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Polarized proton + 4,6,8He elastic scattering with breakup effects in the eikonal approximation
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We study the elastic scattering of polarized protons from He isotopes. The central and spin-orbit parts of the
optical potential are derived using the Glauber theory that can naturally take account of the breakup effect of
the He isotopes. Both the differential cross section and the vector analyzing power for p + 4,6,8He scattering at
71 MeV are in reasonable agreement with experiment. Scattering observables at 300 MeV are predicted. The
Pauli blocking effect is examined at 71 MeV.
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I. INTRODUCTION

The spin-orbit potential for a nucleon moving in a nucleus
plays a decisive role in the nuclear shell structure. Though
the phenomenological aspect of the spin-orbit potential has
been clarified rather well for stable nuclei, a full account of
its origin is still under active study. Important information
on the spin-orbit potential is obtained through the analysis of
elastic scattering observables, especially the vector analyzing
power in elastic scattering of polarized protons from the
nucleus.

Recent developments of experimental techniques have
provided us with a polarized proton target and have made
it possible to measure not only the differential cross section
but also the vector analyzing power for elastic scattering of
polarized protons from unstable nuclei in inverse kinematics.
Data have recently been taken for 6He [1] and 8He [2] at
71 MeV/nucleon. A good example of a two-neutron halo
nucleus is 6He, where the neutron density extends far out
in distance. This unique feature of its structure is expected to
show up in the vector analyzing power because the spin-orbit
potential is primarily sensitive to the surface of the nucleus.
Though less pronounced than 6He, 8He has an extended
neutron cloud as well and its elastic scattering observables
are interesting.

There have been so far only a few theoretical studies on the
optical potential and observables for p + 6,8He elastic scat-
tering. The single-scattering approximation to the multiple-
scattering expansion was employed in the p + 8He case [3].
The predicted angular distribution of the vector analyzing
power shows a peak at about θc.m. = 46◦, which is different
from the value obtained from the data [2]. The p + 8He elastic
scattering angular distribution was analyzed in the eikonal
model to examine its sensitivity to the matter distribution of
8He [4]. The p + 6,8He elastic scattering observables were
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calculated in a full-folding optical model [5]. The calculated
vector analyzing powers do not agree with experiment [1,2].
Very recently neutron pickup coupling with the elastic channel
has been studied to see its effect on proton scattering from
6He [6]. As noted above, none of the calculations succeeds
in reproducing the vector analyzing powers for p + 6,8He
scattering. It is reported that a search for the optical potential
parameters of the spin-orbit part leads to a shallow and
long-ranged spin-orbit potential for 6He [1].

The purpose of this paper is to analyze the elastic scattering
observables, the differential cross section, the vector analyzing
power, and the spin-rotation function, for protons scattered
from He isotopes including 4He [7]. The central part of the
optical potential for the proton is calculated in the framework
of the Glauber or eikonal model [8]. The inputs needed in the
calculation include only the ground-state wave functions of
the He isotopes and the nucleon-nucleon scattering amplitude,
or more precisely its Fourier transform, the nucleon-nucleon
profile function. The spin-orbit potential is constructed by
using a derivative of the central part of the optical potential.
There are at least three noticeable advantages of the present
approach: First, it is logically very simple, and nevertheless it
contains nucleon-nucleon multiple scatterings to all orders.
Second, the wave function of the projectile nucleus itself
can be employed, though in an approximate version of the
present approach the projectile density may be used instead of
the wave function. Third, the optical potential obtained takes
account of breakup effects of the projectile without recourse
to laborious calculations with continuum discretization [9,10],
which enables us to discuss easily the dynamic polarization
potential (DPP). The breakup effect is a vital ingredient that
should be taken care of for the optical potential of a weakly
bound nucleus such as 6He.

In Sec. II we present a formulation needed in our approach.
We show in Sec. II A how to construct the optical potential,
its approximate version, and a relationship between those
potentials and a folding potential. We define our spin-orbit
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potential in Sec. II B together with the elastic scattering
observables. In Sec. II C we outline the variational Monte
Carlo method that is employed to generate the ground-state
wave functions of the He isotopes. Results of our calculation
are presented in Sec. III. First we compare the elastic
scattering observables at 71 MeV/nucleon with experiment
in Sec. III A. The angular distributions of the differential cross
section and vector analyzing power for p + 4He scattering at
higher energies are compared to available data in Sec. III B.
Predictions for p + 6,8He scattering at intermediate energy are
also given. Conclusions are drawn in Sec. IV.

II. FORMULATION

A. Optical potential in the eikonal approximation

Let us assume that the projectile nucleus moves in the z

direction and impinges on a proton target with a velocity
v. Let R stand for the relative distance vector between the
projectile and the proton. Under the eikonal approximation
the x, y component of R, denoted b, turns out to be just a
parameter, the impact parameter. The interaction vpN between
the ith nucleon of the projectile and the proton gives rise to
a multiplicative phase factor eiχpN (b−si ) [8] that modifies the
wave function of the projectile, where si is the x, y component
of the position vector r i of the ith nucleon relative to the center
of mass of the projectile. The phase χpN is related to vpN by

χpN (b) = − 1

h̄v

∫ +∞

−∞
vpN (

√
b2 + z2) dz. (1)

Each nucleon contributes a position-dependent multiplicative
phase factor. A key quantity to describe the proton-projectile
elastic scattering is given by the eikonal phase

eiχE(b) = 〈�0| ei�(b,s1,...,sA)|�0〉, (2)

where �(b, s1, . . . , sA) = ∑A
i=1 χpN (b − si) is the total

phase, and �0 is the ground-state wave function of the
projectile nucleus.

As is well known [9,10], the optical phase shift function
(2) obtained in the eikonal approximation includes the effects
of coupling with excited states or breakup continuum states.
To make this point clear, we define the average of the total
phase,

χF(b) = 〈�0| �(b, s1, . . . , sA)|�0〉. (3)

Hereafter the projectile nucleus is assumed to be spherical,
so that both χE(b) and χF(b) become a function of b = |b|.
Using Eqs. (1) and (3), we find that χF(b) is the phase shift
function corresponding to the single folding potential Uf(R) =∫

ρN (r)vpN (|R − r|) d r:

χF(b) = − 1

h̄v

∫ +∞

−∞
Uf(

√
b2 + z2) dz, (4)

where ρN (r) is the nucleon density of the projectile nucleus.
The eikonal phase χE(b) is expressed as

χE(b) = χF(b) − iln〈�0| ei(�(b,s1,...,sA)−χF(b))|�0〉. (5)

According to Glauber [8], a potential

Uc(R) = h̄v

π

1

R

d

dR

∫ ∞

0
χE(

√
R2 + x2) dx (6)

produces the phase shift function χE(b) in the eikonal ap-
proximation. The potential Uc(R) differs from Uf(R) in that
the underlying phase shift function of the former contains the
second term of the right-hand side of Eq. (5). The term can be
discussed in a cumulant expansion [8,10] that involves the fluc-
tuation of the higher order cumulants 〈�0| [�(b, s1, . . . , sA) −
χF(b)]n|�0〉. The difference between Uc(R) and the folding
potential Uf(R) is the DPP. As is clear from the above
derivation, the DPP is evaluated in the eikonal approximation
without an explicit invoking of the couplings with excited and
continuum states.

It should be stressed that the central part of the optical
potential Uc(R) can be obtained in a unified way independently
of the projectile nucleus.

The above formulation has successfully been applied to
a study of the breakup effects of weakly bound projectile
nuclei, e.g., 2H scattered from 58Ni [9] and 6He scattered
from 12C [11]. In these applications the target is not a proton
but a composite nucleus. It is treated as an absorbing point
particle and then it is possible to apply exactly the same
formulation as above by adopting appropriate nucleon-target
optical potentials for vpN . The quality of such calculations
is tested by comparing to other calculations that explicitly
include the breakup channels in the continuum discretized
coupled-channels method [12,13].

For the proton target, vpN stands for the proton-nucleon
potential. Any operator dependence of the potential has to be
avoided because otherwise the evaluation of Eq. (2) together
with Eq. (1) is impossible. Instead of looking for some
effective forces that have no operator dependence, we follow
a simple procedure here. We introduce the proton-nucleon
profile function �pN (b), which is equal to 1 − eiχpN (b). With
�pN (b), the proton-nucleon scattering amplitude fpN (θ ) is
given in the eikonal approximation by

fpN (θ ) = iK

2π

∫
e−iq·b �pN (b) db, (7)

where K is the wave number and q is the momentum transfer,
q = 2K sin θ

2 , and �pN (b) is conveniently parametrized as

�pN (b) = 1 − iαpN

4πβpN

σ tot
pN e

− b2

2βpN , (8)

where αpN is the ratio of the real to the imaginary part of the
pN scattering amplitude in the forward direction, βpN is the
slope parameter of the pN elastic differential cross section,
and σ tot

pN is the pN total cross section due to the nuclear pN
interaction. We use the parameter values tabulated in Ref. [14].
The difference between pp and pn interactions is taken into
account in what follows by extending Eq. (8) to

�pN (b) = δNp�pp(b) + δNn�pn(b). (9)

In this way we bypass the direct use of the nuclear force in
calculating χE(b).

The eikonal phase χE(b) and the average total phase
χF(b) are expressed in terms of the profile function as
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follows:

χE(b) = −i log〈�0|
A∏

i=1

[1 − �pN (b − si)]|�0〉, (10)

χF(b) = −i

∫
ρN (r) log[1 − �pN (b − s)] d r. (11)

Both neutron and proton densities are employed in calculating
χF(b). As will be explained in Sec. II C, χE(b) is obtained with
a Monte Carlo integration. It turns out that the present approach
together with the Monte Carlo integration is very versatile for
calculating the eikonal phase and the corresponding optical
potential. A simpler calculation is to take the leading order of
the cumulant expansion, leading to

χ
(1)
E (b) = i

∫
ρN (r)�pN (b − s) d r. (12)

This provides us with a reasonable approximation to the full
phase for the nucleon-nucleus scattering, and it is often adopted
for the evaluation of the phase shift function for the scattering
between complex nuclei [14–16]. Equation (6) is used to obtain
those potentials which generate the phases χF(b) and χ

(1)
E (b),

and they are compared with Uc(R).

B. Elastic scattering observables

The potential Uc(R) constructed in this way is central and
includes the effect of breakup of the projectile in the eikonal
approximation. The spin-orbit term of the optical potential is
introduced as

Uso(R) = Vsoλ
2
π

1

R

d

dR
Uc(R), (13)

where λπ is the pion Compton wavelength. The real and
imaginary parts of the spin-orbit potential are thus obtained
from the real and imaginary parts of Uc, respectively, and the
constant Vso that determines the spin-orbit strength is allowed
to be different depending on the real and imaginary parts of
the spin-orbit potential.

Proton-nucleus scattering is described in a partial wave ex-
pansion with the potential Uc(R) + l · σUso(R). The scattering
amplitude becomes an operator in the spin space,

f̂ (θ ) = f (θ ) + ig(θ )σ · n̂, (14)

with a unit vector n̂ perpendicular to the scattering plane,

n̂ = k × k′

|k × k′| , (15)

where k and k′ are the momenta in the center of mass before
and after the scattering. Denoting the S matrix by S±

l =
exp(2iδ±

l ), where δ±
l are complex phase shifts for the potential

Uc(R) + lUso(R) or Uc(R) − (l + 1)Uso(R), respectively, we
obtain

f (θ ) = fC(θ ) + 1

2ik

∑
l

[(l + 1)(S+
l − 1) + l(S−

l − 1)]

× e2iδC
l Pl(cos θ ), (16)

g(θ ) = 1

2ik

∑
l

(S+
l − S−

l ) e2iδC
l P 1

l (cos θ ), (17)

where fC(θ ) is the Coulomb scattering amplitude, δC
l is the

Coulomb phase shift, and P 1
l (θ ) is the associated Legendre

polynomial. A deviation of the Coulomb potential from that
of a point charge is included in the calculation but its effect is
very small.

For a fixed angle θ the scattering amplitude f̂ is determined
by three real quantities. They can be conventionally chosen
as the differential cross section dσ/d�, the vector analyzing
power Ay , and the spin-rotation function Q:

dσ

d�
= |f (θ )|2 + |g(θ )|2, (18)

Ay(θ ) = 2Re(f (θ )g∗(θ ))
|f (θ )|2 + |g(θ )|2 , (19)

Q(θ ) = 2Im(f (θ )g∗(θ ))
|f (θ )|2 + |g(θ )|2 . (20)

C. Variational Monte Carlo wave function

The wave functions of He isotopes used in this work are
taken from variational Monte Carlo (VMC) calculations for
a Hamiltonian consisting of nonrelativistic nucleon kinetic
energy, the Argonne v18 two-nucleon potential [17], and the
Urbana IX three-nucleon potential [18]:

H =
∑

i

Ki +
∑
i<j

vij +
∑

i<j<k

Vijk. (21)

A VMC calculation finds an upper bound EV to an eigenenergy
E0 of the Hamiltonian by evaluating the expectation value of
H in a trial wave function, �V :

EV = 〈�V |H |�V 〉
〈�V |�V 〉 � E0. (22)

The parameters in �V are varied to minimize EV , and the
lowest value is taken as the approximate energy. The multi-
dimensional integral is evaluated using standard Metropolis
Monte Carlo techniques [19] (and hence the VMC designa-
tion). A good trial function is given by [20]

|�V 〉 = S
A∏

i<j

⎡
⎣1 + Uij +

A∑
k �=i,j

Ũijk

⎤
⎦ |�J 〉, (23)

where Uij and Ũijk are noncommuting two- and three-body
correlation operators induced by the dominant parts of vij and
Vijk , respectively, S is a symmetrizer, and the Jastrow wave
function �J is

|�J 〉 =
∏
i<j

fc(rij )|�A(Jπ ; T Tz)〉. (24)

Here the single-particle A-body wave function �A(Jπ ; T Tz)
is fully antisymmetric and has the total spin, parity, and
isospin quantum numbers of the state of interest, while the
product over all pairs of the central two-body correlation
fc(rij ) keeps nucleons apart to avoid the strong short-range
repulsion of the interaction. The long-range behavior of fc and
any single-particle radial dependence in �A (which, to ensure
translational invariance, is written using coordinates relative
to the center of mass of the s-shell core) control the finite
extent of the nucleus. For p-shell nuclei, there are actually

044601-3



K. KAKI, Y. SUZUKI, AND R. B. WIRINGA PHYSICAL REVIEW C 86, 044601 (2012)

three different central pair correlation functions fc: fss , fsp,
and fpp, depending on whether both particles are in the s-shell
core (ss), both in the p-shell valence regime (pp), or one in
each (sp).

The two-body correlation operator has the structure

Uij =
∑

p=2,6

up(rij )Op

ij , (25)

where the O
p

ij are the leading spin, isospin, spin-isospin, tensor,
and tensor-isospin operators in vij . The radial shapes of fc(r)
and up(r) are obtained by numerically solving a set of six
Schrödinger-like equations: two single-channel ones for S =
0, T = 0 or 1, and two coupled-channel ones for S = 1, T = 0
or 1, with the latter producing the important tensor correlations
[21]. These equations contain the bare vij and parametrized La-
grange multipliers to impose long-range boundary conditions
of exponential decay and tensor/central ratios.

Perturbation theory is used to motivate the three-body
correlation operator

Ũijk = −εṼijk(r̃ij , r̃jk, r̃ki), (26)

where r̃ = yr , y is a scaling parameter, ε is a (small negative)
strength parameter, and Ṽijk includes the dominant short-range
repulsion and anticommutator part of two-pion exchange in the
three-nucleon potential. Consequently, Ũijk has the same spin,
isospin, and tensor dependence that Ṽijk has.

The variational parameters in fss , Uij , and Ũijk have been
chosen to minimize the energy of the s-shell nucleus 4He.
For the p-shell nuclei 6He and 8He, these parameters are kept
fixed and the additional parameters that enter fsp, fpp, and
the single-particle radial behavior of �A have been adjusted to
minimize the energy of these systems subject to the constraint
that the proton and neutron rms radii are close to those
obtained from more sophisticated Green’s function Monte
Carlo (GFMC) calculations [20,22].

The wave function samples used here are generated by
following a random walk guided by the �V for each nucleus.
After an initial randomization, a move is attempted, where
each particle is randomly shifted within a box of 1.2–1.4 fm in
size; the �V is evaluated and compared to the previous config-
uration, with the move being accepted or rejected according
to the Metropolis algorithm. After ten attempted moves, the
configuration is saved, including the x, y, z coordinates of
each particle (with the center of mass being set to zero) and
the probability for each particle to be either a neutron or a
proton. The size of the box gives an acceptance rate of ∼50%
and we generate one million configurations for each nucleus.

The root-mean-square radii calculated from the VMC wave
functions are listed in Table I. The second column shows
the proton root-mean-square radii extracted from the charge
radii that are obtained from the experiment based on laser
spectroscopy [23]. The results of the VMC wave functions
excellently reproduce the radii determined experimentally.

The density distributions of He isotopes are displayed in
Fig. 1. Solid and dotted lines denote the neutron and proton
distributions, respectively. Both proton and neutron distribu-
tions of 4He are almost the same and are confined to a small
region. Though the proton distribution is very similar in both

TABLE I. Root-mean-square radii, given in units of femtometers,
of the proton and neutron distributions of 4,6,8He. The proton radius
of the second column is obtained by converting the measured charge
radius.

He isotope Experiment [23] Calculated

proton proton neutron

4He 1.457(4) 1.447 1.447
6He 1.938(23) 1.928 2.871
8He 1.885(48) 1.884 2.901

6He and 8He, the tail of 6He is slightly more extended to larger
distances. Beyond 2 fm, the neutron distribution overwhelms
that of the proton. The falloff of 6He neutron density is rather
slow compared to that of 8He owing to its weak binding.

III. RESULTS

The construction of the optical potential, (6) and (13),
requires the 3A-dimensional integration indicated in Eq. (2) or
(10). This integration can be performed with ease in the Monte
Carlo method using the wave function samples generated
in Sec. II C. The feasibility and the accuracy of the Monte
Carlo integration in the calculation of the phase shift function
was already demonstrated for various cases in Ref. [24]. The
differentiation in Eq. (6) is facilitated by fitting χE(b) in
terms of several Gaussians with different falloff parameters:
χE(b) = ∑

k Ck exp(−akb
2).

A. Scattering at 71 MeV

First we discuss the elastic scattering observables at
71 MeV. The strength Vso of the spin-orbit potential is the
only parameter in the present formalism. The differential
cross section is largely determined by the central potential Uc.
The spin-orbit potential contributes to the differential cross

0 2 4

0.1

0.2

r(fm)

4He

6He

8He

ρ
(f

m
−

3 )

FIG. 1. (Color online) Density distributions of 4,6,8He calculated
with the VMC wave functions. Solid and dotted lines denote the
neutron and proton distributions, respectively.
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TABLE II. Strength parameters Vso of the spin-orbit potentials for
p + 4,6,8He scattering at 71 MeV.

He isotope Real potential Imaginary potential

4He 0.125 −0.075
6He 0.025 0.00
8He 0.05 0.00

section almost negligibly within a reasonable range of the
strength, and so we try to fit the vector analyzing power by
varying Vso. In the case of 4He, we choose different values
of the strength parameter depending on the spin-orbit real or
imaginary potential. The spin-orbit imaginary potential for
6He and 8He is set to be zero for the sake of simplicity.
The depth parameters of the spin-orbit potential are listed in
Table II. The value of Vso for the p + 4He spin-orbit real
potential is consistent with that employed in the systematics
of one-particle motion [25]. Compared to 4He, the strength of
the spin-orbit real potential for 6,8He is considerably smaller,
in accordance with the analysis of Ref. [1].

Figure 2 shows the optical potentials calculated for p +
4,6,8He elastic scattering. The left and right panels of Fig. 2(a)
are the central real and imaginary potentials. Solid lines denote
potentials of the full calculation, while dash-dotted lines are the
folding potentials. The optical potential for 4He is much deeper
than the others at short distances due to its compact structure
but becomes much shallower near the surface. Compared to the
folding potential, the full optical potential has the following
property near the surface: the imaginary part turns out to be

much more absorptive and the real part is less attractive. This
is a general feature of the DPP due to the breakup effect, as
already observed in Ref. [9]. Similarly, Fig. 2(b) exhibits the
spin-orbit real and imaginary potentials.

Figure 3 displays the differential cross sections (upper
panels) and vector analyzing powers (lower panels) for 4He,
6He, and 8He calculated using the above potentials. Solid
lines denote the results based on the potential derived from
the full phase shift function (10), dotted lines are the results
obtained from its leading order in the cumulant expansion
(12), and dash-dotted lines are the results of the folding
potential (11). It is seen that the full potential gives smaller
and better differential cross sections than the folding potential.
The vector analyzing powers are also better reproduced with
the full potential. The leading order approximation seems to
be surprisingly good. The vector analyzing power available
for 4He is accurately known [7], and its behavior that changes
sign around 60◦ demands a nonvanishing Vso value for the
imaginary potential. In Ref. [6] the effects of a DPP due to
pickup coupling on the differential cross section and vector
analyzing power for proton elastic scattering from 6He has
been studied. Their results for the full calculation including
both pickup and breakup contributions have shown a decrease
in the differential cross section around 50◦ and an increase in
the vector analyzing power at angles larger than 50◦, which is
in disagreement with the data.

Though the present theory reproduces the experimental
data—especially the vector analyzing powers—fairly well,
the calculated differential cross sections tend to be large
compared to experiment. The incident energy of 71 MeV
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FIG. 2. (Color online) Optical potentials for p + 4,6,8He elastic scattering at 71 MeV. The central and spin-orbit potentials are shown in
Fig. 2(a) and 2(b), respectively. The left and right panels are the real and imaginary potentials, respectively. The spin-orbit imaginary potentials
of 6He and 8He are set to be zero. Solid and dash-dotted lines are the potentials of the full eikonal model and the folding model, respectively.
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)
A

y
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FIG. 3. (Color online) Angular distributions for p + 4,6,8He elastic scattering at 71 MeV. The upper panels show the differential cross
sections and the lower panels the vector analyzing powers. Solid lines are full eikonal calculations (10), dotted lines are the approximation in
the leading-order cumulant expansion (12), and dash-dotted lines are the folding model calculations (11). Experimental data are taken from
Ref. [7] for 4He, from Refs. [1,26] for 6He, and from Refs. [2,27] for 8He.

is likely not high enough for the Glauber approximation.
In such a case that the incident energy of the projectile is
comparable to its Fermi energy, the use of information on
the free-space nucleon-nucleon interaction may not be valid,
but Pauli-blocking effects may become important. In fact, the
chance for the incident nucleon to collide with the proton target
will be suppressed because of the Pauli effect.

To simulate this Pauli-blocking correction phenomenolog-
ically, we replace the σ tot

pN value of Eq. (8) with

σ̄ tot
pN = σ tot

pN

(
1 − γ

7

5

EF

E

)
, (27)

where the Fermi energy EF is related, in the local den-
sity approximation, to the nucleon density ρN (r) by EF =
h̄2

2mN
[3π2ρN (r)]2/3. The value of γ is unity according to

Ref. [28], but here it is adjusted to reproduce the differential

cross section at forward angles. In fact, the use of Eq. (27) with
γ = 1 for 4He turns out to lead to unphysical cross sections
because the 4He density is very large and changes drastically
in a small region and thus the local density approximation
may not work so well. The adopted value of γ is 0.5 for all
He isotopes. At the same time, the range parameter βpN is
also appropriately changed as noted in Ref. [14]. The values
of Vso are kept unchanged. The solid line in Fig. 4 denotes the
result of the calculation with the Pauli-blocking correction.
Compared to the solid line in Fig. 3 that has no correction, we
see that the Pauli-blocking correction results in the decrease of
the differential cross sections, leading to fair agreement with
experiment at forward angles. The vector analyzing power for
4He is very much improved as well. Also plotted in Fig. 4
are the results of Ref. [5] in which the optical potential based
on the Watson formulation of multiple-scattering theory was
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Solid lines are the results of the present model with the Pauli-blocking effect, while dash-dotted lines are the results taken from Ref. [5]. See
the caption of Fig. 3 for the experimental data.
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FIG. 5. (Color online) Optical potentials for p + 4He elastic
scattering at 71 MeV. The upper two panels show the central and spin-
orbit real potentials while the lower two panels show the imaginary
potentials. Solid and dotted lines denote the potentials of the full
calculation with and without the Pauli-blocking effect, respectively.

derived. Our calculation including the breakup effect clearly
offers a better description of the scattering of the proton with
the He isotopes. The optical potential with the Pauli-blocking
correction is displayed in Fig. 5, and it is compared to the one
without the correction. Both real and imaginary parts are re-
duced significantly for r < 2, fm by the Pauli-blocking effect.

As seen in Fig. 4, the theory slightly underestimates the
p + 4He differential cross section beyond 70◦. We considered
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FIG. 6. (Color online) Optical potentials for p + 4He elastic
scattering at 300 and 550 MeV. The upper two panels show the central
and spin-orbit real potentials while the lower two panels show the
imaginary potentials. Solid and dash-dotted lines denote the full and
folding potentials at 300 MeV, whereas dotted and dash-dot-dotted
lines denote the full and folding potentials at 550 MeV.
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FIG. 7. (Color online) Angular distributions for p + 4He elastic
scattering at 300 and 550 MeV. Displayed are the differential cross
section (a), the vector analyzing power (b), and the spin-rotation
function (c). The values of Vso are 0.1 and −0.05 for the real and
imaginary potentials at 300 MeV and 0.9 (0.09 for the folding
calculation) and −0.025 at 550 MeV. Solid, dotted, and dash-dotted
lines indicate the same types of calculations as those of Fig. 3.
Experimental data are taken from Ref. [31] for 300 MeV and from
Ref. [32] for 500 MeV.

the effect of the knock-on process to see whether or not
that gives an important contribution in improving the cross
section. In the knock-on process the incident nucleon knocks a
nucleon inside the nucleus and the knocked nucleon is ejected
out of the nucleus. The knock-on exchange effect produces a
nonlocal potential and it was calculated by assuming a (0s)4

wave function of 4He and the Minnesota central potential [29].
This nonlocal potential is transformed to an equivalent local
potential following the WKB procedure [30]. The effect of
this potential is, however, so small that the above discrepancy
remains to be resolved.

B. Scattering at 300 and 500 MeV

Next we study the elastic scattering observables at 300 and
500 MeV, where p + 4He data are available for both differ-
ential cross sections and vector analyzing powers [31,32].
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FIG. 8. (Color online) Angular distributions for p + 6He elastic
scattering at 300 MeV. The left panels show the results calculated
with Vso = 0.1 for the real potential, the same strength as that of 4He
at 300 MeV, while the right panels show the results with Vso = 0.2.
The spin-orbit imaginary potential is set to be 0.05, which is the same
as that of 4He. Solid, dotted, and dash-dotted lines indicate the same
types of calculations as those of Fig. 3.

The eikonal approximation should work better at these high
energies.

Figure 6 displays the optical potentials for proton-elastic
scattering from 4He at 300 and 550 MeV. As already known
[11], it is seen that with increasing projectile incident energy
the depth of the central real potential decreases and that of
the central imaginary potential increases. The central real
potential calculated in the full model at 550 MeV is found
to be extremely shallow, which results in a very small real part
of the spin-orbit potential if Vso is of the order of 0.1. In order
to account for the vector analyzing power, Vso has to be chosen
to be about 1.0, as will be shown below.

Figure 7 exhibits observables of proton elastic scattering
from 4He at 300 MeV (left side) and 550 MeV (right side).
From the top, differential cross section (a), vector analyzing
power (b), and spin-rotation function (c) are given. Dots are
experimental data [31] for 300 MeV and [32] for 500 MeV.
Note that the theory at 550 MeV is compared to the experiment
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FIG. 9. (Color online) The same as Fig. 8 but for p + 8He elastic
scattering at 300 MeV.

at 500 MeV. The present theory reproduces both the differential
cross section and the vector analyzing power reasonably well.

Finally, we predict the scattering observables at 300 MeV
for p + 6He in Fig. 8 and for p + 8He in Fig. 9. Solid and
dotted lines in both figures show results for full and folding
model calculations. In the case where the real depth parameter
Vso is chosen to be the same as that of the 4He case at 300 MeV,
the angular distributions for 6He and 8He are similar to that for
4He at 300 MeV, as expected. Calculations with a parameter
twice as large (Vso = 0.2) increase the vector analyzing powers
at small angles and the differential cross sections at large
angles. The differential cross section, the vector analyzing
power, and the spin-rotation function are all different between
the full and folding model calculations at angles larger than
50◦, as we observe in Figs. 3 and 7.

IV. CONCLUSION

We have analyzed the elastic scattering observables for
protons scattered from He isotopes at 71 and 300 MeV. The
optical potentials for p + 4,6,8He systems are calculated in the
Glauber model. The central potential is evaluated to all orders
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of the complete Glauber amplitude using the nucleon-nucleon
scattering amplitude and the ground-state wave function of
the He isotope that is taken from the variational Monte Carlo
method. Both the real and imaginary parts of the central
potential are determined without any adjustable parameters.
It should be noted that the central potential obtained in this
way takes into account the breakup effect of the He isotope to
its excited states including continuum states, which makes
it possible to learn the difference from the single folding
model potential. The spin-orbit potential is assumed to take
the standard form that uses the derivative of the central
potential. Its strength is the only parameter in the present
approach.

Though the incident energy of 71 MeV may be a little too
low for applying the Glauber theory, the present theory leads
us to reasonable agreement with experimental data especially
on the vector analyzing powers for p + 4,6,8He scatterings
simultaneously. It should be noted here that usual t-folding
calculations fail to reproduce the vector analyzing powers.
We observe that the differential cross sections are all slightly
larger than the experimental data even at forward angles. We
have studied the Pauli-blocking effect that partly suppresses
the interaction between the proton and the He isotope and

found that including it improves the angular distribution of the
elastic scattering.

For higher incident energy scattering from 4He, the differ-
ential cross section is reproduced well at forward angles and the
vector analyzing power is also reproduced well in accordance
with the experimental data. The vector analyzing power in
the intermediate energies has been a long-standing problem
that defies reproduction of the experimental data. However,
the spin-orbit potential given by the derivative of the central
potential calculated from the Glauber theory appears to be able
to reproduce the proton elastic scattering in both the low- and
intermediate-energy regions. We have predicted the angular
distributions for p + 6,8He elastic scattering at 300 MeV.
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