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The thermal pairing gap obtained by embedding the exact solutions of the pairing problem into the canonical
ensemble is employed to calculate the width and strength function of the giant dipole resonance (GDR) within
the phonon damping model. The results of calculations describe reasonably well the data for the GDR width as
well as the GDR linearized strength function, recently obtained for 201Tl in the temperature region between 0.8
and 1.2 MeV, for which other approaches that neglect the effect of nonvanishing thermal pairing fail to describe.
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I. INTRODUCTION

Since the discovery of the giant dipole resonance (GDR) as
a collective thermal excitation in highly excited (hot) nuclei
[1], many experiments have been carried out in the last three
decades to extract the GDR width and its shape (linearized
strength function) as functions of nuclear temperature T and
angular momentum J . A recent compilation of GDR data
built on excited states is given in Ref. [2]. At present, the
well-established systematics accumulated by measuring the
γ decays of various hot compound nuclei formed in heavy-
ion fusion reactions and inelastic scattering of light particles
on heavy targets has shown that the GDR width increases
with temperature T within the temperature region 1 � T � 3–
4 MeV. It has also been shown that the GDR width’s increase
with angular momentum J becomes noticeable only at J �
27h̄–30h̄ in heavy nuclei, whereas its location (peak energy)
remains mostly unchanged as T and J vary.

Experimental studies often refer to the thermal shape fluctu-
ation model (TSFM) [3] as one of the theoretical descriptions
of the width’s increase in this temperature region. The TSFM
takes the thermal average of the GDR photoabsorption cross
section over the shape-dependent cross sections caused by
all fluctuating quadrupole shapes, which are assumed to be
coupled to the GDR vibration. The width’s increase as a
function of T arises as a result of such thermal averaging. The
TSFM, however, fails to describe the temperature dependence
of the GDR width beyond the temperature region 1.5 < T �
3 MeV. At T > 3–4 MeV several pieces of experimental
evidence have shown that the GDR width seems to saturate
at high T [4], whereas the TSFM predicts a continuously
increasing width. In the low-temperature region, at T �
1 MeV, a measurement of γ decays in coincidence with 17O
particles scattered inelastically from 120Sn [5] has yielded a
GDR width in 120Sn of around 4 MeV at T = 1 MeV, which

*dang@riken.jp
†On leave of absence from Center for Theoretical and Compu-

tational Physics, College of Education, Hue University, Vietnam;
hung.nguyen@ttu.edu.vn

is smaller than its value of 4.9 MeV at T = 0. This result and
the existing systematics for the GDR width in 120Sn up to T �
1.5 MeV are significantly lower than predicted values from the
TSFM.

Meanwhile, the GDR width as a function of temperature T

is well described by the phonon damping model (PDM) [6,7]
in the entire region 0 � T � 5–6 MeV, including the increase
in the width at T � 3 MeV as well as the width saturation at
high T . Within the PDM, the damping of GDR at T �= 0 is
caused by coupling of the GDR to noncollective particle-hole
(ph) and particle-particle (pp) [hole-hole (hh)] configurations.
The coupling to ph configurations exists even at T = 0 and
leads to the quantal width �Q, whereas the thermal width �T

arises owing to coupling to pp and hh configurations, which
appear only at T �= 0 because of the distortion of the Fermi
surface. In the low-temperature region T � 1 MeV, it has been
shown within the PDM that thermal pairing plays a crucial
role in reducing the GDR width in 120Sn [8]. As a matter of
fact, in finite systems such as nuclei, the pairing gap does
not collapse at the critical temperature Tc � 0.57�(T = 0)
[�(T = 0) being the pairing gap at T = 0] as in the case of
the superfluid-normal phase transition in infinite systems, but
it decreases monotonically as T increases. This decrease of
pairing tends to restore the Fermi surface, which is diffused
in the presence of pairing, back to the sharp step-function
distribution. This competes with the thermal smoothing of the
Fermi surface, which increases with T . As a result of such
competition, a compensation takes place, in which the GDR
width is left almost unchanged or even decreases slightly at
T � 1 MeV. At T � 2 MeV, pairing becomes significantly
smaller than its value at T = 0, so the thermal distortion of
the Fermi surface becomes dominant and the width starts to
increase.

Very recently, α-induced fusion reactions were used to
measure the GDR width at low temperature [9,10]. These
reactions can describe temperature more precisely whereas
the associated angular momentum in the mass region A =
115–121 is rather small (�24h̄). The data extracted from these
latest experiments for the GDR width in 119Sb at 0.98 � T �
1.23 MeV [9] are similar to those obtained previously for 120Sn,
including the data point at T = 1 MeV mentioned above, in
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good agreement with the prediction by the PDM for the GDR
width in 120Sn when thermal pairing is included. However,
these experiments also provided the data for the GDR width
in 201Tl [10], which were extracted within the temperature
interval 0.8 < T < 1.2 MeV. These values are significantly
smaller than the prediction by the TSFM for the GDR width
in 208Pb even after including the shell effect. The authors of
Ref. [10] also made a comparison with the prediction by the
PDM using the results for the GDR width in 208Pb. However,
208Pb is a doubly closed shell nucleus; that is, the neutron and
proton pairing gaps are both zero, and, naturally, no pairing
was taken into account in the PDM prediction for the GDR
width in this nucleus, whereas 201Tl is an open-shell nucleus
for both neutrons (N = 120) and protons (Z = 81). Therefore,
an adequate comparison should be made with the prediction
within the PDM for the GDR width of the same 201Tl nucleus,
including the effects owing to thermal pairing of neutrons as
well as protons. The aim of the present paper is to make such
a prediction.

As has been mentioned above, the conventional finite-
temperature (FT) BCS theory, which exhibits a collapse of
the pairing gap at a critical temperature Tc, should be modified
to include thermal fluctuations when it is applied to finite
nuclei. Among such modifications are the modified BCS
(MBCS) [11], the finite-temperature BCS1 (FTBCS1), and
the Lipkin-Nogami projected FTBCS1 (the so-called FTLN1)
[12]. However, these approaches fail for a close-to-magic
nucleus such as 201Tl (Z = 81). Therefore, in the present paper,
we employ the exact treatment of thermal pairing within the
canonical ensemble (CE), which has been elaborated upon in
Ref. [13]. Within this approach, the thermal pairing gaps are
calculated from the exact pairing energy, which is obtained
by averaging the exact eigenvalues of the pairing problem
in the CE at temperature T . This approach also allows us
to calculate the exact single-particle occupation numbers,
chemical potentials, as well as the exact quasiparticle energies.
By using the latter, one can determine the quantities that
approximate the coefficients uk and vk of the Bogolyubov’s
transformation from particles to quasiparticles as well as the
corresponding quasiparticle occupation numbers and use them
as ingredients to calculate the GDR width as a function of T

in 201Tl within the quasiparticle representation of the PDM.
Because the recent data for the GDR width in 201Tl at low
T were obtained at low angular momentum (below 25h̄), the
effect of angular momentum on the GDR width is negligible.
Therefore, for simplicity, angular momentum is not included in
the present calculations. (See Ref. [14] for the recent extension
of the PDM to finite angular momentum.)

The paper is organized as follows. The formalism is derived
in Sec. II. The results of numerical calculations are analyzed
and compared with the experimental data in Sec. III. The paper
is summarized in the last section, where conclusions are drawn.

II. FORMALISM

A. GDR width within the PDM including thermal pairing

Because the PDM has been discussed in great detail in a
series of papers [6–8,14–17], we summarize below only the

main results necessary for the numerical calculations in the
present paper.

The PDM considers a model Hamiltonian, which consists
of three terms. The first term describes the independent single-
particle (quasiparticle) field with single-particle (quasiparticle)
energies εk (Ek), the second term stands for the phonon field
with phonon energies ωq , whereas the last term treats the
coupling between these two fields [see Eq. (1) in Ref. [6] for
example]. This coupling causes the damping of the phonon
vibrations, for example, the GDR phonon (q = GDR). As a
result, the GDR acquires a width. The expression of the GDR
full width at half maximum (FHWM) � is obtained within the
PDM as

�(T ) = 2γq(ω = EGDR), (1)

where γq(ω = EGDR) is the phonon damping at the GDR peak
energy EGDR. In the presence of superfluid pairing, the phonon
damping γq(ω) has the explicit form [8]

γq(ω) = π

{
F2

1

∑
ph

[u(+)
ph ]2(1 − np − nh)δ(ω − Ep − Eh)

+F2
2

∑
ss ′

[v(−)
ss ′ ]2(ns ′ − ns)δ(ω − Es + Es ′ )

}
. (2)

In this expression, (ss ′) stands for (pp′) and (hh′) with p
and h denoting the particle (p) levels, that is, those situated
above the Fermi level at T = 0 and � = 0, and hole (h)
levels, that is, those situated below it. F1 and F2 are the
model parameters for ph and pp (hh) couplings, respectively.
Functions u

(+)
ph and v

(−)
ss ′ are combinations of the Bogolyubov’s

coefficients uk , vk (k = p, h), namely, u
(+)
ph = upvh + vpuh

and v
(−)
ss ′ = usus ′ − vsvs ′ . The first sum on the right-hand

side of Eq. (2) with the factors (1 − np − nh) represents
quantal damping caused by coupling of the GDR phonon
to noncollective ph configurations, whereas the second sum
with the factors (ns ′ − ns) stands for thermal damping, which
arises from coupling of the GDR phonon to pp and hh
configurations. Because ω � 0, the second sum over (ss ′)
is finite (and positive) only at Es > Es ′ . The quasiparticle
occupation number nk is given in the form of a Fermi-Dirac
distribution

nk = [exp(Ek/T ) + 1]−1, (3)

smoothed with a Breit-Wigner-like kernel, whose width
is equal to the quasiparticle damping with quasiparticle
energy

Ek =
√

[εk − λ(T )]2 + �(T )2, (4)

where λ(T ) and �(T ) denote the temperature-dependent
chemical potential and pairing gap, respectively (see Eq. (2)
of Ref. [8]). For the GDR in medium and heavy nuclei,
the quasiparticle damping is usually small, and therefore the
Breit-Wigner-like kernel can be safely replaced with the δ

function. As a result, the quasiparticle occupation number nk

has the form of the Fermi-Dirac distribution (3). This also
means that thermal damping of the GDR appears only at T �=
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0 because all nk vanish at T = 0, whereas quantal damping
exists already at T = 0, when the factors (1 − np − nh) =
1, as well as at T �= 0. In closed-shell nuclei, the pairing
gap �(T ) is zero, so we have (1 − np − nh) = fh − fp,
(np′ − np) = fp′ − fp, and nh′ − nh = fh − fh′ , where fk are
the single-particle occupation numbers. Correspondingly, the
sums and differences of quasiparticle energies become Ep +
Eh = εp − εh, Ep − Ep′ = εp − εp′ , and Eh − Eh′ = εh′ − εh.
As a result, Eq. (2) reduces to the expression for the phonon
damping for the case without pairing [6,7], that is,

γq(ω) = π
∑
kk′

[
F

(q)
kk′

]2
(fk − fk′)δ(ω − εk′ + εk), (5)

with F
(q)
ph = F0

1 and F
(q)
pp′ = F

(q)
hh′ = F0

2 , where F0
1,2 denote the

corresponding values of parameters F1,2 in the zero-pairing
case (� = 0). As has been demonstrated in Ref. [8] (see
the discussion below Fig. 3 therein), the factors [u(+)

ph ]2(1 −
np − nh) cause a slight decrease in the quantal width as T

increases, whereas the factors [v(−)
ss ′ ]2(ns ′ − ns) are responsible

for the strong increase in the thermal width with T at low and
moderate T and its saturation at high T . The combined effect
makes the total width increase with T at low and moderate T

and saturate at high T . At very low T (T � 1 MeV) the pairing
effect leaves the total width almost unchanged with T or, in
some cases, makes it even smaller than the value at T = 0, as
has been discussed in the Introduction.

The escape width �↑, which arises because of coupling to
the continuum and is related to the direct decay by particle
emission, is usually small (a few hundred keV) and does not
seem to the change with T in medium and heavy nuclei. In the
numerical calculations within the PDM, its effect is taken into
account via the smoothing parameter ε, which replaces the
δ functions in Eqs. (2) and (5) with δ(x) → ε/[π (x2 + ε2)],
where x = ω − Ep − Eh and ω − Es + Es ′ in Eq. (2), and x =
ω − εk′ + εk in Eq. (5). A value of ε = 0.5 MeV is adopted in
the present calculations. The results do not change significantly
with ε varying between 0.5 and 1 MeV. The PDM does not
take into account the evaporation width �ev of the compound
nuclear states, which comes from the quantum mechanical
uncertainty principle [18], because its effect on the GDR width
is expected to be significant only at high T (�3.3 MeV) and
J (�30h̄).

The GDR strength function S(ω) is calculated as

S(ω) = 1

π

γq(ω)

[ω − EGDR]2 + γ 2
q (ω)

. (6)

The GDR energy EGDR is found as the solution of the equation
(see Eqs. (3) and (4) of Ref. [8])

ω − ωq −
{
F2

1

∑
ph

[u(+)
ph ]2(1 − np − nh)

ω − Ep − Eh

+F2
2

∑
ss ′

[v(−)
ss ′ ]2(ns ′ − ns)

ω − Es + Es ′

}
= 0, (7)

where the expression within the braces is the real part of
the polarization operator Pq(E) at E = ω ± iε, which causes
the energy shift of the phonon energy ωq under the effect of

quasiparticle-phonon coupling, whereas the imaginary part of
Pq(ω ± iε) is the phonon damping in Eq. (2).

B. Exact treatment of thermal pairing within
the canonical ensemble

For the pairing problem, the present work considers the
exact treatment of thermal pairing within the canonical
ensemble with the pairing Hamiltonian given as

Hp =
∑

k

εk(a†
+ka+k + a

†
−ka−k) − G

∑
kk′

a
†
ka

†
−ka−k′ak′ , (8)

where a
†
±k(a±k) are the creation (annihilation) operators of a

particle (neutron or proton) having the single-particle energy εk

and angular momentum jk , with projections mk > 0, denoted
with +k, and with projection −mk < 0, denoted with −k. The
exact eigenvalues Es of the eigenstates s with degeneracies
ds , obtained by diagonalizing this Hamiltonian, are used to
construct the partition function within the CE at temperature
T [13]:

Z(β) =
∑

s

dse
−βEs , β = 1/T . (9)

By using this CE partition function, the total exact CE energy
E , entropy S, and occupation number f CE

k on the kth level
are obtained in terms of the ensemble averages of the exact
eigenvalues Es and state-dependent occupation numbers f

(s)
k ,

respectively, as

E = −∂ ln Z(β)

∂β
, S = βE + ln Z(β),

(10)

f CE
k = 1

Z(β)

∑
s

f
(s)
k dse

−βEs .

Knowing the total energy E(n) and entropy S(n) of a system
with n particles (n = N neutrons or Z protons), we can
calculate its Helmholtz free energy F (n) = E(n) − T S(n) and
the exact CE chemical potential λCE(T ) as [19]

λCE(T ) = 1
4 [F (n + 2) − F (n − 2)]. (11)

This approach does not produce a pairing gap, which is a mean-
field concept. Instead, an exact CE pairing gap is introduced to
mimic the mean-field pairing gap as [see Eq. (18) of Ref. [13]
and the discussion therein], namely,

�CE(T ) = √−GEpair, Epair = E − E (0),
(12)

E (0) ≡ 2
∑

k

(
εk − G

2
f CE

k

)
f CE

k .

It is worth mentioning that, although the CE approach to
thermal pairing was employed by several authors [20–23],
the gap (12) is very similar to that defined in Eq. (52) of
Ref. [20], but it is different from the canonical gap defined
in Refs. [21,22] because the term 〈E〉(0)

C is taken at G = 0 in
the latter, whereas no thermal pairing gap was calculated in
Ref. [23].

Given the chemical potential λCE(T ) in Eq. (11) and the
pairing gap �(T ) in Eq. (12), the quasiparticle energies Ek can
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be calculated by using Eq. (4). In the same way that the exact
CE pairing gap is introduced to mimic the mean-field pairing
gap, the quantities that mimic the Bogolyubov’s coefficients
uk and vk can be obtained separately for neutrons and protons
by using the standard expressions

uk =
√

1

2

[
1 + εk − λ(T )

Ek

]
, vk =

√
1

2

[
1 − εk − λ(T )

Ek

]
,

(13)

which, strictly speaking, are valid only within the BCS-based
theories. A justification for such an approximation is that, in
the cases where both the exact CE and the FTBCS1 as well
as the FTLN1 gaps are possible (including the corrections
owing to coupling to the self-consistent quasiparticle random-
phase approximation), these pairing gaps are rather close
to each other, especially at T � 2 MeV (see Fig. 1 of
Ref. [13]).

III. ANALYSIS OF NUMERICAL RESULTS

The 323 neutron and proton doubly folded single-particle
energy levels for 201Tl employed in the present calculations
are obtained within the axially deformed Woods-Saxon po-
tentials including the spin-orbit and Coulomb interactions
[24]. The neutron spectrum spans a space of 157 doubly
folded levels (degenerated into 41 spherical orbitals), starting
from the bottom at −38.36 up to 12.57 MeV. The proton
spectrum has 166 doubly folded levels (degenerated into
44 spherical orbitals), starting from the bottom at around
−34 MeV up to around 22.3 MeV. They cover energy intervals
similar to those used in the calculations of GDR width in
208Pb [6,7].

In the construction of the CE partition function (9) one
needs to include all the eigenvalues of the ground state
as well as excited states. Meanwhile, the FORTRAN IMSL

subroutine for matrix diagonalization at the RIKEN Integrated
Cluster of Clusters computing system implies that the numbers
of levels, �, and particles, n, should satisfy the condition
�!/[(n/2)!(� − n/2)!] < 104, which means it is impossible to
carry out the exact diagonalization of the pairing Hamiltonian
(8) with the entire single-particle spectra [13]. Therefore,
knowing that pairing has a significant effect around the Fermi
surface, we calculate the exact CE thermal gap (12) only
for 14 doubly folded neutron (proton) levels situated around
the Fermi one, λ(T = 0), with 7 levels below and 7 levels
above it. The selected levels belong to the group of 18 neutron
(proton) levels within five (2j + 1)-folded spherical orbitals
1i13/2, 3p3/2, 2f5/2, 3p1/2, and 2g9/2 for the neutrons and
1h11/2, 2d3/2, 3s1/2, 1h9/2, and 2f7/2 for protons, as listed in
Table I. The pairing parameters GN = 0.182 MeV for neutrons
and GZ = 0.37 MeV for protons are chosen to reproduce the
empirical values of the neutron and proton gaps �N,Z , which
are both equal to 1 MeV for 201Tl according to Fig. 2–5 of
Ref. [25]. This value agrees well with the three-point and
five-point gaps calculated in Ref. [26] and shown in Fig. 1
therein. The remaining four neutron levels (two on 1i13/2 and
two on 2g9/2 orbitals) and four proton levels (two on 1h11/2 and

TABLE I. Single-particle spherical orbitals obtained within
Woods-Saxon potentials and used in the calculations of neutron and
proton exact CE pairing gaps for 201Tl.

k N Z

nlj εk (MeV) nlj εk (MeV)

1 2g9/2 −2.226 2f7/2 −3.766
2 3p1/2 −5.620 1h9/2 −3.957
3 2f5/2 −6.189 3s1/2 −8.038
4 3p3/2 −6.586 2d3/2 −8.342
5 1i13/2 −6.903 1h11/2 −10.031

two on 2f7/2 orbitals) of this group are assumed to have the
same thermal neutron and proton pairing gaps, respectively.
For the levels beyond this group, pairing is assumed to be
negligible so that 1 − nh = fh, np = fp, up(h) = 1(0), and
vp(h) = 0(1).

In the PDM it is assumed that the matrix elements of
GDR coupling to ph configurations, causing the quantal width,
are all equal to F1, whereas those of coupling to pp (hh)
configurations, causing the thermal width at T �= 0, are all
equal toF2. (See Sec. IIB of Ref. [8] for the detailed discussion
on the justification of this assumption.) The third parameter,
ωq , in the case of the GDR (q = 1), is chosen to be close
to EGDR(T = 0). Because the mechanism of the spreading
width �↓ at T = 0 is known, owing to coupling to more
complicated 2p2h configurations, there is no need to calculate
it microscopically within the PDM but one can rely on its
temperature dependence incorporated in the quantal width.
Therefore the parameter F1 is selected to reproduce the GDR
experimental width at T = 0, which is essentially the sum
of the spreading width, �↓, and the escape width, �↑. The
parameter F2 is usually adjusted so that the GDR energy
EGDR(T ), found as the solution of Eq. (7), does not change
appreciably with T . Because the GDR energy in 201Tl does
not depend on T , namely, EGDR(T ) = 13.8 MeV [10], for
simplicity, we adopt in the present paper EGDR = 13.8 MeV,
and we select F2 so that the calculated width at T � 2 MeV
matches the corresponding experimental value for the GDR
width in 208Pb [27].

Shown in Fig. 1 are the exact CE neutron and proton pairing
gaps for 201Tl as functions of T . In contrast to the BCS gaps,
the exact CE gaps do not collapse at Tc � 0.57 MeV for
�(0) = 1 MeV. Instead, they both decrease as T increases.
In particular, the proton gap remains almost unchanged or
even slightly increases in the region 0 � T � 1 MeV, and it is
significantly larger than the neutron gap at the same value of T

already starting from T � 0.5 MeV. At T = 1 MeV the proton
gap is still equal to around 1 MeV whereas the neutron gap
drops to 0.34 MeV. At T = 5 MeV the proton gap remains as
large as around 0.4 MeV, whereas the neutron gap is depleted
to 0.13 MeV.

The GDR FWHM �(T ) in 201Tl obtained within the PDM
in three different approximations are plotted as functions of
T against the experimental data in Fig. 2. In the first approxi-
mation, the zero-pairing one, the width �(T ) is calculated by
using Eq. (1) and the phonon damping given in Eq. (5). The
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FIG. 1. (Color online) Exact CE gaps for neutrons (red solid line)
and protons (blue dashed line) for 201Tl.

single-particle occupation numbers fk are approximated with
the Fermi-Dirac distribution

fk = 1/{exp[β(εk − λ)] + 1}, (14)

where the neutron and proton chemical potentials change
with T to conserve the particle numbers, according to the
equation n = 2

∑
k fk with n = N,Z. In the calculations

we adopted the following values of the parameters for the
ph and pp (hh) couplings: F1 = 4.0×10−2 MeV and F2 �
13.27 × 10−2 MeV. The GDR width predicted by this approx-
imation (thin solid line) clearly overestimates the three lowest
experimental data points at T = 0.82, 0.84, and 0.97 MeV. The
overall temperature dependence of this width is similar to that
obtained previously for the doubly closed shell 208Pb (dotted
line) except at T > 3 MeV, where it becomes larger than the
GDR width in 208Pb, to saturate at T > 4 MeV at a value of
12.7 MeV compared to that of around 10.5 MeV for 208Pb. The
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FIG. 2. (Color online) GDR width as a function of T vs
experimental data. The (red) thick solid line is the GDR width for
201Tl obtained with the effect of exact CE pairing. The (green) thin
solid line denotes the same width but obtained without pairing. The
(purple) dashed line stands for the same quantity, but obtained by
using the exact single-particle occupation numbers fk and effective
εk − λ(T ) discussed in the text. The dotted line represents the GDR
width for 208Pb obtained previously in Refs. [6,7]. The full circles
and open boxes are experimental GDR widths for 201Tl [10] and
208Pb [27], respectively.
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FIG. 3. (Color online) Effect of the single-particle orbitals at low
T . In (a) the (green) solid line denotes the neutron chemical potential
as a function of T obtained or 201Tl before modifying the energies of
the orbitals i13/2 and p3/2, whereas the (blue) dash-dotted line stands
for the same quantity obtained after modifying the energies of these
orbitals as specified in the text. In (b) the (green) solid and (blue)
dash-dotted lines show the GDR widths for 201Tl obtained within
the no-pairing approximation before and after this modification,
respectively.

small bump at T < 0.3 MeV occurs because of the neutron
single-particle energies of the orbitals i13/2 and p3/2, which are
equal to 6.903 and 6.587 MeV, respectively, and located just
below the Fermi level at T = 0. They cause a local minimum in
the temperature dependence of the neutron chemical potential
at T = 0.3 MeV, as shown by the solid line in Fig. 3(a). A
test by changing the energies of these levels to 7.903 and
7.587 MeV, respectively, removes this local minimum and,
consequently, flattens the GDR width at T < 1 MeV, as shown
by the dash-dotted lines in Figs. 3(a) and 3(b), respectively.

In the second approximation, we consider an effective way
of taking thermal pairing into account; namely, in Eq. (5), the
single-particle occupation numbers fk for the 18 selected levels
around the Fermi surface, which were discussed previously, are
replaced with their exact CE values f CE

k calculated by using
Eq. (10). The effective values of (εk − λ) for these 18 levels
are found by inverting the Fermi-Dirac distribution (14) to
obtain (εk − λ) = T [ln(1 − f CE

k ) − ln f CE
k ]. The calculations

used F1 � 2.45 × 10−2 MeV and F2 � 14.83 × 10−2 MeV.
Starting at the same value equal to around 4 MeV at T = 0, the
width predicted by this approximation (dashed line) decreases
as T increases up to T = 0.7 MeV to perfectly match the three
lowest data points at T = 0.82, 0.84, and 0.97 MeV. At T >

0.7 MeV this width increases with T but remains smaller than
that obtained without pairing up to T � 3.6 MeV when they
cross and reach the same value at T = 5 MeV.
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Finally, thermal pairing is fully taken into account within
the quasiparticle representation of the PDM by using Eqs. (1)
and (2), which include the exact CE thermal pairing gap for
18 levels around the Fermi surface for neutrons and protons,
separately, as has been discussed in Sec. II B. The GDR width
predicted by this approach (thick solid line) nicely describes
all the data points for 201Tl. Its values at T = 0.8, 0.9, 1.0, 1.1,
and 1.2 MeV are found equal to 3.58, 3.75, 3.96, 4.22, and
4.5 MeV, respectively, to be compared with the corresponding
experimental values of 3.4 ± 0.45, 3.7 ± 0.45, 3.8 ± 0.45,
4.6 ± 0.45, and 4.5 ± 0.45 MeV at T = 0.82, 0.94, 0.97, 1.09,
and 1.12 MeV, respectively. It also matches fairly well the
experimental width for 208Pb at 1.3 < T � 2 MeV, although,
up to T � 3 MeV, it remains smaller than the width predicted
by the PDM for 208Pb (dotted line). However, to obtain such a
description, the value for F1 has to be smaller than that used
in the case without pairing so that �(0) � 3 MeV instead of 4
MeV for the GDR width in 208Pb at T = 0, and, consequently,
the value for F2 has to be larger to reproduce the same data
point at T = 2 MeV. Eventually, this brings �(0) closer to the
recent parametrization of the GDR width for quasispherical
nuclei [28], which implies that the GDR FWHM for 201Tl at
T = 0 amounts to around 3.33 MeV, rather than 4 MeV as
that of 208Pb. The slope of the width’s increase as a function
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FIG. 4. (Color online) GDR strength functions for 201Tl obtained
within the quasiparticle representation of the PDM (red solid lines)
at T = 0.8–1.2 MeV as shown in the panels in comparison with the
experimental linearized strength functions (green data points) [10] at
T = 0.82, 0.94, 0.97, 1.09, and 1.12 MeV from the bottom panel, (e),
to the top one, (a), respectively.

of T also becomes slightly steeper, improving the agreement
between theory and experiment within the entire region of
T . A value for F1 that reproduces �(0) = 4 MeV leads
to an overestimation of the width in the entire temperature
region of T �= 0. The values for the coupling parameters
used in this approximation are F1 � 2.81 × 10−2 MeV and
F2 � 16.73 × 10−2 MeV. It is important to point out that,
although one could fit the data points for 201Tl within the
zero-pairing approximation by reducing the value of parameter
F1 from 4.0 × 10−2 to 3.54 × 10−2 MeV, it is not possible
by readjusting only parameters F1,2 to achieve the overall
agreement with both sets of data for the GDR widths in
201Tl and 208Pb as does the last approach that fully includes
exact CE pairing gaps within the quasiparticle representation
of the PDM. At T > 2.5 MeV the GDR width obtained
by using such a reduced parameter F1 in the zero-pairing
approximation becomes even smaller than that predicted by the
second approximation (of taking effectively thermal pairing
into account). This indicates that the effect owing to thermal
pairing on the GDR width has a microscopic origin, which
cannot be accounted for by simply adjusting the model’s
parameters.

The GDR strength functions obtained at T = 0.8–1.2 MeV
by using Eq. (6) within the quasiparticle representation of the
PDM that includes exact CE pairing are displayed in Fig. 4 in
comparison with the corresponding experimental data adapted
from Fig. 1(a) of Ref. [10]. The theoretical strength functions
have been renormalized so that the value at ω = 5 MeV
and the maximum at T = 1.2 MeV match the corresponding
experimental values. This figure and Fig. 2 show that the PDM
describes reasonably well not only the temperature dependence
of the GDR width but also that of the GDR linearized
shape.

IV. CONCLUSIONS

In the present paper, we calculated the width and strength
function of the GDR in 201Tl at finite temperature within the
framework of the quasiparticle representation of the PDM.
Thermal pairing is taken into account by using the exact
treatment of pairing within the canonical ensemble. This
treatment allows us to calculate the exact equivalences to the
pairing gaps for protons and neutrons in a nucleus neighboring
a proton closed-shell one. Because of thermal fluctuations
owing to the finiteness of the system, which are inherent in
the CE, the exact CE thermal pairing gaps do not collapse
at the critical temperature Tc of the superfluid-normal phase
transition as in the case of infinite systems but decrease
monotonically as T increases and remain finite up to T as
high as 5 MeV. The theoretical predictions within the PDM
are compared with the data, which were recently obtained for
the GDR width and strength functions in 201Tl at 0.8 < T <

1.2 MeV at low angular momentum below 25h̄.
The good agreement between the PDM predictions in-

cluding thermal pairing and the experimental data is a clear
demonstration of the manifestation of the effect owing to
thermal pairing, which plays a vital role in reducing the GDR
width at low T in open-shell nuclei. Under the influence of
thermal pairing, the GDR width in 201Tl becomes as low as
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around 3.7 MeV at T = 0.8 MeV, and the width �(0) of the
GDR built on the ground state (T = 0) can be as small as
3 MeV, which is smaller than the GDR width in 208Pb (4 MeV)
at T = 0. The results obtained in the present work as well as
the previous predictions for the GDR width in 120Sn, where
the important role of neutron thermal pairing has been shown
to reduce the GDR width at T � 1 MeV [8], confirm that, in
order to have an adequate description of GDR damping at low
T , a microscopic model needs to take into account thermal
pairing at least up to T ∼ 1.5 MeV.
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