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We perform three-body model calculations for a sd-shell hypernucleus 19
�F (17

�O + p + n) and its core nucleus
18F (16O + p + n), employing a density-dependent contact interaction between the valence proton and neutron.
We find that the B(E2) value from the first excited state (with spin and parity of Iπ = 3+) to the ground state
(Iπ = 1+) is slightly changed by the addition of a � particle, which exhibits the so called shrinkage effect of �

particle. We also show that the excitation energy of the 3+ state is reduced in 19
�F compared to 18F, as is observed

in a p-shell nucleus 6Li. We discuss the mechanism of this reduction of the excitation energy, pointing out that it
is caused by a different mechanism from that in 7

�Li.
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I. INTRODUCTION

It has been of great interest in hypernuclear physics to
investigate how � particle affects the core nucleus when it is
added to a normal nucleus. A � particle may change various
nuclear properties, e.g., nuclear size and shape [1–5], cluster
structure [6], the neutron drip line [7,8], the fission barrier
[9], and the collective excitations [10,11]. Such effects caused
by � on nuclear properties are referred to as an impurity
effect. Because � particle can penetrate deeply into a nucleus
without the Pauli principle from nucleons, a response of the
core nucleus to an addition of a � may be essentially different
from that to nonstrange probes. That is, � particle can be a
unique probe of nuclear structure that cannot be investigated
by normal reactions.

The low-lying spectra and electromagnetic transitions have
been measured systematically in p-shell hypernuclei by high
precision γ -ray spectroscopy [12]. The experimental data have
indicated a shrinkage of nuclei due to the attraction of �. A
well-known example is 7

�Li, for which the electric quadrupole
transition probability, B(E2), from the first excited state (3+)
to the ground state (1+) of 6Li is considerably reduced when a
� particle is added [13,14]. This reduction of the B(E2) value
has been interpreted as a shrinkage of the distance between α

and d clusters in 6Li. On the other hand, a change of excitation
energy induced by a � particle depends on nuclides. If one
naively regards a dicluster nucleus as a classical rigid rotor,
shrinkage of nuclear size would lead to a reduction of the
moment of inertia, increasing the rotational excitation energy.
However, 6Li and 8Be show a different behavior from this
naive expectation. That is, the spin averaged excitation energy
decreases in 6Li [15] while it is almost unchanged in 8Be [16].

Recently, Hagino and Koike [17] have applied a semimicro-
scopic cluster model to 6Li, 7

�Li, 8Be, and 9
�Be to successfully

account for the relation between the shrinkage effect and the
rotational spectra of the two nuclei simultaneously. They argue
that a Gaussian-like potential between two clusters leads to a
stability of excitation spectrum against an addition of a �

particle, even though the intercluster distance is reduced. This
explains the stabilization of the spectrum in 8Be. In the case
of lithium, one has to consider also the spin-orbit interaction
between 4He/5�He and the deuteron cluster. Because of the
shrinkage effect of �, the overlap between the relative wave
function and the spin-orbit potential becomes larger in 7

�Li
than in 6Li. This effect lowers the 3+ ⊗ �s1/2 state more than
the 3+ state in 6Li, making the rotational excitation energy in
7
�Li smaller than in 6Li.

These behaviors of the spectra may be specific to the two-
body cluster structure. 6Li and 8Be have in their ground states
well-developed α cluster structure. In heavier nuclei, on the
other hand, cluster structure appears in their excited states
while the ground and low-lying states have a mean-field-like
structure. In this respect, it is interesting to investigate the
impurity effect on a sd-shell nucleus 18F, in which the mean-
field structure and 16O + d cluster structure may be mixed
[20–25]. Notice that the ground and the first excited states of
18F are 1+ and 3+, respectively, which are the same as 6Li.
We mention that a γ -ray spectroscopy measurement for 19

� F is
planned at J-PARC facility as the first γ -ray experiment for
sd-shell hypernuclei [18,19].

In this paper we employ a three-body model of 16O + p + n

for 18F and of 17
�O + p + n for 19

�F and study the structure
change of 18F caused by the impurity effect of a � particle. This
model enables us to describe both mean-field and cluster-like
structures of these nuclei. We discuss how � particle affects the
electric transition probability B(E2, 3+ → 1+), the density
distribution of the valence nucleons, and the excitation energy.
Of particular interest is whether the excitation energy increases
or decreases due to the � particle. We discuss the mechanism
of its change in comparison with the lithium nuclei.

The paper is organized as follows. In Sec. II, we introduce
the three-body model to describe 18F and 19

�F. In Sec. III,
we present the results and discuss the relation between the
shrinkage effect and the energy spectrum. In Sec. IV, we
summarize the paper.
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II. THE MODEL

A. Hamiltonian

We employ a three-body model to describe the 18F and 19
� F

nuclei. We first describe the model Hamiltonian for the 18F
nucleus, assuming the 16O + p + n structure. After removing
the center-of-mass motion, it is given by

H = p2
p

2m
+ p2

n

2m
+ VpC(rp) + VnC(rn)

+Vpn(rp, rn) + ( pp + pn)2

2ACm
, (1)

where m is the nucleon mass and AC is the mass number of
the core nucleus. VpC and VnC is the mean field potentials
for proton and neutron, respectively, generated by the core
nucleus. These are given as

VnC(rn) = V (N)(rn), VpC(rp) = V (N)(rp) + V (C)(rp), (2)

where V (N) and V (C) are the nuclear and the Coulomb parts,
respectively. In Eq. (1), Vpn is the interaction between the two
valence nucleons. For simplicity, we neglect in this paper the
last term in Eq. (1) since the core 16O is much heavier than
nucleons. Then the Hamiltonian reads

H = h(p) + h(n) + Vpn, (3)

where the single-particle Hamiltonians are given as

h(p) = p2
p

2m
+ VpC(rp), h(n) = p2

n

2m
+ VnC(rn). (4)

In this paper, the nuclear part of the mean-field potential,
V (N), is taken to be a spherical Woods-Saxon type

Vn(r) = v0

1 + e(r−R)/a
+ (� · s)

1

r

d

dr

v�s

1 + e(r−R)/a
, (5)

where the radius and the diffuseness parameters are set to
be R = 1.27A

1/3
C fm and a = 0.67 fm, respectively, and the

strengths v0 and v�s are determined to reproduce the neutron
single-particle energies of 2s1/2 (−3.27 MeV) and 1d5/2

(−4.14 MeV) orbitals in 17O [26]. The resultant values are
v0 = −49.21 MeV and v�s = 21.6 MeV · fm2. The Coulomb
potential V (C) in the proton mean field potential is generated
by a uniformly charged sphere of radius R and charge ZCe,
where ZC is the atomic number of the core nucleus. For
the pairing interaction Vpn we employ a density-dependent
contact interaction, which is widely used in similar three-body
calculations for nuclei far from the stability line [27–30]. Since
we have to consider both the isotriplet and isosinglet channels
in our case of proton and neutron, we consider the pairing
interaction Vpn given by

Vpn(rp, rn)

= P̂svsδ
(3)(rp − rn)

[
1 + xs

(
1

1 + e(r−R)/a

)αs
]

+P̂t vt δ
(3)(rp − rn)

[
1 + xt

(
1

1 + e(r−R)/a

)αt
]
, (6)

where P̂s and P̂t are the projectors onto the spin-singlet and
spin-triplet channels, respectively:

P̂s = 1
4 − 1

4σ p · σ n, P̂t = 3
4 + 1

4σ p · σ n. (7)

In each channel in Eq. (6), the first term corresponds to the
interaction in vacuum while the second term takes into account
the medium effect through the density dependence. Here, the
core density is assumed to be a Fermi distribution of the same
radius and diffuseness as in the mean field, Eq. (5). The strength
parameters, vs and vt , are determined from the proton-neutron
scattering length as [28]

vs = 2π2h̄2

m

2a(s)
pn

π − 2a
(s)
pnkcut

, (8)

vt = 2π2h̄2

m

2a(t)
pn

π − 2a
(t)
pnkcut

, (9)

where a(s)
pn = −23.749 fm and a(t)

pn = 5.424 fm [31] are
the empirical p-n scattering length of the spin-singlet and
spin-triplet channels, respectively, and kcut is the momentum
cut-off introduced in treating the delta function. The density-
dependent terms have two parameters, x and α, for each
channel, which are to be determined so as to reproduce the
ground and excited state energies of 18F (see Sec. III).

B. Model space

The Hamiltonian, Eq. (3), is diagonalized in the valence
two-particle subspace. The basis is given by a product of proton
and neutron single-particle states:

h(τ )
∣∣ψ (τ )

n�jm

〉 = ε
(τ )
n�j

∣∣ψ (τ )
n�jm

〉
, τ = p or n, (10)

where the single-particle continuum states can be discretized
in a large box. Here, n is the principal quantum number, � is the
orbital angular momentum, j is the total angular momentum
of the single-particle state, and m = jz is the projection of the
total angular momentum j . ε

(τ )
n�j is the single-particle energy.

The wave function for states of the total angular momentum I

is expanded as

|�IMI
〉 =

∑
αβ

CI
αβ |αβ, IMI 〉, (11)

where CI
αβ are the expansion coefficients. The basis state

|αβ, IMI 〉 is given by the product

〈rprn|αβ, IMI 〉
= φ(p)

α (rp)φ(n)
β (rn)[Y�αjα

(r̂p)Y�βjβ
(r̂n)]IMI

, (12)

where α is a shorthanded notation for single-particle level
{nα, �α, jα}, and similarly for β. φ(τ )

α (rτ ) is the radial
part of the wave function ψ (τ )

α of level α, and Y�jm =∑
m′m′′ 〈�m′ 1

2m′′|jm〉Y�m′χ 1
2 m′′ is the spherical spinor, χ 1

2 m′′

being the spin wave function of nucleon. �α + �β is even
(odd) for positive (negative) parity state. Notice that we do
not use the isospin formalism, with which the number of the
basis states, Eq. (12), can be reduced by explicitly taking
the antisymmetrization. Instead, we use the proton-neutron
formalism without the antisymmetrization in order to take
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into account the breaking of the isospin symmetry due to the
Coulomb term V (C) in Eq. (2).

As shown in the Appendix A, the matrix elements of the
spin-singlet channel in Vpn identically vanish for the 1+ and 3+
states. Thus, we keep only the spin-triplet channel interaction
and determine xt and αt from the binding energies of the
two states from the three-body threshold. In constructing the
basis we effectively take into account the Pauli principle and
exclude the single-particle 1s1/2, 1p3/2, and 1p1/2 states, which
are already occupied by the core nucleons. The cut-off energy
Ecut to truncate the model space is related with the momentum
cut-off in Eq. (9) by Ecut = h̄2k2

cut/m. We include only those
states satisfying ε

(p)
α + ε

(n)
β � Ecut.

C. Addition of a � particle

Similar to the 18F nucleus, we also treat 19
�F as a three-

body system composed of 17
�O + p + n. We assume that

the � particle occupies the 1s1/2 orbital in the core nucleus
and provides an additional contribution to the core-nucleon
potential,

V (N)(r) → V (N)(r) + V�(r). (13)

We construct the potential V� by folding the N -� interaction
vN� with the density ρ� of the � particle:

V�(r) =
∫

d3r� ρ�(r�)vN�(r − r�). (14)

We use the central part of a N -� interaction by Motoba
et al. [1]:

v�N (r) = v�e−r2/b2
v , (15)

where bv = 1.083 fm, and we set v� = −20.9 MeV, which is
used in the calculation for 6Li in Ref. [17]. The density ρ�(r)
is given by that of a harmonic oscillator wave function

ρ�(r) = (
πb2

�

)−3/2
e−r2/b2

�, (16)

where we take b� =
√

(AC/4)1/3(ACm + m�)/ACm� · 1.358
fm, following Refs. [1] and [17].

The total wave function for the 19
� F nucleus is given by

∣∣� tot
JM

〉 = [|�Ic
〉|�I 〉](JM), (17)

where J is the total angular momentum of the 19
� F nucleus,

|�Ic
〉 is the wave function for the core nucleus, 17

� O, in
the ground state with the spin-parity of Iπ

c = 1/2+, and
|�I 〉 is the wave function for the valence nucleons with
the angular momentum I given by Eq. (11). As we use the
spin-independent N -� interaction in Eq. (15), the doublet
states with J = I ± 1/2 are degenerate in energy.

D. E2 transition and the polarization charge

We calculate the reduced electric transition probability,
B(E2, 3+ → 1+), as a measure of nuclear size. In our three-

body model, the E2 transition operator Q2μ is given by

Q2μ = (ZCe + e(n))m2 + e(p)(MC + m)2

(MC + 2m)2
r2
pY2μ(r̂p)

+ (ZCe + e(p))m2 + e(n)(MC + m)2

(MC + 2m)2
r2
nY2μ(r̂n)

+ 2
ZCem2 − (e(p) + e(n))m(MC + m)

(MC + 2m)2

×
√

10π

3
rprn[Y1(r̂p)Y1(r̂n)](2μ). (18)

Here, MC is the mass of the core nucleus, that is, ACm for 18F
and ACm + m� for 19

�F, where m� is the mass of � particle.
In Eq. (18), the effective charges of proton and neutron are
given as

e(p) = e + e
(p)
pol, e(n) = e

(n)
pol, (19)

respectively. Here we have introduced the polarization charge
e

(τ )
pol to protons and neutrons to take into account the core

polarization effect (in principle one may also consider the
polarization charge for the � particle, but for simplicity we
neglect it in this paper). Their values are determined so as to
reproduce the measured B(E2) values of 1/2+ → 5/2+ tran-
sitions in 17F (64.9 ± 1.3 e2fm4) and 17O (6.21 ± 0.08 e2fm4)
[32]. In our model we calculate them as single-particle
transitions in 17F (16O + p) and in 17O (16O + n). The resultant
values are e

(p)
pol = 0.098e and e

(n)
pol = 0.40e, which are close to

the values given in Ref. [33].
The B(E2) value from the 3+ state to the 1+ ground state

is then computed as,

B(E2, 3+ → 1+) = 1
7 |〈�J=1‖Q2‖�J=3〉|2 , (20)

where 〈�J=1‖Q2‖�J=3〉 is the reduced matrix element. We
will compare this with the corresponding value for the 19

� F
nucleus, that is,

1
7 |〈�I=1‖Q2‖�I=3〉|2

= 1
8

∣∣〈[�Ic
�I=1

]J=3/2‖Q2‖
[
�Ic

�I=3
]J=7/2〉∣∣2

, (21)

= 1
6

∣∣〈[�Ic
�I=1

]J=3/2‖Q2‖
[
�Ic

�I=3
]J=5/2〉∣∣2

+ 1
6

∣∣〈[�Ic
�I=1

]J=1/2‖Q2‖
[
�Ic

�I=3
]J=5/2〉∣∣2

, (22)

which is valid in the weak coupling limit [5,6,13,14] (see
Appendix B for the derivation).

III. RESULTS AND DISCUSSION

We now numerically solve the three-body Hamiltonians.
Because 18F is a well-bound nucleus so that the cut-off does
not have to be high, we use Ecut = 10 MeV. We have confirmed
that the result does not drastically change, even if we use a
larger value of the cut-off energy, Ecut = 50 MeV. Especially
the ratio (≈0.96) of the B(E2) value for 19

�F to that for 18F is
quite stable against the cut-off energy. We fit the parameters in
the proton-neutron pairing interaction, xt and αt , to the energy
of the ground state (−9.75 MeV) and that of the first excited
state (−8.81 MeV) of 18F. Their values are xt = −1.239 and
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15.8 e fm 0.66 MeV
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2/1
1 sΛ⊗+

2/1
3 sΛ⊗+

FIG. 1. The level scheme and the B(E2) values for the 18F and 19
�F

nuclei. For the 19
�F nucleus, a sum of the B(E2) values for the [3+ ⊗

�s1/2 ]J=5/2 → [1+ ⊗ �s1/2 ]J=3/2 and the [3+ ⊗ �s1/2 ]J=5/2 → [1+ ⊗
�s1/2 ]J=1/2 transitions is shown, which corresponds to the B(E2)
value from the 3+ to the 1+ states in 18F (see the text for details). The
excitation energies are shown on the top of each state. The measured
B(E2) value for 18F is 16 ± 0.6 e2fm4 [26].

αt = 0.6628 for Ecut = 10 MeV. We use the box size of Rbox =
30 fm.

The obtained level schemes of 18F and 19
�F as well as the

B(E2) values are shown in Fig. 1. The B(E2, 3+ → 1+) value
is reduced, which indicates that the nucleus shrinks by the
attraction of �. In fact, as shown in Table I, the root mean
square (rms) distance between the core and the center-of-mass
of the two valence nucleons, 〈r2

C−pn〉1/2, and that between
the proton and the neutron, 〈r2

p−n〉1/2, slightly decrease by
adding �.

To make the shrinkage effect more visible, we next show
the two-particle density. The two-particle density ρ2(rp, rn) is
defined by

ρ2(rp, rn)

=
∑
σpσn

〈rpσp, rnσn|�IM〉〈�IM |rpσp, rnσn〉, (23)

where σp and σn is the spin coordinates of proton and neutron,
respectively. Setting r̂p = 0, the density is normalized as∫ ∞

0
4πr2

pdrp

∫ ∞

0
r2
ndrn

×
∫ π

0
2π sin θpndθpn ρ2(rp, rn, θpn) = 1, (24)

where θpn = θn is the angle between proton and neutron. In
Fig. 2 we show the ground-state density distributions of 18F
(the upper panel) and 19

�F (the lower panel) as a function
of r = rp = rn and θpn. They are weighted by a factor of

TABLE I. The core-pn and p-n rms distances, the opening angle
between the valence nucleons, and the probability for the spin-triplet
component for the ground and the first excited states of 18F and 19

�F.

〈r2
C−pn〉1/2 〈r2

p−n〉1/2 θpn P (S = 1)
(fm) (fm) (deg) (%)

1+ 18F 2.72 5.38 89.6 58.6
1+ ⊗ �s1/2

19
�F 2.70 5.33 89.5 58.4

3+ 18F 2.71 5.42 84.9 85.0

3+ ⊗ �s1/2
19
�F 2.68 5.35 84.7 85.9
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FIG. 2. (Color online) The two-particle densities of the ground
state of (a) 18F and (b) 19

�F as a function of rp = rn ≡ r and the opening
angle between the proton and the neutron, θpn. Those densities are
multiplied by a weight factor of 8π 2r4 sin θpn and are given in units
of fm−3.

8π2r4 sin θpn. The distribution slightly moves inward after
adding a � particle. To see the change clearer, we show in Fig. 3
the difference of the two-particle densities, ρ2(19

�F) − ρ2(18F),
for both the 1+ and the 3+ states. One can now clearly see
that the density distribution is pulled toward the origin by
additional attraction caused by the � particle both for the 1+
and the 3+ states.

Let us next discuss the change in excitation energy. As
shown in Fig. 1, it is decreased by addition of �, similar to 6Li
and 7

�Li. In order to clarify the mechanism of this reduction we
estimate the energy gain of each valence configuration, treating
V�(rp) + V�(rn) = �V by the first-order perturbation theory:

�EI = 〈
�

(IMI )
18F

∣∣�V
∣∣�(IMI )

18F

〉
=

∑
jα�α

∑
jβ�β

∑
nαnα′

∑
nβnβ′

CI∗
nα′ �αjα,nβ′ �βjβ

CI
nα�αjα,nβ�βjβ

×
[
δnβ′nβ

∫ ∞

0
r2
pdrp φ

(p)
nα′ �αjα

(rp)∗ V�(rp)φ(p)
nα�αjα

(rp)

+δnα′ nα

∫ ∞

0
r2
ndrn φ

(n)
nβ′ �βjβ

(rn)∗ V�(rn)φ(n)
nβ�βjβ

(rn)

]

≡
∑

jα�αjβ�β

�ε
(I )
jα�αjβ�β

, (25)

where �ε
(I )
jα�αjβ�β

is the contribution of each configuration to
the total approximate energy change �EI . We show in the
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FIG. 3. (Color online) The difference of the density distribution
in units of fm−3 between 19

�F and 18F for (a) the 1+ state and (b) the
3+ state.

first and the second columns in Table II dominant valence
configurations and their occupation probabilities. In the third
and the fourth columns of Table II are the energy gains of
each configuration �ε and �ε/P , respectively, where P is the
occupation probability in the 18F nucleus of the corresponding
configuration. Notice that �ε/P is the largest for the s ⊗ s

configuration, and the second largest for the s ⊗ d and d ⊗ s,
because s-wave states have more overlap with the � occupying
the 1s1/2 orbital. In the ground state of 18F, both proton and

TABLE II. Dominant configurations and their occupation proba-
bilities for the 1+ and 3+ states of 18F and 19

� F. The energy gains of
each configuration estimated by the first-order perturbation theory are
also shown in the third and fourth columns, where P is the occupation
probability in the 18F nucleus.

Configuration Occupation probability �ε �ε/P

18F 19
�F (MeV) (MeV)

1+ state
πd5/2 ⊗ νd5/2 53.69% 54.29% −0.38 −0.71
πd3/2 ⊗ νd5/2 15.85% 15.02% −0.10 −0.63
πd5/2 ⊗ νd3/2 15.41% 14.57% −0.10 −0.65
πs1/2 ⊗ νs1/2 11.63% 12.76% −0.13 −1.12

3+ state
πd5/2 ⊗ νd5/2 38.30% 35.98% −0.27 −0.70
πs1/2 ⊗ νd5/2 28.30% 29.64% −0.26 −0.92
πd5/2 ⊗ νs1/2 27.41% 28.68% −0.26 −0.95

neutron occupy s-wave states with a probability of 11.63%,
while in the excited 3+ state one of the two valence nucleons
occupies an s-wave state with a probability of 55.71%. Thus,
the 3+ state has much more s-wave component than the 1+
state. Therefore, the valence nucleons in the 3+ state have more
overlap with the � particle and gain more binding compared
to the ground state. In fact, as one can see in Table II, the
probabilities of the configurations with s wave grow up by
adding �.

We have repeated the same calculations by turning off
the core-nucleon spin-orbit interaction in Eq. (5), which is
the origin of the core-deuteron spin-orbit interaction. We have
confirmed that the excitation energy still decreases without the
spin-orbit interaction. We have also carried out calculations for
the ground (0+) and the first excited (2+) levels in 18O and 19

�O
with only the spin-singlet (iso-triplet) channel interaction. In
this case, even though the spin-orbit interaction between the
core and two neutrons is absent, the excitation energy still
decreases by adding a � particle. Therefore, we find that the
mechanism of the reduction of the excitation energy in 18F
is indeed different from the case of lithium, where the LS

interaction between the core and deuteron plays an important
role in the latter.

IV. SUMMARY

We have calculated the energies of the lowest two levels
and E2 transitions of 18F and 19

�F using a simple three-body
model. It is found that B(E2, 3+ → 1+) is slightly changed,
as is expected from the shrinkage effect of �. We have indeed
seen that the distance between the valence two nucleons and
the 16O core decreases after adding a � particle. We also
found that excitation energy of the 3+ state is decreased. We
observed that the 3+ state has much more s-wave component
than the ground state and thus gains more binding coupled with
the � occupying 1s1/2 orbital. This leads to a conclusion that
the excitation energy of the first-core excited state 3+ ⊗ �s1/2

of 19
�F becomes smaller than the corresponding excitation in

18F. We have pointed out that the mechanism of this reduction
is different from that of 6Li and 7

�Li, where the core-deuteron
spin-orbit interaction plays an important role [17]. This may
suggest that the information on the wave function of a
core nucleus can be studied using the spectroscopy of �

hypernuclei.
In this paper, we used a spin-independent N -� interaction.

To be more realistic and quantitative, it is an interesting
future work to employ a spin-dependent N -� interaction and
explicitly take into account the core excitation. It may also be
important to explicitly take into account the tensor correlation
between the valence proton and neutron.
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APPENDIX A: MATRIX ELEMENTS OF Vpn

In this appendix we explicitly give an expression for the
matrix elements of the proton-neutron pairing interaction Vpn

given by Eq. (6). They read

〈α′β ′, IM|Vpn|αβ, IM〉
= 〈α′β ′, IM|[P̂sδ

(3)(rp − rn)gs(rp)

+ P̂t δ
(3)(rp − rn)gt (rp)]|αβ, IM〉, (A1)

where we have defined

gs(r) = vs

[
1 + xs

(
1

1 + e(r−R)/a

)αs
]
, (A2)

and similarly for gt (r). By rewriting the basis into the LS-
coupling scheme one obtains

(the singlet term)

= (−)�α+jβ−�α′ −jβ′

8π
ĵαĵα′ ĵβ ĵβ ′ �̂α�̂α′ �̂β �̂β ′

{
jα jβ I

�β �α
1
2

}

×
{

jα′ jβ ′ I

�β ′ �α′ 1
2

} (
�α �β I

0 0 0

) (
�α′ �β ′ I

0 0 0

)

×
∫ ∞

0
r2dr φ

(p)
α′ (r)∗φ(n)

β ′ (r)∗φ(p)
α (r)φ(n)

β (r)gs(r), (A3)

and

(the triplet term)

= 3

4π
ĵαĵα′ ĵβ ĵβ ′ �̂α�̂α′ �̂β �̂β ′

∑
L

L̂2

⎧⎨
⎩

�α �β L
1
2

1
2 1

jα jβ I

⎫⎬
⎭

×
⎧⎨
⎩

�α′ �β ′ L
1
2

1
2 1

jα′ jβ ′ I

⎫⎬
⎭

(
�α �β L

0 0 0

) (
�α′ �β ′ L

0 0 0

)

×
∫ ∞

0
r2dr φ

(p)
α′ (r)∗φ(n)

β ′ (r)∗φ(p)
α (r)φ(n)

β (r)gt (r), (A4)

where ĵ = √
2j + 1. From these equations, it is apparent that

for odd (even) I and even (odd) parity states, such as 1+ and

3+, the singlet term always vanishes because(
�α �β I

0 0 0

)
= 0, (A5)

for �α + �β + I = odd.

APPENDIX B: EXTRACTION OF THE CORE TRANSITION
FROM B(E2) VALUES OF A HYPERNUCLEUS

We consider a hypernucleus with a � particle weakly cou-
pled to a core nucleus. In the weak coupling approximation, the
wave function for the hypernucleus with angular momentum
J and its z-component M is given by

|JM〉 = [|I 〉 ⊗ |j�〉](JM)

=
∑

MI ,m�

〈IMIj�m�|JM〉|IMI 〉|j�m�〉, (B1)

where |IMI 〉 and |j�m�〉 are the wave functions for the core
nucleus and the � particle, respectively. Suppose that the
operator T̂λμ for electromagnetic transitions is independent of
the � particle. Then, the square of the reduced matrix element
of T̂λμ between two hypernuclear states reads [see Eq. (7.1.7)
in Ref. [34] as well as Eq. (6-86) in Ref. [35]],

|〈Jf ‖Tλ‖Ji〉|2 = (2Ji + 1)(2Jf + 1)

{
If Jf j�

Ji Ii λ

}2

×〈If ‖Tλ‖Ii〉2. (B2)

Notice the relation [see Eq. (6.2.9) in Ref. [34]],

∑
Jf

(2Jf + 1)

{
If Jf j�

Ji Ii λ

}2

= 1

2Ii + 1
. (B3)

This yields
∑
Jf

B(Eλ; Ji → Jf ) =
∑
Jf

1

2Ji + 1
|〈Jf ‖Tλ‖Ji〉|2

= 1

2Ii + 1
〈If ‖Tλ‖Ii〉2, (B4)

which is nothing but the B(Eλ) value of the core nucleus from
the state Ii to the state If . This proves Eqs. (21) and (22) in
Sec. II for the specific case of Ii = 3 and If = 1.
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