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Resonance width distribution for open quantum systems
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Recent measurements of resonance widths for low-energy neutron scattering off heavy nuclei show large
deviations from the Porter-Thomas distribution. We propose a “standard” width distribution based on the random
matrix theory for a chaotic quantum system with a single open decay channel. Two methods of derivation lead
to a single analytical expression that recovers, in the limit of very weak continuum coupling, the Porter-Thomas
distribution. The parameter defining the result is the ratio of typical widths � to the energy level spacing D.
Compared to the Porter-Thomas distribution, the new distribution suppresses small widths and increases the
probabilities of larger widths. We show also that it is necessary to take into account the γ channels.
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I. INTRODUCTION

Random matrix theory as a statistical approach for explor-
ing properties of complex quantum systems was pioneered by
Wigner and Dyson half a century ago [1]. This theory was
successfully applied to excited states of complex nuclei and
other mesoscopic systems [2–5], evaluating statistical fluctua-
tions and correlations of energy levels and corresponding wave
functions supposedly of “chaotic” nature.

The standard random matrix approach based on the
Gaussian orthogonal ensemble (GOE) for systems with time-
reversal invariance, and on the Gaussian unitary ensemble
(GUE) if this invariance is violated, was formulated orig-
inally for closed systems with no coupling to the outside
world. Although practical studies of complex nuclei, atoms,
disordered solids, or microwave cavities always require the
use of reactions produced by external sources, the typical
assumption was that such a probe at the resonance is sensitive
to the specific components of the exceedingly complicated
intrinsic wave function, one for each open reaction channel,
and the resonance widths are measuring the weights of these
components [6]. With the Gaussian distribution of independent
amplitudes in a chaotic intrinsic wave function, the widths
under this assumption are proportional to the squares of the
amplitudes and as such can be described, for ν independent
open channels, by the chi-square distribution with ν degrees
of freedom. For low-energy elastic scattering of neutrons
off heavy nuclei, where the interactions can be considered
time-reversal invariant, one expects ν = 1, that is, the usually
called Porter-Thomas distribution (PTD) [7].

From recent measurements [8,9] it has been claimed that the
neutron width distributions in low-energy neutron resonances
on certain heavy nuclei are different from the PTD. As a rule,
the fraction of greater widths is increased, while the fraction
of narrow resonances is reduced, which, being approximately
presented with the aid of the same standard class of functions,
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would require ν �= 1. The literature discussing the scattering
and decay processes in chaotic systems (see, for example,
[10–13] and references therein) does not provide a detailed
description of the width distribution for the region of relatively
small widths as observed in low-energy neutron resonances.

There are various reasons for possible deviations from
the simple statistical predictions [14–16]. First of all, the
intrinsic dynamics, even in heavy nuclei, can be different
from that in the GOE limit of many-body quantum chaos.
If so, a detailed analysis of specific nuclei is required. As
an example we can mention 232Th, where for a long time
a sign problem exists [17] concerning the resonances with
strong enhancement of parity nonconservation in scattering of
longitudinally polarized neutrons. The observed predominance
of a certain sign of parity-violating asymmetry contradicts
the statistical mechanism of the effect and may be related
to the nonrandom coupling between quadrupole and octupole
degrees of freedom [18]. The width distribution in the same
nucleus reveals noticeable deviations from the PTD. The
presence of a shell-model single-particle resonance serving as
a doorway to the compound nucleus can also make its footprint,
distorting the statistical pattern. Another (maybe related to
the doorway resonance) effect can come from the changed
energy dependence of the widths that is usually assumed to be
proportional to E�+1/2 for neutrons with orbital momentum �.
Finally, the situation is not strictly one channel, since, along
with elastic neutron scattering, many γ channels are open
as well. However, apart from structural effects, even in the
one-channel approximation, there exists a generic cause for the
deviations from the PTD, since the applicability of the GOE is
anyway violated by the open character of the system [19]. The
appropriate modification of the GOE and PTD predictions,
which should be applied before making specific conclusions,
is our goal below.

The resonances are not the eigenstates of a Hermitian
Hamiltonian; they are poles of the scattering matrix in the
complex plane. Their complex energies E = E − i�/2 can
be rigorously described as eigenvalues of the effective non-
Hermitian Hamiltonian [20]. As shown long ago, even for a
single open channel, the statistical properties of the complex
energies cannot be described by the GOE. The new dynamics
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is related to the interaction of intrinsic states through the
continuum. In the limit of strong coupling this leads to
overlapping resonances, Ericson fluctuations of cross sections,
and a sharp redistribution of widths similar to the phenomenon
of superradiance (see the review [21] and references therein).
The control parameter of such restructuring is the ratio

κ = π�

2D
(1)

of typical widths, �, to the mean spacing between the
resonances, D. In the region of low-energy neutron resonances,
κ is still small, but in order to correctly separate the general
statistical effects from peculiar properties of individual nuclei
we need to have at our disposal a generic width distribution that
differs from the PTD as a function of the degree of openness.

II. RESONANCE WIDTH DISTRIBUTION

The goal of the paper is to provide a practical tool that
would allow one to compare the experimental output for an
unstable quantum system with predictions of random matrix
theory. We propose a distribution function that is based, similar
to the GOE, on the chaotic character of time-reversal-invariant
internal dynamics and corresponding decay amplitudes but
properly accounts for the continuum coupling through the
effective non-Hermitian Hamiltonian. The numerical simu-
lations for this Hamiltonian were described earlier [15,22] but
here we derive the analytical expression. We limit ourselves
here by the situation typical for nuclear applications, namely
κ < 1. The superradiant regime, κ � 1, can be of special
interest (including systems such as microwave cavities),
and in the considered framework formal symmetry exists,
κ → 1/κ . At a large number of resonances and fixed number
of open channels, after the superradiant transition the broad
state becomes a part of the background while the remaining
“trapped” states return into the nonoverlap regime. However,
in heavy nuclei this transition hardly can be observed because
earlier many new channels can be opened; in the modification
of the PTD we see only precursors of this transition.

Our arguments will follow two different routes which lead
to equivalent results. The final formula for the statistical width
distribution can be presented as

P (�) = C
exp

[− N
2σ 2 �(η − �)

]
√

�(η − �)

(
sinh

[
π�
2D

(η−�)
η

]
π�
2D

(η−�)
η

)1/2

(2)

Here we consider N � 1 intrinsic states coupled to a single
decay channel, for example, s-wave elastic neutron scattering.
The parameter D is the mean energy spacing between the
resonances, κ is a new dimensionless combination [Eq. (1)],
and C is a normalization constant. The quantity η is the
total sum (the trace of the imaginary part of the effective
non-Hermitian Hamiltonian that remains invariant in the
transition to the biorthogonal set of its eigenfunctions) of all
N widths; it appears as a parameter that fixes the starting
ensemble distribution [see Eqs. (8) and (9)]. The possible
values of widths are restricted from both sides, 0 < � < η.
The above-mentioned symmetry κ → 1/κ is reflected in the
symmetry � → η − � of a factor in Eq. (2) but, as was already
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FIG. 1. (Color online) The proposed resonance width distribution
according to Eq. (2) with a single neutron channel in the practically
important case η � �. The width � and mean level spacing D are
measured in units of the mean value 〈�〉.

stated, our region of interest is at � 	 η. Another parameter,
σ , determines the standard deviation of variable � evaluated
consistently with the distribution of Eq. (2). In the practical
region far away from the superradiance we obtain

P (�) = Cχ2
1 (�)

(
sinh κ

κ

)1/2

. (3)

The PTD is recovered in the limiting case κ 	 1 that corre-
sponds to the approximation of an open quantum system by a
closed one. The new element is the factor explicitly determined
by the coupling strength κ . With growing continuum coupling
the probability of larger widths increases. The distribution (2)
for different ratios 〈�〉/D is shown in Fig. 1.

The origin of the square root in the new factor is the
linear energy level repulsion typical for GOE spectral statistics.
Indeed, in the complex plane, E = E − i�/2, the distance be-
tween two poles Em and En is

√
(Em − En)2 + (�m − �n)2/4;

after integration over all variables of other states we obtain
a characteristic square root in the level repulsion [see below
Eq. (12) and the discussion after Eq. (21)] .

III. EFFECTIVE NON-HERMITIAN HAMILTONIAN
AND SCATTERING MATRIX

In order to come to the result (2), we start with the general
description of complex energies E = E − i�/2 in a system
of N unstable states satisfying the GOE statistics inside the
system and interacting with the single open channel through
Gaussian random amplitudes. The general reaction theory [23]
is constructed in terms of the elements of the scattering matrix
in the space of open channels a, b, . . . ,

Sba(E) = δba − iT ba(E). (4)
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Within the formalism of the effective non-Hermitian Hamilto-
nian H = H − (i/2)W , the T matrix is defined as

T ba(E) =
N∑

m,n=1

Ab∗
m

[
1

E − H

]
mn

Aa
n (5)

in terms of the amplitudes Aa
n connecting an internal basis state

n with an open channel a. Here we neglect the potential part
of scattering that is not related to the internal dynamics of the
compound nucleus. The anti-Hermitian term of the effective
Hamiltonian is exactly represented by the sum over k open
channels,

Wmn =
k∑

a=1

Aa
mAa∗

n , (6)

where the amplitudes can be considered real in the case of
time-reversal invariance. It is important that the factorized
structure of the effective Hamiltonian guarantees the unitarity
of the scattering matrix. The amplitudes Aa

n are uncorrelated
Gaussian quantities with zero mean and variance defined as
Aa

nA
b
n′ = δabδnn′η/N . The trace of the anti-Hermitian part of

the effective Hamiltonian, η = TrW , i.e., the total sum of all N
widths used in Eq. (2), is a quantity invariant under orthogonal
transformation of the intrinsic basis. The detailed discussion
of the whole approach, numerous applications, and relevant
references can be found in the recent review article [21].

The simplest version of the R-matrix description uses
instead of the amplitude T ba its approximate form, where
the denominator contains poles on the real energy axis
corresponding to the eigenvalues of the Hermitian part H

of the effective Hamiltonian. Then the continuum coupling
occurs only at the entrance and exit points of the process while
the influence of this coupling on the intrinsic dynamics of the
compound nucleus is neglected (in general, H should also
be renormalized by the off-shell contributions from the
presence of the decay channels). In contrast to that, the full
amplitude T ba , Eq. (5), accounts for this coupling during
the entire process including the virtual excursions to the
continuum and back from intrinsic states. The poles are the
eigenvalues of the full effective Hamiltonian in the lower
half of the complex energy plane. The experimental treatment
corresponds to this full picture. According to the original
paper [8], the R-matrix code SAMMY [24] had been used in the
experimental analysis where the relevant expression is given
in the form

Rcc′ =
∑

λ

γλcγλc′

Eλ − E − i�λ/2
δJJ ′ , (7)

and the treatment included a careful segregation of s and
p resonances, J = J ′ = 1/2 for an even target nucleus. In
the notation of [24] λ represents a particular resonance and
Eλ is the energy of the resonance. Here we can identify the
intermediate states λ and their complex energies Eλ − i�λ/2
with the eigenstates and complex eigenvalues of H, while
the numerator includes the amplitudes transformed to this
new basis (time-reversal invariance preserves the symmetry
of the scattering matrix). In terms of the reduced width γ 2

λc and
the penetration factor Pc, the partial width is �λc = 2Pcγ

2
λc.

Under the assumption of a single channel and universal energy
dependence of penetration factors, the statistics of the total
widths is the same as that of γ 2

λc.

IV. FROM ENSEMBLE DISTRIBUTION
TO SINGLE WIDTH DISTRIBUTION

For a single-channel case, the joint distribution P ( �E; ��) of
all complex energy poles has been rigorously derived in [19]
under assumptions of the GOE intrinsic dynamics in the closed
system and Gaussian distributed random decay amplitudes.
The result is given by

P ( �E; ��)

= CN

∏
m<n

(Em − En)2 + (�m−�n)2

4√
(Em − En)2 + (�m+�n)2

4

∏
n

1√
�n

e−NF ( �E;��),

(8)

where the “free energy” F contains interactions of N � 1
complex poles in the interval 2a = ND of energies,

F ( �E; ��) = 1

a2

∑
n

E2
n + 1

2a2

∑
m<n

�m�n + 1

2η

∑
n

�n. (9)

For given N , this distribution contains two parameters, the
semicircle radius a for the intrinsic dynamics and η charac-
terizing the total trace of the imaginary part of the effective
Hamiltonian.

Considering this free energy in the “mean-field” approx-
imation, we see that the original mean value 〈�〉0 = η/N is
substituted by 〈�〉, which is determined by the competition
of two terms, 1/〈�〉 = 1/〈�〉0 + 〈�〉/4D2. The first product
in front of exp(−NF ) in Eq. (8) substitutes the GOE-level
repulsion by the repulsion in the complex plane and interaction
of the poles with their negative-� “images” [19]. The structure
of this result guarantees that all widths � are positive. The
difficulty with the distribution of Eq. (8) is that it is not an
analytic function of complex energies.

Our first step is to specify a single N th pole (EN,�N ) ≡
(E,�) and, using the fact that the distribution ensures �n � 0,
return to the absolute values of the amplitudes,

√
�n = ξn, for

other roots. In this form we can apply the steepest descent
method owing to a large parameter N � 1 and a saddle point
inside the integration interval that was absent in the initial
expression. Integration of

∏N−1
n=1 dξn over all but one variable

� ≡ �N = ξ 2
N leads to the following result for P ( �E; �) as a

function of multiple energy variables �E and a single width
variable �:

P ( �E; �) = CN

∏
m<n

|Em − En|
∏
n

√
(En − E)2 + �2

4

× exp

[
− N

a2

(∑
n

E2
n + E2

)]

×
exp

[− N
2η

�
]

√
�

(√
2π

N
(

�
a2 + 1

η

))N−1

. (10)
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Introducing the new variables 2a/N = D and λ = ηN , we
shall examine the behavior of one of the N -dependent factors
in Eq. (10) in the limit of N → ∞:

lim
N→∞

[
exp

[− N
2η

�
]

√
�

(
1 + λ�

a2N

)− N−1
2

]

=
exp

[− N
2η

�
]

√
�

exp

[
− λ

2a2
�

]
. (11)

The scaling properties of the parameters η, a2, and λ are as
follows: η ∝ N , a2 ∝ N2, and λ ∝ N2. As a result, the product
of two exponents produces a well-defined limit that brings in
the desired dependence on the coupling strength κ .

The real energy distribution does not change much in an
open system with a single decay channel being still, at finite
but large N , close to a semicircle. We are working in the central
region of the spectrum where the level density is approximately
constant and the energy spectrum is close to equidistant. (The
maximum of the level spacing distribution is always at s =
δE/D ≈ 1 although the distribution in an open system changes
at small spacings, s < 1, as we will comment later.) With
En = E − nD, we are able to perform an exact calculation of
the product:

CN

∏
n

√
(En − E)2 + �2

4
= ĈN

(
N∏

n=1

[
1 + �2/4

(nD)2

])1/2

N→∞

= ĈN

(
sinh

[
π
2

�
D

]
π
2

�
D

)1/2

, (12)

where we have used the famous Euler formula

sinh x

x
=

∞∏
k=1

[
1 + x2

k2π2

]
. (13)

The width-independent factors will enter the normalization
constant. Of course, the whole reasoning is valid in the
limit N � 1. Finally, the width distribution for � 	 η is
represented by

P (�) = C

(
sinh

[
π
2

�
D

]
π
2

�
D

)1/2
exp

[− N
2η

�
]

√
�

exp

[
− λ

2a2
�

]
.

(14)

V. DOORWAY APPROACH

As an alternative derivation, we will apply the doorway
approach [2,25,26]. Here we use the eigenbasis of the
imaginary part W of the effective non-Hermitian Hamiltonian.
Due to the factorized nature of W dictated by unitarity [19],
the number of its nonzero eigenvalues is equal to the number
of open channels. In our case we have only one eigenvalue, the
doorway ε0 − iη/2, which has a nonzero width equal to the
imaginary part η of the trace of the Hamiltonian. The remaining
basis states are stable, being driven by the Hermitian intrinsic
Hamiltonian; its diagonalization produces their real energies
εn. These states acquire the widths through the interaction with

the doorway state; the corresponding matrix elements will be
denoted hn. In this basis, the Hamiltonian is represented as⎛⎜⎜⎜⎜⎜⎝

ε0 − i
2η h1 h2 · · · hN

h∗
1 ε1 0 · · · 0

h∗
2 0 ε2 · · · 0

· · · · · · · · · · · · · · ·
h∗

N 0 0 · · · εN

⎞⎟⎟⎟⎟⎟⎠ . (15)

The complex eigenvalues E = E − i�/2 are the roots of
the secular equation

E = ε0 − i

2
η +

N∑
n=1

|hn|2
E − εn

, (16)

which is equivalent to the set of coupled equations for real and
imaginary parts,

E = ε0 +
N∑

n=1

|hn|2 E − εn

(E − εn)2 + �2/4
, (17)

� = η

1 + ∑N
n=1

|hn|2
(E−εn)2+�2/4

≡ f (�,E). (18)

For a Gaussian distribution of coupling matrix elements with
〈|h|2〉 = 2σ 2/N (a scaling that was derived in [25]), we obtain

P (�)=
∫ +∞

−∞
δ(� − f (�,E)) exp

[
− N

σ 2

N∑
n=1

h2
n

]
N∏

n=1

dhn.

(19)

The integration in (19) via the steepest descent method leads
to Eq. (2). In order to get this result we use the possibility of
finding the highest root E = εN , relative to which the energies
εn can be counted as E = εN, εn = εN − nD. An important
intermediate step is the evaluation of the infinite product of the
Lorentzian peaks, which can be simplified as(

N−1∏
n=1

[
1 −

�2

4 + (E − εN )2

�2

4 + (E − εn)2

])−1/2

=
(

N−1∏
n=1

[
1 −

�2

4
�2

4 + (nD)2

])−1/2

=
(

sinh
[

π
2

�
D

]
π
2

�
D

)+1/2

. (20)

In a similar way one can analyze the resonance spacing dis-
tribution P (s) along the real energy axis; spacings s = δE/D

are measured in units of their mean value D. As predicted
in [19] and observed numerically in [22], the short-range
repulsion disappears and the Wigner surmise with the standard
linear preexponential factor s is substituted by the square
root,

P (s) ∝
√

s2 + 4
〈�2〉
D2

exp[− const. · s2]. (21)

At spacing s 	 1, the probability behaves as a + bs2 with the
quadratic dependence on s that, similar to the GUE, mimics
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the violation of time-reversal invariance due to the open
decay channel. The absence of short-range repulsion, a �= 0,
reflecting the energy uncertainty of unstable states, is the result
of the anti-Hermitian interaction through the continuum which
repels widths and attracts real energies [27], opposite to a
normal Hermitian perturbation.

We demonstrated that two complementary approaches
which reflect different physical aspects of the situation lead
essentially to the equivalent (after identification of correspond-
ing parameters) results which we prefer to write in the form
(2). We expect that for other canonical ensembles the width
distribution far from the superradiance can be expressed by
a similar formula with the function (sinh κ/κ)β/2, where the
standard index of the ensemble is β = 1 for the GOE, β = 2
for the GUE, and β = 4 for the Gaussian symplectic ensemble.
In the same way we expect the square root in Eq. (21) to be
substituted by the same power β/2.

The doorway approach naturally indicates the limits of the
variable, 0 � � � η. It also has an advantage in that one
can possibly generalize the answer by taking into account
explicitly the rigidity of the internal energy spectrum with
fluctuations of level spacings around their mean value D

[while, in our approximation, only this average value enters
Eq. (2)]. Another direction of generalization includes the
possible influence of a single-particle resonance depending
on the position of its centroid with respect to the considered
interval of the resonance spectrum. In particular, that centroid
may be located under the threshold of our decay channel. In this
case even the standard energy dependence of the widths can
change, as was mentioned long ago [25] (see also [14]). The
doorway state may or may not coincide with such a resonance,
so that the effective Hamiltonian (15) may contain two special
states coupled with the “chaotic” background, one by intrinsic
interactions and another one through the continuum.

VI. ADDING γ CHANNELS

The goal of this section is to estimate in the same spirit the
influence of γ channels on the resonance width distribution.
Only a single open elastic neutron channel was taken into
account in the analysis of data [8,9]. The presence of even weak
additional open channels changes the unitarity conditions.
Examples of the mutual influence of neutron and γ channels
are well known in the literature from long ago (see, for
example, [28]).

Generalizing the doorway description, we allow now each
intrinsic state to decay by γ emission, which is always
possible independently of the position of the neutron threshold.
In the simplest approximation, the effective non-Hermitian
Hamiltonian is now represented by⎛⎜⎜⎜⎜⎜⎝

ε0 − i
2η h1 h2 · · · hN

h∗
1 ε1 − i

2γ1 0 · · · 0

h∗
2 0 ε2 − i

2γ2 · · · 0
· · · · · · · · · · · · · · ·
h∗

N 0 0 · · · εN − i
2γN

⎞⎟⎟⎟⎟⎟⎠ , (22)

where we assumed that the intrinsic part of the matrix is pre-
diagonalized and introduced γn as the widths for γ channels.

Analogously to Eq. (16), the complex energy eigenvalues
E = E − i

2� are the roots of the secular equation

E = ε0 − i

2
η +

N∑
n=1

|hn|2
E − (

εn − i
2γn

) , (23)

which is equivalent to a set of coupled equations,

E = ε0 +
N∑

n=1

|hn|2 E − εn

(E − εn)2 + (� − γn)2/4
, (24)

� =
η + ∑N

n=1 |hn|2 γn

(E−εn)2+(�−γn)2/4

1 + ∑N
n=1 |hn|2 1

(E−εn)2+(�−γn)2/4

≡ g(�,E, γ ). (25)

The resonance width distribution for an open quantum system
with γ channels included is given by

P (�, γ ) =
∫ +∞

−∞
δ(� − g(�,E, γ ))

× exp

[
− N

σ 2

N∑
n=1

h2
n

]
N∏

n=1

dhn. (26)

Estimating the widths γn by their average value, γ , and
acting in the same manner as in the case of a single open
channel we come to the final expression for the resonance
width distribution:

P (�, γ ) = C
(η − γ )√

� − γ
√

η − �
exp

[
− N

2σ 2
(� − γ )(η − �)

]

×
(

sinh
[

π(�−γ )
2D

(η−�)
η

]
π(�−γ )

2D

(η−�)
η

)1/2

(27)

which is shifted by � → � − γ compared to the previous
result. The symmetry mentioned earlier between the ends of the
distribution, � = 0 and � = η, would be substituted here by
� → (η + γ ) − �. Thus, the effective influence of γ -channels
on the resonance width distribution is reduced here to a shift

Cnorm χ12
Sinh π γ

2 D
π γ
2 D

χ1
2

D 2
D 4

2 4 6 8 10

0.05

0.10
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0.30
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FIG. 2. (Color online) The proposed resonance width distribution
according to Eq. (27) with a single neutron channel and N γ -channels
in the practically important case η � �. The neutron width �,
radiation width γ , and mean level spacing D are measured in units
of the mean value 〈�〉.
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of the whole distribution by a mean radiation width γ as seen
in Fig. 2.

In the practical region far away from the super-radiance,
� 	 η, we obtain

P (�, γ ) = χ2
1 [� − γ ]

(
sinh

[
π(�−γ )

2D

]
π(�−γ )

2D

)1/2

. (28)

In order to extract the neutron width from the total
resonance width, the treatment of the data has to be modified
making in a sense an inverse shift. Of course, a more precise
consideration should use a statistical distribution of the γ

widths.

VII. CONCLUSION

In this article we propose a standard resonance width
distribution for an open quantum system based on chaotic
intrinsic dynamics and coupling of states with the same
quantum numbers to the common decay channel. Two ap-
proximate methods lead to an equivalent analytical expression
for the width distribution that does not belong to the class of
chi-square distributions with the only parameter ν traditionally
used in the analysis of data. In the limit of vanishing openness
and return to a closed system we recover the standard PTD.
The new result depends on the ratio (1) of the width to the
mean level spacing, κ ∼ �/D, that regulates the strength of the
continuum coupling. The deviations from the PTD grow with κ

up to the critical strength κ ∼ 1, when the broad “superradiant”
state becomes essentially part of the background, while the
remaining “trapped” states return to the weak-coupling regime.
This physics was repeatedly discussed previously, especially
in relation to quantum signal transmission through mesoscopic
devices [21,29], but it is outside of our interest here.

In the practical region of low-energy neutron resonances,
the effects predicted here are relatively small. Although at
small κ the derived neutron width distribution supports an
experimental trend, the final judgment can be made only after
the presence of γ channels was accounted for. We have to
attract the attention of experimentalists to the fact that the
data should be analyzed with the aid of a distribution that
does not belong to the routinely used chi-square class; γ

channels should be included in this consideration. We can also
mention that the result agrees with numerical simulations [15]
for the full many-resonance distribution function (8). Using
the suggested distribution as a new reference point, one can
ascribe the remaining deviations to the specific features of
individual systems (level densities, single-particle structure
in a given energy region, shape transformations, energy
dependence of the widths, etc.). Unfortunately, we still do not
have experimental tests for the full distribution (8). Although
in nuclear physics it is hard to make such a detailed analysis
for higher energies and greater degree of resonance overlap,
the systems with tunable chaos, such as microwave cavities,
acoustic blocks, or even elastomechanical devices [30], seem
to provide appropriate tools for such studies.
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