and
Tostevin [29]. In that work the frozen-geometry approximation
is used, where the symmetry axis makes two orientation
angles (�,�) with the coordinates (see Fig. 1 in Ref. [29]
for details). This method is more appropriate for high-energy
reactions. However, the application of the frozen-geometry
approximation would be very time consuming because of
the density dependence of the effective NN cross section.
In the present work the multidimensional integrals of the
reaction cross sections, including integration over orientations
(angle average), are carried out numerically without multipole
expansion in a wider range of energy from 20 to 2000 MeV/u.
Both proton and neutron densities of the projectile are
considered, with quadrupole and hexadecapole deformations.
The local density-dependent isospin average NN cross section
σNN(E, ρ) is considered exactly. The multipole expansion for
the nuclear densities used in Ref. [29] cannot be applied in the
present work due to the nontrivial dependence of σNN(E, ρ)
on the total density.

To test and compare the present method with that of
Ref. [29], we calculated the reaction cross section of 17Ne +
12C at 700 MeV and considered the same fixed value for
the isospin average NN cross section taken there: σNN =
4.087 fm2. As in Ref. [29], for 12C a Gaussian density is used
with a rms radius of 2.32 fm and for 17Ne a two-parameter
Fermi shape is used with a fixed diffuseness, a = 0.564 fm,
and with a quadrupole deformation β2. For the spherical
case β2 = 0 and the half density, the radius is taken to be

TABLE III. Same as Table I but for the NLSH interaction.

Nucleus E(MeV) rc (fm) rp (fm) rn (fm) rM (fm) β2 β4

16C 111.34 2.287 2.49 2.91 2.76 0.332 0.18
110.8 2.58 2.48 2.91 2.75 − 0.211 0.074

19C 118.6 2.6 2.5 3.15 2.96 − 0.42 0.18
117 2.58 2.48 3.14 2.95 0.37 0.0017
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FIG. 1. Reaction cross section for the 12C + 12C system plotted
against incident energy calculated using local (solid) and global
(dotted) density-dependent nucleon-nucleon cross section. The
dashed line represents the reaction cross section calculated using
the free nucleon-nucleon cross section.

R0 = 2.17 fm to get the rms radius of 2.682 fm. The reaction
cross section calculated in the present approach is found to
be 1065.3 mb, which is the same value obtained in Ref. [29]
(1065.7 mb).

For the deformed case, the diffuseness is fixed to a =
0.564 fm and β2 = 0.2289, as in Ref. [29]. With R0 = 2.14 fm
the rms radius is 2.68 fm, as for the spherical case. In this
case, the angle average reaction cross section is found to be
1058.8 fm, which is also very close to that obtained in Ref. [29]
(1057.6 mb).

Finally, the case of orientation angle β = π/2 can be
obtained from the general case by putting � = � = π/2 in
Eq. (13) of Ref. [29]. For this case they obtained a cross
section of 1006.3 mb. The calculated cross section in this
work for the same case (i.e., β = π/2) is found to be 1009 mb.
The small difference could be due to the difference in R0

which is increased here to 2.14 fm to get the rms of Ref. [29]

FIG. 2. Reaction cross section of 19C + 12C system as a function
of incident energy per nucleon at orientation angles β = 0 and β = 90
calculated with (solid lines) and without (dashed lines) including
in-medium effects.

FIG. 3. Reaction cross section of 19C + 12C system as a function
of orientation angle β calculated at incident energy 50 MeV/nucleon
and 100 MeV/nucleon with and without including medium effects.

(2.68 fm). If we use the same value of Ref. [29] (R0
∼= 2.11 fm),

we get the same value of the cross section, 1006.3 mb. The
central density is determined by the normalization condition:
ρ0 = 0.251 087 fm−3.

These results show that the present approximation for the
choice of the coordinate axes in the Glauber model calculations
can be considered as a reasonable approximation. However,
we hope to consider the general case used in Ref. [29] for the
description of the coordinate axes in future work.

IV. RESULTS FOR REACTIONS BETWEEN
CARBON ISOTOPES

The nuclear density of the target 12C is taken to be a two-
parameter Fermi shape:

ρT
i=p,n(r) = ρT

0i

1 + e(r−RT
0i )/a

T
0i

. (11)

The neutron and proton diffuseness parameters for 12C are
taken to be equal, as well as the half-density radii, and
these parameters are adjusted to reproduce the rms radius

FIG. 4. Same as Fig. 2, but for β2 = 0.337 and β4 = 0.01.
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FIG. 5. Same as Fig. 2, but for 16C + 12C system.

of 2.45 fm of 12C as well as the experimental 12C + 12C
reaction cross section between 100 and 1000 MeV/nucleon,
calculated including medium effects [σNN(E, ρ)] with local
density-dependent isospin average NN cross section, as shown
in Fig. 1 by the solid line. The dashed and dotted lines are
the reaction cross section of 12C + 12C calculated using free
[σNN(E, ρ = 0)] and global [σNN(E, ρ = ρ0 = 0.17 fm−3)].
The half-density radius of 12C is taken to be 2.2 fm and the
diffuseness 0.475 fm, which better fits the σR of 12C + 12C
and the rms radius of 12C and the reaction cross section. As
shown from Fig. 1, the interaction used a medium global
density σNN(E, ρ0 = 0.17 fm−3), which largely reduced the
reaction cross section in disagreement with the data. A similar
result has been obtained by Warner et al. Ref. [27] using
Gaussian densities and a different density-dependent σNN.
One also notices that medium effects on the NN cross section
slightly reduces the reaction cross section at all energies where
the data are better described at lower energies when using a
density-dependent NN cross section while at high energy both
the free and medium NN cross section can describe the data.

For 16C + 12C and 19C + 12C reactions, a deformed
Fermi shape with quadrupole and hexadecapole deformation

FIG. 6. Same as Fig. 3, but for 16C + 12C system.

FIG. 7. Same as Fig. 4, but for 16C + 12C system.

parameters is assumed for the projectile; namely,

ρP
i=p,n(r′) = ρP

0i

1 + e

[
r ′−RP

i (θ ′)
]
/aP

0i

, (12)

where

RP
i (θ ′) = RP

0i[1 + β2Y20(θ ′) + β4Y40(θ ′)], (13)

r′ = r − R, r′2 = r2 + R2 − 2rR cos α, (14)

cos θ ′ = (r cos θ − R cos β)/r ′,
cos α = cos θ cos β + sin θ sin β cos φ, (15)

In the deformed Fermi density Eqs. (12)–(15), we used
the deformation parameters, appearing in Eq. (13), β2 and
β4 as calculated from the RMF theory, employing NL-RA1
interaction. These deformation parameters are listed in Table I.
The other parameters of the deformed Fermi shape, like
diffuseness and radii, are adjusted to reproduce the rms radius
as predicted in Table I by the RMF calculations. In this case,
the proton radius parameter RP

0p appearing in the deformed
Fermi shape is assumed to take the value 2.394 fm for 16C
and 2.668 fm for 19C. The neutron radius parameter RP

0n is

FIG. 8. Angle-average cross section which fit experimental data
(see text for details).
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FIG. 9. Same as Fig. 8, but data are fit by a spherical 2PF density
distribution.

assumed to increase more than the proton parameter by the
neutron excess [30]; namely,

RP
0n = RP

0p + αRI. (16)

The proton diffuseness parameter aP
0p for both 16C and 19C is

taken to 0.49 fm and the neutron diffuseness is assumed to
increase more than the proton diffuseness also by the neutron
excess; namely,

aP
0n = aP

0p + αaI, (17)

where αR is a scale parameter taken to be 1 fm [30] and
the scale factor αa is taken to be 0.1 fm, in order to account
for the longer tail of the neutron-density distribution. With
these parameters of the deformed Fermi shape of the nuclear
densities we get for the rms radius

〈r2〉1/2 =
∫

r2ρ (r, θ ) d�∫
ρ (r, θ ) d�

, (18)

the value 3 fm for the oblate shape of 19C and 2.778 fm for
the prolate shape of 16C. These results for the rms radii are
consistent with the RMF calculations of rms matter radii, as
seen from Table I.

The assumed relations Eqs. (16) and (17) are in fact a simple
estimation for the neutron diffuseness and half-density radius
of a neutron-rich nucleus, which could be interpreted as a first-
order expansion of the neutron diffuseness and half-density
radius in terms of the proton ones and the neutron excess. The
total density is taken as the sum of target and projectile density
distributions at each separation distance and each of target and
projectile density is taken as the sum of proton and neutron
densities.

FIG. 10. Spherical 2PF density distribution of 16C which fit
experimental cross section plotted against the distance r from the
center.

Figure 2 shows the reaction cross section of the 19C + 12C
system as a function of the incident energy per nucleon
calculated at orientation angles β = 0 and β = 90 with (solid
lines) and without (dashed lines) including in-medium effects;
that is, with a local density-dependent NN cross section
σNN(E; ρ = ρT (r) + ρP (r′)) and with a free NN cross section
σNN(E; ρ = 0). Figure 3 shows the reaction cross section
of 19C + 12C system as a function of the orientation angle
β calculated at incident energies of 50 MeV/nucleon and
100 MeV/nucleon with and without including in-medium
effects. As shown from these figures the reaction cross section
strongly depends on deformation and orientation, where
the difference between the cross section calculated at zero
orientation angle and at π/2 is of the order of 400 mb. This is
due to the strong deformation of 19C. The lowest reaction cross
section exists at an orientation angle β = 0 and the largest at
β = π/2 due to the strong oblate deformation of 19C. This
behavior is inverted if β2 is positive (prolate shape), as shown
from Fig. 4, where the deformation parameters at the second
minima, listed in Table I, are used in the calculation of the
reaction cross section.

The integrated reaction cross section (angle average) over
all orientation angles,

σR = 1

4π

∫
σR (β) 2π sin βdβ, (19)

is shown in Figs. 2 and 4 by the curves denoted by (b).
These angle-average curves with in-medium effects fit well
the experimental data of 19C + 12C. Figures 5, 6, and 7 are the
same as Figs. 2, 3, and 4, respectively, but for the 16C + 12C
system. As shown from these figures, an inverse behavior of
the reaction cross section to that of the case of 19C + 12C with

TABLE IV. Parameters of the spherical (2PF) density distributions of 16C and 19C which fit the reaction cross sections.

Nucleus R0p (fm) R0n (fm) a0p (fm) a0n (fm) αR (fm) αa (fm) rms (fm)

16C 2.52 2.77 0.5 0.608 1 0.43 2.96
19C 2.7 3 0.5 0.537 1 0.1 3
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FIG. 11. Same as Fig. 9, but for 19C + 12C system.

respect to orientation angles is obtained since the quadrupole
deformation parameter of 16C is inverted. One also notices
from Fig. 7 that the difference in the cross sections at β = 0
and β = π/2 is strongly reduced compared to that of Fig. 5
since the absolute value of the deformation parameters are
strongly reduced at the second minima. On the other hand,
in both cases the angle-average cross section does not fit
the experimental cross section, as shown from Figs. 5 and
7, where the experimental cross section is much higher at
lower energies. This could be due to the fact that the 16C
nucleus has a halo structure and thus the rms radius should be
larger than that predicted by RMF calculations of this nucleus.
Thus we modify the parameters of the density distribution to
increase the rms radius in order to fit the experimental data
by increasing both the radii and diffuseness of the deformed
density distribution. In this case R0p is increased from about
2.4 to 2.5 fm with the same scale factor αR = 1 fm. Thus
the neutron radius parameter R0n is increased from 2.644
to 2.75 fm. The proton diffuseness a0p is slightly increased
from 0.49 to 0.5 fm while the neutron diffuseness is more
increased from 0.515 to 0.61 fm (αa is increased from 0.1 to
0.43 fm). With these modifications of the parameters of the
density distribution of 16C the rms radius is increased from
2.778 to 3 fm and the experimental reaction cross section is
well fit by the angle-average cross section (including medium
effects), as shown in Fig. 8. This increasing in the rms as
deduced from the experimental data indicate the neutron skin
or halo structure of 16C.

It is also important to fit the experimental cross section by
a spherical two-parameter Fermi (2PF) shape. In this case we
fix the diffuseness parameters to nearly that deduced from the
deformed configuration of 16C and increased R0n and a0n by
the factors αR = 1 fm and αa = 0.43 fm, respectively, as for

FIG. 12. Same as Fig. 10, but for 19C nucleus.

the deformed case. These parameters of the spherical shape
are listed in Table IV for 16C and 19C. The rms radius of 16C
calculated by this spherical shape slightly decreased to 2.96 fm.
The experimental cross section, as well as the angle-average
cross section, are well fit by this spherical 2PF density, as
shown in Fig. 9. The spherical 2PF density distribution which
fit the experimental cross section is plotted in Fig. 10. This
figure indicates a neutron halo structure of 16C.

Figures 11 and 12 are the same as Figs. 9 and 10 but for
19C + 12C. The proton radius of 19C slightly increased from
2.667 to 2.7 fm and the proton diffuseness from 0.49 to 0.5 fm.
The neutron radius and diffuseness are increased by a similar
ratio as for the deformed case, where αR = 1 fm and αa =
0.1 fm. As shown from Fig. 11 the spherical 2PF shape fit
both the angle-average cross section and experimental data of
19C + 12C very well as for the case of 16C + 12C but without
increasing more in the neutron diffuseness, as for the case of
16C. This could refer to a large neutron skin or a halo structure
of 19C. This large neutron skin of 19C is shown in Fig. 12 for
the predicted spherical Fermi distribution.

Finally, one can conclude that nuclear deformation and
in-medium effects play an interesting rule in extracting
information about the structure of exotic nuclei from nuclear
reactions. The deformation parameters cannot be deduced
from the present experimental data of reaction cross sections.
The experimental data can only be fit by an angle-average
cross section over all orientation angles or assuming a spherical
configuration of both target and projectile. Information about
the rms radius can be extracted from the data, which could
indicate a neutron skin or a halo structure of exotic nuclei. In
order to extract reliable information about nuclear shapes of
exotic nuclei from experimental reaction cross sections it is
important for future experiments to consider polarized exotic
beams.
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