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Ab initio calculations of nuclear widths via an integral relation
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I describe the computation of energy widths of nuclear states using an integral over the interaction region
of ab initio variational Monte Carlo wave functions, and I present calculated widths for many states. I begin
by presenting relations that connect certain short-range integrals to widths. I then present predicted widths for
5 � A � 9 nuclei, and I compare them against measured widths. They match the data more closely and with
less ambiguity than estimates based on spectroscopic factors. I consider the consequences of my results for
identification of observed states in 8B, 9He, and 9Li. I also examine failures of the method and conclude that
they generally involve broad states and variational wave functions that are not strongly peaked in the interaction
region. After examining bound-state overlap functions computed from a similar integral relation, I conclude that
overlap calculations can diagnose cases in which computed widths should not be trusted.
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I. INTRODUCTION

The last decade and a half have seen enormous progress
in the description of light nuclei as collections of interacting
nucleons with the same properties as in vacuum [1–4]. After
the formulation of potentials that fit nucleon-nucleon scatter-
ing data with high accuracy, ab initio calculations of nuclear
structure demonstrated that the energy spectra of nuclei small
enough for converged calculations (mass number A � 12) can
be understood as arising from the vacuum nucleon-nucleon
interaction [5]. The addition of a three-nucleon interaction with
only two to four parameters produces quantitative agreement
with experiment for the nuclear binding energies and spin-orbit
splittings, including the correct ground state (Jπ = 3+ instead
of 1+) for 10B [6].

For nuclei with A � 4, methods using correlated hyper-
spherical harmonic bases or Faddeev and similar formulations
have solved bound-state, scattering, and reaction problems
quite successfully [7–10]. The ab initio methods that have
been developed for A > 4 nuclei are suited mainly to treatment
of bound states, but there has been significant progress on
unbound states in recent years. The Green’s function Monte
Carlo (GFMC) method has been formulated as a particle-in-a-
box method and used to compute phase shifts in the 5He system
with a full realistic Hamiltonian [11]. The no-core shell model
(NCSM) has been merged with the resonating group method
(RGM) to produce phase shifts and reaction cross sections
in several systems using effective two-body forces without
explicit three-body terms [12–15]. The coupled-cluster method
has been combined with a Gamow shell-model basis to
compute complex energies E = ER − i�/2 of resonances and
thus their excitation energies ER and total widths �. It has been
applied to resonances of He isotopes and A = 17 nuclei, but it
has not been used to produce cross sections [16,17]. All of these
approaches to scattering are computationally challenging, and
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significant human and computer effort is required for each
individual system.

Even before the development of true scattering and reaction
calculations in A > 4 nuclei, there were accurate energy cal-
culations for many unbound resonance states [1,3], produced
by approximating them with bound (i.e., square-integrable)
wave functions and real energies. This approach is successful
for states sufficiently narrow that important features of their
structure can be accommodated within the model space. One
way to understand these calculations is as approximations to
Gamow’s decaying complex-energy states [18] with energies
near the real axis (i.e., small widths).

Quantum Monte Carlo (QMC) calculations of
square-integrable “pseudobound” states begin with a
variational Monte Carlo (VMC) calculation, in which a
complicated but closed-form wave function containing
large amounts of correlation is produced by minimizing the
energy expectation value with respect to many variational
parameters [1]. The computational effort in the VMC
method lies in computing energy expectation values by
Monte Carlo integration over all particle coordinates, and a
square-integrable wave function is necessary for both energy
and normalization integrals to converge. The variational
ansatz incorporates square integrability through particle
correlations that decay exponentially at large separation, and
reasonable energies result because the long-range tails of the
true resonant wave function have small amplitudes relative to
the “interaction region” where all nucleons interact.

The second step in application of the QMC method to
nuclei is a GFMC calculation. This step also requires square-
integrable wave functions for evaluation of matrix elements.
GFMC takes the VMC wave function as a starting point and
evolves the Schrödinger equation for imaginary values of the
time t = iτ through a series of small steps. This evolution
filters high-energy contamination out of the wave function
and for large τ leaves behind the lowest-energy eigenstate
contained in the VMC starting point. For bound or narrow
states, this procedure “converges” at large τ to a unique
energy [6,19,20]. For broad states the GFMC propagation
drifts slowly toward the lowest available threshold; even in
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very long GFMC propagations, the curve of energy versus τ

for such states fails to flatten out at a “converged” energy.
Presumably this also occurs for the narrow states, but with a
decline too slow to have been noticed in calculations so far.

Because the calculated energies of narrow resonances in the
QMC methods are believed to be accurate, it is natural to ask
whether widths could be extracted from these calculations,
avoiding the considerable effort of explicit scattering and
reaction calculations. Attempts to correlate the width with the
rate of decline of the energy, dE/dτ , in the late-time GFMC
propagation failed, so the rate may depend more on the starting
wave function than on the physical width [21].

Even in explicit scattering calculations, some widths are ef-
fectively too narrow to resolve by QMC methods. Direct QMC
calculations of widths so far consist of energy calculations for
a series of specified boundary conditions [11], so the smallest
width that can be computed must be larger than the energy
resolution of the method. As an extreme example, the ground
state of 9B has a total energy of −56.3 MeV and a width of
0.5 keV, roughly 0.01% of the total. Since the typical precision
claimed for GFMC energy calculations is 1%, this width will
not be amenable to calculation in this way.

Here I present a method to extract approximate widths from
QMC wave functions. The basis of this approach is a relation
between the partial width in a specified breakup channel and an
integral over the “interaction region” where all of the nucleons
are close to each other. This relation has been used in the
literature, though not (to my knowledge) in explicit application
to many-body wave functions. It has been used particularly
in models of α [22,23] and proton [24–29] decays of heavy
nuclei in order to avoid direct integration of the Schrödinger
equation to impractically large radii. It is also closely related to
Green’s function formulations of scattering theory. There has
been considerable interest in applying such formulations to ab
initio calculations in the recent literature: they have been used
to extract asymptotic normalization coefficients (ANCs) from
many-body bound states computed in various approximations
[30–33] and are coming into wider use for scattering problems
[8,34–38]. Preparation for future reaction calculations of that
kind is a primary motivation of the present work.

Although the integral relation can be used to compute
the partial width in any two-body decay channel if wave
functions of the parent and daughter nuclei are known, I
confine my consideration in the present study to nucleon
emission. I compute widths for all narrow (� � 1 MeV)
one-nucleon decays to bound states in 5 � A � 9 nuclei. I also
present results for several specific broad states for which better
theoretical information concerning widths would be useful and
for some with unbound final states that are well represented
by pseudobound wave functions.

The integral relation applied here can be used with either
GFMC or VMC wave functions, extending even to use of the
same computer routines. Application to GFMC requires more
computation and additional bookkeeping, so I have chosen in
this initial study to use only VMC wave functions. This work
represents the extension to unbound states of the methods
presented in Ref. [33]. The integral relation used here may be
used with other many-body methods, but it is particularly well
suited to QMC wave functions because of its formulation as a

short-range integral and because of the transparent treatment
of fermion antisymmetry in the QMC methods.

The remainder of this paper is organized as follows: In
Sec. II I motivate and define the integral method, and I discuss
its accuracy and its connection to overlap calculations. In
Sec. III I describe the application of the integral method
to VMC wave functions. In Sec. IV I present the results
of calculations for specific states, compare computed and
experimental widths, and consider how accurately widths may
be computed from spectroscopic factors. Along the way I
present overlap calculations of VMC wave functions that are
likely to be improvements over previous calculations and may
prove useful for treatment of transfer reactions. Finally, in
Sec. V I summarize my results and briefly mention future
directions for this work.

II. AN INTEGRAL RELATION FOR RESONANCE WIDTHS

A. The connection between widths and asymptotic
normalizations

Consider a many-body wave function � at energy E

above the threshold for breakup into clusters 1 and 2 that
have wave functions ψ1 and ψ2, respectively, and no internal
angular momentum. Assume also for the moment that only
this breakup channel is open. Since ψ1 and ψ2 are spinless,
the orbital angular momentum l of their motion is equal
to the total angular momentum J of �. Given appropriate
boundary conditions, � at large separations r12 of the clusters
is a linear combination of an incoming wave proportional
to Il(η, kr12)/r12 and an outgoing wave proportional to
Ol(η, kr12)/r12, each normalized to probability flux h̄k/μ in its
appropriate direction at r12 → ∞. (For all special functions,
I follow the conventions of Refs. [39] and [40].) These
functions depend on the energy E through the wave number
k ≡ √

2μE/h̄, where μ is the reduced mass of the clusters, and
through the Sommerfeld parameter η ≡ Z1Z2e

2μ/h̄k, where
Z1 and Z2 are the charge numbers of the clusters. Ol and Il

solve the radial Coulomb-Schrödinger equation

−d2ul

dρ2
+

(
l(l + 1)

ρ2
+ 2η

ρ

)
ul = ul, (1)

with ρ = kr12 and outward and inward flux, respectively,
at r12 → ∞. In terms of Il and Ol , � (assumed to have
angular-momentum projection m, omitted from subsequent
expressions) is

�(r12 → ∞) = Clψ1ψ2Ylm(r̂12)[Il(η, kr12)

− Sl(k)Ol(η, kr12)]/r12, (2)

where Ylm(r̂12) is a spherical harmonic. In this single-channel
case with both incoming and outgoing waves, the normal-
ization Cl is arbitrary. If k and η are real, conservation of
probability guarantees that the effect of scattering is to multiply
the outgoing wave Ol by a complex phase factor relative
to the incoming wave Il , so that the function Sl(k) may be
written in terms of a real phase shift δl(k) as Sl = e2iδl . The
function Sl(k) is the single-channel case of the S matrix, which
gives the amplitude and phase of outgoing waves in terms
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of specified ingoing amplitudes, and it determines the cross
section uniquely.

Resonances in the scattering of clusters 1 and 2 occur at
real energies near poles of Sl(k) and produce peaks in the
scattering cross section where tan δl � �/(E − ER) around
some resonance with energy ER and width �. S-matrix poles
in general occur at complex k (and thus complex E). It is
evident from Eq. (2) that at such a pole the wave function
takes the form

�(r12 → ∞) = C ′
lψ1ψ2Yl(r̂12)Ol(η, kr12)/r12, (3)

with only outgoing flux. This is the same sort of decaying
complex-energy state originally formulated in Gamow’s treat-
ment of α decay [18]. The probability flux out of this state is
h̄k|C ′

l |2/μ, so the normalization constant is no longer arbitrary
but carries information about the size of the outgoing flux
relative to the total wave function. If � has been normalized
to unit total probability in some finite region, its lifetime is
inversely proportional to the outward probability flux. By
writing � in the form

�(r12 → ∞) = C ′
lψ1ψ2Yl(r̂12)[[Sl(k)]−1Il − Ol]/r12, (4)

and defining � to have unit norm in some regularization
scheme, it can be shown that the residue of the S-matrix pole
is proportional both to the squared normalization constant
|C ′

l |2 and to the imaginary part of the pole energy [41–43].
The relations among |C ′

l |2, the lifetime, and the pole location
imply that the width � = h̄2k|C ′

l |2/μ. (Derivations that deal
rigorously with the normalization of � may be found in
Refs. [41,42].) The width may thus be computed from the
normalization constant C ′

l .
Physically realized systems have real energies, so formu-

lation of the width in terms of complex-energy Gamow states
is often inconvenient. For the QMC methods, not only is
the energy real, but the wave functions are stationary waves,
being the sums of incoming and outgoing waves with zero
total flux in each channel. Assuming again a single open
channel of given angular momentum, a standing-wave solution
is asymptotically

�(r12 → ∞)

= Clψ1ψ2Yl(r̂12)[Fl(η, kr12) + Kl(k)Gl(η, kr12)]/r12, (5)

for some different Cl than before. Fl(η, kr12) is the regular
Coulomb function that satisfies Fl(η, 0) = 0, Gl(η, ρ) satisfies
the Wronskian relation

dFl(η, ρ)

dρ
Gl(η, ρ) − Fl(η, ρ)

dGl(η, ρ)

dρ
= 1,

and the two are related to Ol and Il by

Ol(η, ρ) = Gl(η, ρ) + iFl(η, ρ), (6)

Il(η, ρ) = Gl(η, ρ) − iFl(η, ρ). (7)

The function Kl(k) is the single-channel case of the K matrix.
Equations (2), (6), and (7) combine to give

Kl(k) = i
1 − Sl(k)

1 + Sl(k)
(8)

so that Kl(k) = tan δl(k). Equation (5) may then be written as

�(r12 → ∞) = C ′
lψ1ψ2Yl(r̂12)[cos δlFl(η, kr12)

+ sin δlGl(η, kr12)]/r12 (9)

for some C ′
l determined by an appropriate normalization of �.

At a resonance, δl = π/2 and dδl/dE > 0. This corresponds
to a pole of Kl(k) on the positive real axis, so that

�(r12 → ∞) = C ′
lψ1ψ2Yl(r̂12)Gl(η, kr12)/r12 (10)

= 1
2C ′

lψ1ψ2Yl(r̂12)[Il(η, kr12)

+Ol(η, kr12)]/r12. (11)

The standing-wave solution at resonance is thus the sum
of equal inward and outward fluxes, each of magnitude
h̄k|C ′

l |2/4μ. This is the rate at which � decays through the
outgoing wave and is replenished by the ingoing wave. In
analogy with the complex-energy case, it can be shown that the
residue of the K matrix at the resonance pole is proportional
to |C ′

l |2 for a wave function normalized to unity in a finite
region [44–46], up to corrections arising from the choice of
normalization volume. These corrections are small as long
as the wave function has a much smaller amplitude in the
asymptotic region than in the interaction region [42,44,45], as
is expected for a long-lived resonance state. After comparing
Eqs. (3) and (10), it is unsurprising that the result of a rigorous
derivation is � ≈ h̄2k|C ′

l |2/μ.
I have sketched the considerations that lead to the connec-

tion between resonance width and wave function asymptotic
normalization for the case of a single open channel and spinless
daughter nuclei. These considerations carry over directly to
ab initio wave functions, but it is necessary to account for
complications absent from the toy model.

Most complications of the ab initio case amount to addi-
tional bookkeeping implied by multiple final-state channels,
antisymmetry of the wave function, and daughters with
nonzero angular momenta. Multiple types of decay products
may be emitted, and their nonzero internal angular momenta
may couple in multiple ways. The simple right-hand sides of
Eqs. (2) and (5) are replaced by sums over all breakup and
l channels of a given total angular momentum J and parity
π . The formalism to describe multichannel wave functions in
this case may be found in many treatments of reaction theory
(e.g., Refs. [40,45,47,48]). The coefficient Sl(k) in Eq. (2) is
replaced by a matrix Sab that gives the outgoing flux in channel
a produced by unit incoming flux in channel b, and Kl(k) in
Eq. (5) is similarly replaced by a matrix Kab that gives the
irregular-function amplitude in channel a produced by unit
regular-function amplitude in channel b. If the initial state in
a reaction problem has amplitude xa in channel a, then

�(all ra → ∞)

=
∑

a

Aa

[
ψ

Ja1
a1

[
ψ

Ja2
a2 Yla (r̂a)

]
ja

]
J

× {
xaFla (ηa, kara) + yaGla (ηa, kara)

}
/ra. (12)

In this expression, channel a is characterized by daughter
nuclei with wave functions ψ

Ja1
a1 and ψ

Ja2
a2 , wave number ka ,

Sommerfeld parameter ηa , and daughter separation ra . The
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orbital angular momentum of this channel is la , and the square
brackets denote coupling of the daughter angular momenta
Ja2 and la first to “jj -coupled” angular momentum ja and
then with Ja2 to form total angular momentum J . (The use of
this coupling anticipates its later utility in defining channels
in QMC wave functions.) The antisymmetrization operator Aa

carries out an antisymmetric sum over all partitions of nucleons
into daughters a1 and a2 with mass numbers A1 and A2 and
multiplies by the normalization

√
A1!A2!/A!. The index a is

taken to specify the daughter nuclei as well as the channel
quantum numbers ja , Ja1, Ja2, la , and πa .

Away from resonance, the irregular-function amplitudes
are given by ya = ∑

b Kabxb. At a pole of Kab, all asymptotic
channels that are coupled to the resonance have wave functions
proportional to Gla(ηa, kara). Then the corresponding xa are
irrelevant and may be set to zero. If � at a pole is normalized
to unit probability within some finite volume that includes the
whole interaction region, the residue of Kaa is proportional to
|ya|2 [44,45]. The partial width of the resonance in channel
a is proportional to this residue, just as it was in the single-
channel case discussed above [46,48]. It can be shown that
the imaginary part of the corresponding S-matrix pole energy
is proportional to the sum of these partial widths [48], so the
pole residues give the partial widths, whereas the S-matrix
pole location gives only the total width.

The channel radial functions defined by the summed terms
in Eq. (12) can be isolated from � by projecting it onto the
channel functions

�a(ξ a1, ξ a2, ra) ≡ Aa�̃a,p(ξ a1, ξ a2, ra), (13)

where the channel function in a given partition p of the
nucleons into clusters is

�̃a,p(ξ a1, ξ a2, ra) ≡ [
ψ

Ja1
a1

(
ξ

p

a1

)[
ψ

Ja2
a2

(
ξ

p

a2

)
Yla (r̂a)

]
ja

]
J
, (14)

ξ ai = ξ
p

ai ≡ {rj − rai}, j ∈ ai. (15)

The ξ ai are the internal coordinates of ψ
Jai

ai , written in terms of
nucleon coordinates in the specified partition p as differences
ξ

p

i of the coordinates rj of nucleons within daughter i and the
center of mass of daughter i. The daughter centers of mass rai

are related to their separation ra by

ra2 − ra1 = ra, (16)

A1ra1 + A2ra2 = 0. (17)

Using bracket notation to indicate inner product in nucleon
spin-isospin space and integration over all nucleon coordinates
R = {rj }, we have

〈�a|δ(ra − r)

r2
a

|�〉

=
√

A1!A2!

A!

∑
p

(−1)p
∫ [

ψ
Ja1
a1

(
ξ

p

a1

)[
ψ

Ja2
a2

(
ξ

p

a2

)
Yla (r̂a)

]
ja

]†
J

× δ(ra − r)

r2
a

�d3AR, (18)

which for an exact solution of the Hamiltonian gives the
overlap function

Ra(r) ≡ 〈�a|δ(ra − r)|�〉/r2 (19)
=

r→∞
{
xaFla(ηa, kar) + yaGla(ηa, kar)

}
/r. (20)

It is this function that multiplies the daughter wave functions
in Eq. (12). [Formally, the integral in Eq. (18) extends over
only 3(A − 1) coordinates, because center-of-mass motion
is irrelevant. The wave functions used in nuclear QMC
calculations are translationally invariant, allowing the integral
to be written as extending over all coordinates; the effect of
center-of-mass motion cancels out when dividing computed
quantities by the wave function normalization.]

B. Integral relations and asymptotic normalizations

Equation (10) suggests that the partial width of a real-
energy resonance state may be found by first computing �

at resonance and then projecting onto the desired channel and
dividing by Gl/r to obtain the partial width

�a = h̄ka

μa

∣∣∣∣ Ra(r)r

Gl(ηa, kar)

∣∣∣∣
2

. (21)

This approach is useful when � can be computed accurately in
the large-r region (as in Ref. [43]). However, it often happens
that � is computed accurately in the interaction region, but
computation in the asymptotic region described by Eq. (12) is
difficult or inconvenient.

A more robust approach proceeds through a Green’s
function formalism. One begins with the Schrödinger equation,

(H − E)� = 0, (22)

with H the Hamiltonian operator and E the energy. To isolate
a particular channel a, as defined above, it is useful to choose a
partition p of nucleons into the daughter nuclei in that channel
and write H as a sum of parts internal to the daughters and
parts that depend on their relative motion. Working in the
center-of-mass frame, we have

H = Ta,p + U
a,p

rel + H
a,p

1 + H
a,p

2 + V a
C − V a

C , (23)

where Ta,p is the kinetic energy of relative motion of the
daughters. The operator H

a,p

i is the part of the Hamiltonian
(kinetic plus potential) involving only the coordinates ξ

p

ai

within daughter i. U
a,p

rel contains the remaining terms of
the potential, consisting of interactions between nucleons in
daughter 1 and nucleons in daughter 2:

U
a,p

rel =
∑

i∈a1;j∈a2

vij + 1

2

∑
i∈a1;j,k∈a2

Vijk + 1

2

∑
i,j∈a1;k∈a2

Vijk,

(24)

This is not an effective interaction but rather the sum of
all terms of the many-body potential (with two-body terms
vij and three-body terms Vijk) linking the two daughters.
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The point-Coulomb interaction between daughters, V a
C (ra) =

Za1Za2e
2/ra , is added and subtracted for reasons that will

become apparent later; it is zero if one of the daughters is a
neutron.

The energy E may be similarly broken up into the
sum of the daughter internal energies Eai and the channel
energy Ea:

E = Ea1 + Ea2 + Ea. (25)

Then Eq. (22) becomes(
Ta,p + U

a,p

rel + V a
C − V a

C + H
a,p

1

+H
a,p

2 − Ea1 − Ea2 − Ea

)
� = 0. (26)

Rearranging terms and multiplying by the operator [Ta,p +
V a

C − Ea]−1, we find

� = −[
Ta,p + V a

C − Ea

]−1(
U

a,p

rel − V a
C

)
�

−[
Ta,p + V a

C − Ea

]−1(
H

a,p

1 + H
a,p

2 − Ea1 − Ea2
)
�.

(27)

The next step is to project � onto channel a, as in Eq. (19).
Projection of Eq. (27) onto a channel function �̃a,p of Eq. (14)

gives[
�̃a,p

(
ξ

p

1 , ξ
p

2 , r′
a

)]†
�

= −[�̃a,p(r′
a)]†

[
Ta,p + V a

C − Ea

]−1(
U

a,p

rel − V a
C

)
�

−[�̃a,p(r′
a)]†

[
Ta,p + V a

C − Ea

]−1

× (
H

a,p

1 + H
a,p

2 − Ea1 − Ea2
)
� (28)

(where we abbreviate �̃a,p on the right side by omitting the
cluster internal coordinates), but since(

H
a,p

i − Eai

)
ψ

Ja

ai

(
ξ

p

i

) = 0,

the second term in the right side of Eq. (28) is zero, and

[�̃a,p(r′
a)]†�

= −[�̃a,p(r′
a)]†

[
Ta,p + V a

C − Ea

]−1(
U

a,p

rel − V a
C

)
�. (29)

Now, the operator [Ta,p + V a
C − Ea]−1 takes functions of

nucleon coordinates R to functions of nucleon coordinates
R′ with different values of the separation ra but with the ξ

p

i

untouched. Its application to a function φ1(R) and projection
onto a second function φ2(R′) may be written as an integral
over a Green’s function that contains a product of Coulomb
wave functions:

φ
†
2(R′)

[
Ta,p + V a

C − Ea

]−1
φ1(R) = 2μ

h̄2ka

φ
†
2(R′)

∫
d3ra

Fla(ηa, kar<)Gla(ηa, kar>)

r<r>

Yla (r̂′
a)Y ∗

la
(r̂a)φ1(R), (30)

following the usual notation that r< denotes the smaller of ra (a Jacobi coordinate specified for partition p by R) and r ′
a (specified

by p and R′), while r> denotes the larger of ra and r ′
a . By rewriting Eq. (18) in terms of Eq. (29) and applying Eq. (30), the result

of integration over r′
a and antisymmetrization over partitions p is

〈�a|δ(ra − r)

r2
a

|�〉 = − 2μ

h̄2ka

[
Gla(ηa, kar)

r
Aa

∫
ra<r

Fla(ηa, kara)

ra

[�̃a,p(ra)]†
(
U

a,p

rel − V a
C

)
� d3AR

+ Fla(ηa, kar)

r

{
Ba,∞ + Aa

∫
ra>r

Gla(ηa, kara)

ra

[�̃a,p(ra)]†
(
U

a,p

rel − V a
C

)
� d3AR

}]
. (31)

The constant of integration Ba,∞ can be determined from � as in Refs. [36,38]; as discussed below, Ba,∞ = 0 at resonance.
Finally, I denote the integrals in Eq. (31) by

Ba(r) = 2μ

h̄2ka

Aa

∫
ra>r

Gla(ηa, kara)

ra

[�̃a,p(ra)]†
(
U

a,p

rel − V a
C

)
� d3AR, (32)

Ca(r) = 2μ

h̄2ka

Aa

∫
ra<r

Fla(ηa, kara)

ra

[�̃a,p(ra)]†
(
U

a,p

rel − V a
C

)
� d3AR, (33)

so that

Ra(r) = −{[Ba,∞ + Ba(r)]Fl(ηa, kar) + Ca(r)Gl(ηa, kar)}/r. (34)

Many derivations of Eq. (34) and equivalent (through analytic
continuation) bound-state expressions may be found in the
literature (e.g., Refs. [36,47,49,50]).

Several observations may be made at this point. The choice
to add and subtract the point-Coulomb interaction V a

C in
Eq. (23) has two important consequences. First, it guarantees

that the overlap Ra(r → ∞) computed from Eq. (34) is a
linear combination of Fl and Gl , as required for solutions of
the Schrödinger equation governing �. Second, the nuclear
interaction is short-ranged, so that, at large separations, the
interaction between daughter nuclei is dominated by the
monopole term of their Coulomb interaction. Since this is
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just equal to V a
C , the difference (Ua,p

rel − V a
C ) goes rapidly to

zero for r beyond the range of the nuclear interaction. For the
interactions and wave functions discussed below, this typically
happens at r � 7 fm. Thus, Ba(r � 7 fm) ∼ 0, and Ca(r) takes
on approximately its asymptotic value for all r � 7 fm. These
two properties make Eq. (34) especially useful for computing
asymptotic properties of �. Indeed, similar integrals tend to
appear in scattering theory for exactly this reason.

Comparison of Eqs. (34) and (9) shows that, since Ba(r →
∞) = 0,

tan δa = Kaa = Ca(r → ∞)

Ba,∞
, (35)

as discussed in many places in the literature (e.g.,
[34,36,48]). In fact, Eq. (35) may be improved upon sig-
nificantly to yield estimates of Kaa that are second-order
variational in approximations to � [36,38,48,51]. (These
improvements require considerably more computation, so I
do not pursue them here.) From the discussion in Sec. II A, at
resonance there is no contribution from the regular function so
that Ba,∞ = 0 and Kaa has a pole. The residue of Kaa at this
pole (for � normalized to unity within some radius rnorm that
contains the interaction region) is

R = h̄2ka

2μa

|Ca(r → ∞)|2, (36)

up to corrections of order

ε = h̄2

2μa

|rnormRa(rnorm)|2 d

dEa

[
kaG

′
la
(ηa, karnorm)

Gla(ηa, karnorm)

]
, (37)

discussed in Refs. [44,45]. It is easy to show from Eq. (8) that
the residue of the S-matrix pole is twice the residue of the
corresponding K-matrix pole, and thus the partial width of the
resonance in channel a is given by

�a = h̄2ka

μa

|Ca(r → ∞)|2, (38)

again up to corrections of order ε. Since the integral defining
Ca [Eq. (33)] is short-ranged, Eq. (38) for the partial width
may be formulated as the square of a straightforward integral
over all nucleon coordinates without specifying a boundary.

This result for the width is easily generalized to include
bound states. These occur at negative energy, Ea = −|Ea|, so
that ka = i|ka| and ηa = −i|ηa|. Since they must be square-
integrable, their overlap functions are asymptotically

Ra(r → ∞) ∝ Ol(ηa, kar → ∞)/r ∝ eikar r−iηa−1. (39)

For purely imaginary ka , Ol is proportional to the Whittaker
function, W−|ηa |,l+ 1

2
(2|ka|r). By working with analytic contin-

uations of the linearly independent pair of functions Fl and Ol

instead of Fl and Gl , an integral relation analogous to Eq. (31)
may be derived. It yields a result for Ra(r) that is guaranteed to
have the correct form [Eq. (39)] at large r even if it is generated
from an approximate � that does not solve the Schrödinger
equation exactly. In fact, an early use of integral relations
of the form considered here was to produce overlaps with
the correct asymptotic behavior from asymptotically incorrect
Hartree-Fock wave functions [49,52]. They have been used

more recently to compute the asymptotic normalizations αa

defined by

Ra(r → ∞) = αaW−|ηa |,la+ 1
2
(2|ka|r)/r (40)

from shell-model and ab initio wave functions
[30–33,50,53,54].

It is evident from the discussion above that a variational
approximation to the wave function � allows two calculations
of Ra(r): one from the definition in Eq. (18) and one from
the integral relation of Eq. (31). If �, ψ

Ja

a1 , and ψ
Ja

a2 are all
eigenstates of their respective Hamiltonians, both methods
yield the same result. In a typical application of many-body
methods, � is quite accurate in the interaction region but
inaccurate where the daughter nuclei are widely separated.
Equation (18) yields Ra(r) that is only as accurate as � is at
r and is not guaranteed to have the correct form at large r . If
Ra is computed from Eq. (31), its value at any radius depends
only on the values of � within the interaction region (apart
from the integration constant Ba,∞, which is nonzero only
for nonresonant open channels). At large radius the correct
asymptotic shape is guaranteed. It seems likely that since
Eq. (31) incorporates the Hamiltonian directly (through U

a,p

rel )
and not just through the approximate �, it is also more accurate
at smaller r than the directly computed Ra(r) [52].

III. APPLICATION TO VARIATIONAL WAVE FUNCTIONS

In the following calculations I use variational wave func-
tions that were computed by the VMC method. They are
approximate solutions for a Hamiltonian consisting of the sum
of the Argonne v18 (AV18) two-body [55] and Urbana IX
(UIX) three-body [56] interactions, which appear both in the
computation of the wave functions and in the operator U

a,p

rel
used in the integral relation. In this section I describe enough
of the structure of the VMC p-shell wave functions to discuss
their asymptotic properties, I explain the implementation of
the integral relation, and I finally comment on the asymptotics
of the wave functions. The wave functions are described in
detail in Ref. [57].

A. Variational wave functions

The VMC wave functions begin with the spin-isospin
function �α(0000)1234, in which the spins and isospins of the
first four particles are organized into a Slater determinant like
those of a filled, α-particle-like 0s shell. (The zeros denote the
total angular momentum J , its projection M , the total isospin
T , and its projection Tz; this notation follows conventions
in previous QMC work and should not be confused with
the channel function �a .) The addition of further particles
while retaining antisymmetry requires spatial dependence in
the wave function, i.e., placing particles into the p shell.
This is done using orbitals φLS[n]

p (rαi) defined in terms of
the separation rαi of particle i from the center of mass of
the “α core.” The orbitals are derived from Woods-Saxon
potential wells and coupled to form states of definite angular
momentum, parity, spatial symmetry, and isospin in an
LS-coupled basis, and they fall off exponentially at large
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rαi . The effects of pairwise interactions between nucleons
(through the AV18 potential) are then accounted for using
two-body scalar correlations f (rij ) that mainly account for
particles’ avoidance of the repulsive core of the potential and
are functions of the separation rij of particles i and j . It has
been found advantageous to allow different scalar correlations
depending on whether particles i and j are both in the s shell
(f ss), both in the p shell (f pp), or one in each (f sp). Finally,
there are analogous three-body scalar correlations (f sss , f spp)
due to both two- and three-body interactions. All of these
elements (α core, LS-coupled orbitals, and scalar correlations)
are antisymmetrized among particle permutations to make up
the Jastrow wave function:

�J = A
{ ∏

i<j<k�4

f sss
ijk

∏
n�4

∏
5�m<A

∏
m<q�A

f spp
nmq

∏
t<u�4

f ss(rtu)

×
∏
i�4

∏
5�j�A

f sp(rij )
∏

5�k<l�A

f pp(rkl)

×
∑
LS[n]

(βLS[n]�A(LS[n]JMT Tz)P )

}
. (41)

The index P denotes a specific permutation of the particles into
s and p shells (subsequently antisymmetrized by the operator
A) and the amplitudes βLS[n] specify the admixtures of p-shell
LS states of the Young diagram [n]. In turn, the configuration
of good L, S, [n], J , M , T , and Tz is given by

�A(LSJM[n]T Tz)P

= �α(0000)1234

∏
5�i�A

φLS[n]
p (rαi)

×
[[ ∏

5�j�A

Y1mj
(r̂αj )

]
LML

⊗
[ ∏

5�k�A

χk

(
1

2
mk

)]
SMS

]
JM

×
[ ∏

5�l�A

νl

(
1

2
tz

)]
T Tz

, (42)

where the spinors χi and νi specify the angular momentum and
isospin states of particle i. Because the Hamiltonian includes
operator as well as scalar terms (i.e., it acts on particle spins
and isospins), there are operator correlations in addition to
central correlations. These are accounted for by writing the
variational trial function as

�T = S
∏
i<j

(
1 + Uij +

∑
k �=i,j

Ũ T NI
ijk

)
�J , (43)

where Uij and Ũ T NI
ijk are two- and three-body operators,

and S is a symmetrization operator, needed to preserve
the antisymmetry of �J because the Uij and Ũ T NI

ijk do not
commute among themselves. The operator correlations are of
the form

Uij =
∑

2�q�6

[ ∏
k �=i,j

f
q

ijk(rik, rjk)

]
uq(rij )Oq

ij , (44)

where f
q

ijk is an operator-independent three-body correlation,
and the operators Oq

ij = τ i · τ j , σ i · σ j , σ i · σ jτ i · τ j , Sij ,

and Sijτ i · τ j (where σ i are nucleon spin operators, τ i are
isospin operators, and Sij is the tensor operator) appear in
the largest operator terms in the AV18 potential. The uq(rij ),
together with the scalar correlation f ss(rij ), solve a set of
coupled Euler-Lagrange equations with coefficients that serve
as variational parameters, discussed in Ref. [58]. The central
correlation f ss falls off exponentially to reflect the strong
binding of the s-shell particles, as do the uq functions.

The f sp(rij ) and f pp(rij ) correlations are constructed to
approximate f ss(rij ) at small rij but to approach constant
values at large rij . This guarantees that where particles
approach each other closely the wave function is governed
by the nucleon-nucleon interaction but that the correlation
between widely separated particles is dominated by binding
to a “mean field” accounted for in the φLS[n]

p orbitals. Thus,
the asymptotic region of �T is dominated by the φLS[n]

p , which
have much longer tails than the f ss .

All of the functions appearing so far in this section
are specified as functions of variational parameters, either
explicitly or in the differential equations solved to compute
correlations. The optimum values of those parameters are
found by searching the parameter space to minimize the energy
expectation value,

E � 〈�T |H |�T 〉
〈�T |�T 〉 , (45)

with both numerator and denominator computed by Monte
Carlo integrals over the particle coordinates. As a final step, the
Hamiltonian is diagonalized with respect to the p-shell config-
urations labeled by LS[n] to find the coefficients βLS[n]. Diag-
onalization both improves the variational energy of the ground
state of given Jπ and T and provides access to excited states.

Energies of unbound p-shell states can almost always
be lowered by making their wave functions more diffuse
(closer to threshold). This is also often true of bound states,
where variational energies (but not GFMC energies) can lie
artificially above breakup thresholds because of shortcomings
of the variational ansatz. For both bound and resonance
states, this problem is addressed by constraining variational
parameter searches to keep charge radii close to experimentally
known ground-state charge radii.

The values of the variational parameters for all states used
in the present calculations were provided by Wiringa [59].
They are the results of calculations in bases of good isospin
in which individual nucleons typically cannot have definite
charges. For convenience in defining the integral relations for
neutron or proton decays, I carry out the calculations below in
a basis of good nucleon charge (essentially an m-scheme in the
particle isospins) so that the emitted nucleon is definitely either
a neutron or a proton. For given variational parameters, this is
only a change of representation and does not alter observables.
The variational minimization has in all cases been carried out
for the state of lowest Tz in each isomultiplet. I compute widths
of the isobaric analogs of these states by using isospin rotations
of the minimized states rather than carrying out independent
variational minimizations.
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B. Overlap and integral-relation calculations

Calculations of explicit overlap functions Ra(r) [Eq. (19)]
and integral relations [Eqs. (32) and (33)] involve several
common elements. While integral relations are much more
time consuming because they contain the operator U

a,p

rel , most
of the computational tasks in organizing both calculations
amount to constructing the channel vector �̃a,p(ξp

a1, ξ
p

a2, ra)
given by Eq. (14) and then contracting either �T or (Ua,p

rel −
V a

C )�T against it. For nucleon emission, I take ψ
Ja1
a1 to be the

wave function of the daughter nucleus and ψ
Ja2
a2 to be the spinor

of the emitted nucleon.
The integrals of Eqs. (18) and (33) are computed by

Monte Carlo integration over the particle coordinates, using the
same sampling algorithm that has long been used to compute
the energy expectation value, Eq. (45). Sampling follows the
Metropolis algorithm, using the weight function

W (R) = �
†
T (R)�T (R), (46)

where �T (R) is the variational wave function for the A-body
parent nucleus at particle coordinates R. The delta function in
Eq. (18) is accounted for by sampling all particle coordinates
and sorting the samples into narrow bins of specified channel
radius; this builds up the entire function Ra(r) from a single
Monte Carlo walk. The normalization integral needed to give
ψ

Ja1
a1 unit norm is computed in the same Monte Carlo walk by

which the overlap or integral relation is computed.
Only relative coordinates are used in the definitions of �T

and �̃a,p, so the results of the calculations are all explicitly
translation invariant, and for operator

M =
{

δ(ra − r)/r2
a (spectroscopic overlap),

Fl(ηa, kara)
(
U

a,p

rel − V a
C

)
/ra (integral relation),

(47)

the quantity computed is

I = 〈�a|M|�T 〉〈
ψ

Ja1
a1

∣∣ψJa1
a1

〉〈�T |�T 〉 . (48)

The routines used to compute the integral relations were writ-
ten as modified versions of existing spectroscopic-overlap rou-
tines [60–63]. The integral-relation routines were used previ-
ously to compute bound-state ANCs [33], and only very minor
modification (replacing regular Whittaker functions with regu-
lar scattering functions) was necessary for width calculations.

Finally, the operator U
a,p

rel must be considered. It is just the
potential-energy operator of the AV18 + UIX Hamiltonian, but
with the restriction that only terms involving the pth (emitted)
nucleon are considered so that Eq. (24) becomes

U
a,p

rel =
∑
i �=p

vip +
∑

i<j,i �=p,j �=p

Vijp. (49)

Its action on �T is evaluated by calling the potential-energy
routines with instructions to omit all terms purely internal to
ψ

Ja1
a1 for the given permutation. It is then straightforward to

contract (Ua,p

rel − V a
C )�T with [�̃a,p(ξp

a1, ξ
p

a2, ra)]† for a given
configuration R.

It is instructive to examine the integrand of Eq. (33) by
inserting a delta function δ(ra − r)/r2

a into the integral. This

FIG. 1. (Color online) The distribution of the integrand of Eq. (33)
in two ja channels as a function of channel radius r after integrating
over all other coordinates. The case shown is the 9Li(3/2−

2 ) overlap
onto 8Li(g.s.) + neutron, but the shapes of the curves are similar in
nearly all calculations from VMC wave functions. Discrete points
show the integrand dCa/dr . The solid curve shows its cumulative
integral, Ca(r), which at large radius is equal to the wave function
asymptotic normalization. The integrand goes to zero at small radius
because it contains the regular function Fl(ηa, kara) and at ra ∼ 7 fm
because U

a,p

rel − V a
C → 0 there. The light dotted curve indicates the

distribution of samples in the Monte Carlo integration (with zero at
the bottom of the graph).

is evaluated just like the delta function in Eq. (18), by carrying
out the Monte Carlo walk for the full integral and binning the
Monte Carlo samples according to the channel radius instead of
summing them all together. A typical result is shown in Fig. 1,
and nearly all cases that I have computed appear similar to
this graph apart from an overall scaling. It is evident that the
largest contribution comes from ra ≈ 2.5 fm. It is also evident
that the form of the VMC wave function beyond ∼7 fm is
irrelevant for the width, because the factor (Ua,p

rel − V a
C ) is zero

there. This limits the integral to smaller radii and guarantees
convergence of the integral regardless of what lies in the tails
of the variational wave function.

The motivation presented above for the integral relations as-
sumes that �T , ψJa1

a1 , and ψ
Ja2
a2 are all energy eigenstates. To the

extent that the VMC wave functions approximate these states,
the integral relations approximate the overlaps and widths of
the Hamiltonian for which they are approximate solutions. Two
difficulties then present themselves in applying the integral
relations to VMC wave functions: (i) comparison of the results
to other calculations using the AV18 + UIX Hamiltonian is not
possible because (except for 5He) no such calculations have
been done by other methods and (ii) comparison to experiment
is complicated because experimental resonance energies are
not reproduced exactly by the Hamiltonian.
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The mismatch of resonance energies from experiment can
be dealt with straightforwardly. The integral relations of
Eqs. (32) and (33) require an assumed channel energy Ea ,
from which ka and ηa are computed. Formally, Ea should be the
channel energy of the AV18 + UIX Hamiltonian (known from
GFMC), but the mismatch between this and the experimental
Ea is often ∼1 MeV. Since the potential energy in the p shell
is much larger (−100 to −400 MeV), the experimental Ea is
close enough to the AV18 + UIX channel energy that it can
plausibly be used in the integrals. (See Sec. IV A.) This choice
accounts for most of the well-known strong dependence of
the width on the resonance energy so that comparison with
experiment is possible. It was found previously that using the
experimental separation energy in integral-relation calcula-
tions of bound-state ANCs produces results in generally good
agreement with experiment [33]. Similarly, the results below
indicate that using the experimentally measured resonance
energy as Ea allows prediction of experimental widths. I
present the results of using both experimental and GFMC
values of Ea in the integral relations.

More consistent calculations will require Hamiltonians that
more precisely reproduce thresholds and resonance energies.
Such Hamiltonians exist in the form of the Illinois three-body
potentials [6,64], but they have not yet been incorporated
into the VMC code used here, and U

a,p

rel for these interactions
requires considerably more computation than for the UIX
interaction.

C. The asymptotic forms of VMC wave functions

Consider configurations in which particle A (before anti-
symmetrization) is far from the first A − 1 particles. Because
f pp and f sp approach constants and f ss decays rapidly at
large rij , the shape of �T in this part of the wave function is
dominated by the shapes of the single-particle functions φLS[n]

p .
This might be expected to give

Ra(r → ∞) ≈
∑
LS[n]

γLS[n]φ
LS[n]
n (ωLS[n]r) (50)

for some amplitudes γLS[n] and Jacobian-like factors ωLS[n]

that emerge from the correlations of Eqs. (41)–(43) when
the overlap integral is computed. The factors ωLS[n] account
for the distinction between the channel radius r and the
distance rαi of a p-shell particle from the center of mass
of the s-shell core; these only coincide when A = 5 and
otherwise differ by the mean difference between nucleon-core
and nucleon-daughter distances.

In general, the φLS[n]
p that emerge from the variational

procedure do not yield the correct long-range asymptotic
shapes for the overlaps Ra . This is most readily seen for
open channels, where solutions that should oscillate at large
channel radius instead fall off with an assumed exponential
dependence. In closed channels, the condition of square
integrability gives zero for the analog of Ba,∞ in Eqs. (31)
and (34), so that Eq. (40) holds for the true wave function.
Because no single LS[n] term typically dominates a given
Ra(r), it is in general difficult to construct φLS[n]

p to satisfy
Eq. (40) for all possible channels at once. This difficulty
is compounded by the problem that the energy expectation

value driving the variational minimization receives very little
contribution from the wave function tails, so the variational
principle does not constrain the low-probability tails of the
wave function very strongly. The application of the integral
approach to bound-state ANCs in Ref. [33] avoided these
difficulties and effectively matched the correct asymptotic
form onto the better-computed interior of the wave function.

Pseudobound VMC wave functions approximate resonance
states with square-integrable wave functions, in which the f ss

and φLS[n]
p functions cut off the wave function tails exponen-

tially. This exponential cutoff can be understood at “medium”
range (4–8 fm) as forcing a resonance form on the wave
function and beyond this range as providing a regularization
to normalize the unbound state despite its formally nonzero
amplitude at large radius. Such a regularization is important
for quantities such as electromagnetic transition strengths (e.g.,
[65,66]) and for the approximate relation between the asymp-
totic normalization and the partial width given in Eq. (38)
[45]. As long as the resonance wave function is computed
reasonably accurately within the region where the integral of
Eq. (33) is nonzero, and it is normalized to unity over the region
where �T is larger in amplitude than in the asymptotic region,
the integral approximates the asymptotic normalization of Gl

and thus the partial width. The cutoff of �T at large nucleon
separation is illustrated with overlap functions in Fig. 2.

FIG. 2. (Color online) Overlaps Ra(r) of the unbound J π = 1+

state of 8B onto 7Be + proton, computed directly from Eq. (18)
(discrete points with Monte Carlo error bars) and from the integral
relation of Eq. (31) (solid curves). At large radius, the directly
computed overlap falls off exponentially because the φLS[n]

p in the
VMC wave function fall off exponentially. However, the integral-
relation overlap (with Ba,∞ = 0) gives the exact proportionality to
Gl expected at resonance. The absolute normalization C∞

ja
≡ Ca(r →

∞) multiplying Gl gives the partial width of 8B(1+) in each 7Be + p

channel; the normalized asymptotic is shown as a dashed curve for
each channel and manifestly merges with the full overlap at �4 fm.
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TABLE I. The results of integral-relation calculations of widths. Results are shown from calculations in which the channel energy was
assumed equal to its experimental value (“From expt. energy”) and to the AV18 + UIX channel energy known from GFMC (“From AV18 + UIX
energy”). Error estimates are quadrature sums of Monte Carlo sampling errors and uncertainties from the input energies. Where no experimental
energy is available, the results in the “Experiment” columns were computed using the GFMC energy with the AV18 + IL7 Hamiltonian, and they
are indicated by square brackets. The column “Matches π/2?” indicates whether the overlap function appears consistent with a resonance state,
as discussed in Sec. IV A. See Sec. IV A and Eq. (52) for the definition of ζ . Energies are relative to the decay threshold in the center-of-mass
frame. Experimental energies are taken from data compilations [67,68] unless otherwise noted.

State Daughter Experiment From expt. energy From AV18 + UIX energy Matches ζ

E (MeV) � (MeV) �VMC (MeV) EUIX (MeV) �VMC (MeV) π/2?

5He(3/2−) 4He(0+) 0.798 0.648 [67] 0.307(5) 1.39 0.684(11) no 0.460
5He(1/2−) 4He(0+) 2.07 5.57 [67] 0.582(13) 2.4 0.711(15) no 0.429
7He(3/2−) 6He(0+) 0.445(3) 0.122(13)a 0.114(12) 1.68(13) 0.77(10) yes 0.092
7He(1/2−) 6He(0+) 3.05(10)b – 1.98(12) 2.83(13) 1.80(12) no 0.21
7He(1/2−) 6He(2+) 1.25(10)b – 0.42(6) 0.89(13) 0.26(5) yes 0.067
7He(1/2−) sum 2.0(1.0)c 2.40(12)d 2.83(13) 2.22(11)d

7He(5/2−) 6He(2+) 1.55(3)b 1.99(17) [67] 1.29(12)d 1.87(13) 1.7(2)d no 0.165
7Li(5/2−

2 ) 6Li(1+) 0.204 0.065(3) [67] 0.0483(17)d 1.57(17) 0.92(13)d yes 0.055
7Be(5/2−

2 ) 6Li(1+) 1.60(6) 0.19(5) [69] 0.43(4)d 2.65(17) 1.11(14)d yes 0.055
8Li(3+) 7Li(3/2−) 0.223(3) 0.032(3) [70] 0.0344(18) 2.10(18) 0.88(11) yes 0.007
8Li(0+) 7Li(3/2−) [0.97(13)] – [0.37(7)] 0.67(17) 0.24(8) no 0.005
8Li(0+) 7Li(1/2−) [0.847(14)] – [0.81(2)] 0.78(17) 0.7(2) no 0.004
8Li(2+

2 ) 7Li(3/2−) [2.18(16)] – [1.00(11)] – – yes 0.004
8Li(2+

2 ) 7Li(1/2−) [2.06(19)] – [0.105(14)] – – yes 0.010
8Be(1+) T = 1e 7Li(3/2−) 0.385(1) – 0.0089(3) 1.26(19) 0.17(5) yes 0.003
8Be(1+) T = 0e 7Li(3/2−) 0.895(5) – 0.152(4) 0.51(21) 0.04+0.05

−0.03 yes 0.003
8Be(1+) sume 7Li(3/2−) 0.149(6) [68] 0.161(4) 0.21(5) yes
8Be(3+) T = 1e 7Li(3/2−) 1.81(3) – 0.166(9) 3.68(18) 0.60(7) yes 0.007
8Be(3+) T = 0e 7Li(3/2−) 1.98(1) – 0.314(14) 2.3(2) 0.43(7) yes 0.003
8Be(3+) T = 1e 7Be(3/2−) 0.17(3) – 0.012(3) 2.14(18) 0.45(5) yes 0.007
8Be(3+) T = 0e 7Be(3/2−) 0.335(10) – 0.050(3) 0.8(2) 0.18(6) yes 0.004
8Be(3+) sume sum 0.50(3) [68] 0.542(17) 1.66(13) yes
8B(1+) 7Be(3/2−) 0.632(3) – 0.0382(15) 1.3(3) 0.26(13) yes 0.001
8B(1+) 7Be(1/2−) 0.203(3) – 0.00105(8) 1.4(2) 0.5(2) yes 0.003
8B(1+) sum 0.0357(6) [68] 0.0394(15) 0.8(2) yes
8B(3+) 7Be(3/2−) 2.18(2) 0.39(4)f 0.38(2)d 3.7(2) 1.08(11)d yes 0.007
8B(0+) 7Be(3/2−) [2.55(13)] – [0.65(7)] 2.17(17) 0.47(8) no 0.005
8B(0+) 7Be(1/2−) [2.44(14)] – [1.46(18)] 2.30(13) 1.3(2) no 0.004
8B(2+

2 ) 7Be(3/2−) 2.41(2) [71] 0.12(4) [71] 0.51(2) – – yes 0.004
8B(2+

2 ) 7Be(1/2−) 1.98(2) [71] 0.24(11) [71] 0.039(2) – – yes 0.010
9Li(5/2−)g 8Li(2+) 0.232(15) 0.10(3) [63] 0.145(14) 0.98(44) 1.2(8) yes 0.003
9Li(7/2−)g 8Li(2+) 2.366(15) – 0.0012(5) 3.6(3) 0.0031(13) no 0.045
9Li(7/2−)g 8Li(3+) 0.111(15) – 0.043(8) 0.23(35) <0.50 yes 0.006
9Li(7/2−)g sum 0.04(2) [63] 0.044(8)d <0.50d

9Li(3/2−
2 )g 8Li(2+) 1.32(6) – 0.52(4) 1.5(4) 0.6(2) no 0.014

9Li(3/2−
2 )g 8Li(1+) 0.34(6) – 0.17(5) 0.5(4) <0.7 yes 0.006

9Li(3/2−
2 )g sum 0.6(1) [63] 0.69(6)d 0.9(4)d

9Be(1/2−) 8Be(0+) 1.11(12) 0.86(9)h [72] 0.80(12)d 4.4(6) 4.8(8)d yes 0.0005
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TABLE I. (Continued.)

State Daughter Experiment From expt. energy From AV18 + UIX energy Matches ζ

E (MeV) � (MeV) �VMC (MeV) EUIX (MeV) �VMC (MeV) π/2?

9Be(7/2−) 8Be(0+) 4.72(6) – 0.0082(3) – – yes 0.005
9Be(7/2−) 8Be(2+) 1.69(6) – 0.40(3) – – yes 0.003
9Be(7/2−) sum 1.2(2) [73] 0.41(3)d – – yes
9B(3/2−) 8Be(0+) 0.185(1) [74] 0.00054(21) [75] 0.00058(2)d 1.9(3) 0.9(3)d yes 0.0003
9B(7/2−) 8Be(2+) 4.13(6) 2.0(2) [68] 0.82(4)d – – yes 0.003
9C(1/2−) 8B(2+) 0.918(11) 0.10(2) [76] 0.102(5) 1.5(3) 0.43(26) yes 0.006

aI have computed an “observed” width of 112 ± 15 keV from the R-matrix formal width of Ref. [77] and averaged it with the 160 ± 30 keV
FWHM of Ref. [78].
bFrom [79], based on ground-state energy from [67].
cThis is reported in Ref. [62] as “≈2 MeV” with no quantitative error; a 1-MeV error is used in Figs. 3, 8, and 9 and in quoted statistics.
dOpen channels other than one-nucleon emission were neglected in the calculation (α or nonsequential).
eSee Sec. IV B for discussion of the effects of isospin mixing in the observed 1+ and 3+ states of 8Be.
fOriginally reported in Ref. [80], this number is construed in later work as the FWHM in the laboratory frame; since the center-of-mass
excitation energy is reported in the same sentence, it appears to me to be a center-of-mass width. Its error has apparently been mistranscribed
in later references, independent of this ambiguity.
gSpin-parity assignments for 9Li follow Ref. [63]; see Sec. IV C3.
hThe data compilations [68] average the reported R-matrix formal width corresponding to this number with the much less certain Breit-Wigner
width of Ref. [81].

IV. RESULTS

I now apply the integral relation of Eqs. (38) and (33) to
compute widths of several unbound energy levels in nuclei
of mass numbers 5 � A � 9, from VMC wave functions.
I mostly choose energy levels that empirically have small
width (under 1 MeV) and are dominated by nucleon emission.
The integral relation is valid for decay channels in which
all three wave functions (one parent and two daughters) are
known, but I limit this first examination to nucleon-emission
channels, where one “daughter nucleus” is a neutron or proton.
I concentrate on two-body final states, but I also model some
three-body decays as sequential processes, e.g., the 9B ground
state decaying to a proton and the unbound ground state of
8Be. The subsequent decay of 8Be to two α particles can be
neglected because of its small width. (In principle the widths
of unbound daughter states should be integrated over, but I find
that in all cases considered this correction is much smaller than
either the experimental errors or the widths of omitted decay
channels.)

The results of the width calculations are shown in Table I.
Each calculation was carried out twice: once assuming the
channel energy Ea from the AV18 + UIX Hamiltonian (known
from GFMC calculations) and once using the experimentally
known resonance energy. (For the second Jπ = 2+ states in 8B
and 8Li and the Jπ = 7/2− states in 9Be and 9B, AV18 + UIX
energies have never been computed with GFMC.) Where
the experimental channel energy is unknown or uncertain,
I have used instead the GFMC energy for the AV18 + IL7
Hamiltonian, which gives a better overall fit to experimental
energies than AV18 + UIX.

I have taken the experimental energies and widths in Table I
mainly from data compilations [67,68]. Nearly all of the

widths in the compilations are “observed” widths, which
coincide with the full width at half maximum (FWHM) of
cross section peaks and are proportional to the sum of the
K-matrix pole residues. The integral-relation widths should
correspond to these quantities. In two cases [7Li(5/2−

2 ) and
9Be(1/2−)], examination of the source literature indicated
that the available experimental widths are “formal” widths
of the R-matrix formalism. I have converted the experimental
widths listed for those states to “observed” widths by the usual
relation

�obs = 2
∑

a γ 2
a Pla (kab)

1 + ∑
a γ 2

a S ′
la

(Ea)
, (51)

where b (taken to be 4 fm) is a matching radius, Sl(E) is
the shift function of R-matrix theory [40], prime denotes
its derivative, and γ 2

a is defined by the formal width �a ≡
2γ 2

a Pla(kab) and the penetrability function Pla (kar). (See the
section “Definitions of resonance parameters” in Ref. [67].)
The sources of the experimental widths are indicated in
Table I.

The widths presented in the table are sums over all p- and
f -wave decay channels. The predicted f -wave contributions
are less than 1% of the total in all cases except for the decay of
9Li(7/2−) to 8Li(2+), where it is computed to be 23% of the
total. The p-wave decays are in most cases sums of p1/2 and
p3/2 contributions. The decompositions into p1/2 and p3/2 (or
into a channel-spin coupling scheme) are available on request
from the author.

The table only includes cases for which established experi-
mental or GFMC energies are available. I have also computed
widths of several states of 9He with varying assumptions about
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FIG. 3. (Color online) The results of Table I for those cases in-
cluded in the averages. The vertical axis shows the ratio �integral/�expt

of the integral-relation width to the measured width, and the
horizontal axis shows the measured width �expt. The horizontal dotted
line shows �integral = �expt as a guide to the eye. The errors shown are
dominated by those on the experimental widths. Experimental errors
have been added in quadrature to smaller Monte Carlo statistical
errors and errors propagated from the energy used in computing
�integral. States for which important α or three-body decays have been
neglected are indicated with asterisks next to the state labels, and large
(red) circles indicate overlaps that seem inconsistent with a π/2 phase
shift. The outlying 5/2−

2 states of 7Be and 7Li are complicated by the
need to include the small α-decay channel in multichannel R-matrix
fits when extracting widths from data; this introduces a considerable
spread in reported nucleon widths [67].

resonance energies as described below, but I have not included
these numbers in Table I.

The computed widths of those states and channels for
which experimental data are available are shown graphically in
Fig. 3. Only for those states where partial widths are available
from experiment do I show partial widths in the graphs;
otherwise total widths are shown. Figure 3 demonstrates the
wide dynamic range of the integral method, extending from
0.0005 to roughly 1 MeV. With the exception only of the very
broad 5He states, which present problems discussed below,
all computed widths are within a factor of 3 of experiment
and within a factor of 2 if states with uncomputed α and
direct three-body width are omitted. The error-weighted mean
ratio 〈�integral/�expt〉 of the integral-method width to the
experimental width is 0.82 ± 0.29, and the χ2 statistic for
the difference between computed and experimental widths is
5.9 per degree of freedom (for 19 total states after omitting
5He). Restricting consideration to those states with no omitted
channels gives 〈�integral/�expt〉 = 1.09 ± 0.04 and χ2

ν = 1.5
with ν = 9. The errors used to compute these statistics are
mainly in the measured width �expt.

Apart from the resonance energies, the main sources of
uncertainty in the theoretical calculation are in the accuracy of
the variational wave function and of the potential. Because it
is unclear how to estimate these errors, the theoretical errors
reported in Table I are the quadrature sums of Monte Carlo
sampling errors with errors propagated from the input reso-
nance energies. Errors propagated from experimental energies
are typically small compared with the other errors. However,
each GFMC channel energy is the difference of a resonance
energy and a threshold energy from separate calculations.
The error on this difference is often large compared with the
channel energy, and this propagates to a large error on the
predicted width.

A. Correspondence of computed states to resonance states

The results presented in Table I and Fig. 3 vary in the degree
to which they match the experimental widths. Some, such as
the first 3+ state of 8Li, are close matches. Others, such as the
two low-lying states of 5He, are very far from agreement with
experiment. The 5He cases are particularly interesting, because
they are the only ones for which the correct widths for the
AV18 + UIX Hamiltonian are known from explicit scattering
calculations [11]. The known AV18 + UIX widths are 1.5 MeV
for the 3/2− state and 5.0 MeV for the 1/2− state, while
applying the integral relation to the pseudobound VMC wave
functions gives 0.68 and 0.71 MeV, respectively. The 1/2−
state lies above the centrifugal barrier and is so broad that its
phase shift does not pass through π/2, so it is unsurprising
that the integral method fails for this case. The 3/2− state
does not present these difficulties, so its difference from both
experiment and theory is clearly not a shortcoming of the
potential but rather of the computational methods.

There are several reasons why the application of the integral
relation to a pseudobound variational wave function could fail
to yield the correct width for the potential. I begin by noting
that, for the states examined, the function Fla(ηa, kara) typi-
cally does not deviate far from its leading-order dependence on
kara over the range of ra where U

a,p

rel − V a
C differs significantly

from zero. The main effect of changing the assumed resonance
energy is therefore to change the overall scale of the integrand
in Eq. (33) without changing its shape much. Thus, simply
using the experimental channel energy in the integral relation
should correct rather accurately for the mismatch between
experimental and theoretical channel energies without intro-
ducing significant distortions in the integrand.

It is possible that the variational minimization with con-
strained charge radius fails to produce good approximations
to some resonance states. It could happen that the variational
ansatz is a poor match to a particular resonant wave function
or that the VMC wave function, being only approximate,
contains “contamination” from nonresonant continuum states.
Contamination more energetic than the desired state is pre-
cisely what the GFMC method is intended to remove, and
much of the success of the QMC methods lies in the exclusion
of low-energy excitations from the variational wave function.
Any off-resonance contamination produces contributions to
the integral relation that do not correspond to the pole residue.
The danger of contamination would seem to grow with the
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resonance width, because a less-peaked density of states
implies a wider range of states that are similar to the resonance
and difficult to eliminate by variational minimization. The
presence of nearby resonances in the same channel may
compound this problem by contributing contamination with
rather different structure from the resonant wave function
being sought.

Yet another kind of difficulty lies in the normalization
of the wave function. The relationship between the width
and the asymptotic normalization of standing-wave states
found in Refs. [42,44,45] depends on the wave function being
normalized in a finite volume and its amplitude being small
at the boundary of that finite volume as expressed in Eq. (37).
I have assumed that the normalization volume is effectively
defined by the exponential fall-off of the f ss and φLS[n]

p

correlations in the tails of the variational wave function. If
either the true or the computed wave function fails to fall off
rapidly enough, the normalization is problematic in ways that
can be viewed either as the lack of an effective cutoff or as
neglect of a large surface-amplitude correction.

The normalization problem is perhaps the most straight-
forward to examine. The final column of Table I displays a
parameter

ζ =
(

8 fm × Ra(8 fm)

rmaxRa(rmax)

)2

, (52)

where rmax is the location of the maximum |Ra(r)|, and Ra(r)
is computed directly from Eq. (18). This ratio measures the
amplitude of the variational wave function just outside the
interaction region relative to that in the interior (accounting
for the r2 dependence of the volume of a spherical shell). We
may expect to encounter difficulties when ζ � 0.1, and this
occurs for four states: the two 5He states and the 1/2− and
5/2− states of 7He. The relevance of ζ may also be viewed in
light of Eq. (37). If I adopt 8 fm as the effective boundary of
the normalization volume and assume (cf. Fig. 5 below) that
typically Ra(8 fm) ∼ 0.02 fm−3/2, then Eq. (37) gives ε < 0.2
for all but a very few of the widths computed here. Much larger
values of ε occur for 5He(1/2−), 7He(1/2−), and minor decay
channels of a few other states.

The overlap functions may also be tested for consistency
with expectations for a resonance. The integral relation for the
width is the r → ∞ limit of Ra as computed from Eq. (31).
Given a wave function and Ba,∞, it is possible to compute the
overlap function at all radii using Eq. (31), and the result is
likely to be more accurate than that from direct calculation
of Ra .

Determining Ba,∞ from a variational wave function is a
tractable problem [36,38], but I do not pursue it here. Since
I have tacitly assumed in computing widths that Ba,∞ = 0 as
required for a resonance state [cf. Eq. (35)], I can compute
the full overlap function from the integral relation [Eq. (31)]
with Ba,∞ = 0 and check that it matches the overlap function
computed directly from Eq. (18). If the two overlaps are in
rough agreement in the interaction region, then the VMC wave
function is consistent with a resonance wave function and may
validly be used to compute a width.

As a test of the approach, I apply it to bound states, since
their integration constant corresponding to Ba,∞ is zero by def-
inition. Results are shown for several states in Fig. 4, and I have
computed them for all of the channels considered in Ref. [33].
The agreement between the two calculations, especially for
s-shell nuclei where the VMC method is more accurate, is
excellent. The deviations of the integral-relation overlap from
the direct overlap are likely to be improvements: the integral
relation contains more information about the potential than
does the VMC wave function by itself, and it guarantees the
correct r → ∞ asymptotics. For some nuclei with A = 3, 4,
and 7, GFMC calculations of overlaps exist (albeit for the
AV18 + IL7 Hamiltonian, not AV18 + UIX) [60]. The results
of the GFMC calculations (dashed curves of Fig. 4) are not
severely different from those of applying the integral method
to VMC wave functions, and they deviate from the VMC
direct overlaps by similar amounts. This experience with
bound states indicates that overlaps computed from integral
relations are at least as accurate as directly computed overlaps
of VMC wave functions and are not in conflict with GFMC
results. They may therefore be very useful for calculations
of spectroscopic factors and transfer and knockout cross
sections.

Overlap functions are shown for 8B(1+) in Fig. 2 and for
several other resonance states in Fig. 5. These were computed
both directly and by integral relations with Ba,∞ = 0. In all
cases, the integral relation replaces the artificial exponential
fall-off of the VMC wave function with the oscillatory behavior
of Gla . Based on experience with bound states, the two
overlaps should agree at r � 4 fm. In some cases [e.g.,
9C(1/2−)] the match there is quite good, while in others [e.g.,
〈n 6He|7He(1/2−)〉] overlaps from the two methods seem to
have little to do with each other. I conclude that when results
of the two methods are qualitatively very different inside 4
fm, there is an inconsistency with the assumption of π/2
phase shift so that the pseudobound VMC wave function
may not allow accurate width calculations. The penultimate
column of Table I indicates for each width a qualitative
judgment of whether the two methods of computing overlaps
agree, and cases where they do not are indicated in Fig. 3
by large (red) circles. Examination of the table reveals that
with the exception of the 0+ state in 8B, failures of the “π/2
assumption” occur only in a few neutron emission channels
and in no proton emission channels. Considering only states
consistent with δl = π/2, I find 〈�integral/�expt〉 = 0.83 ± 0.30
and χ2

ν = 6.3, this time for ν = 15 instead of 18. Further
restriction to states in which all decay channels are computed
gives 〈�integral/�expt〉 = 1.08 ± 0.04 and χ2

ν = 1.6 for eight
degrees of freedom. These are essentially the same results as
for the entire data set. It appears that the best predictor of
whether a calculated width will match experiment is simply
whether the calculation includes all channels contributing to
the measured width.

B. Isospin mixing in 8Be

A difficulty presents itself in considering the pair of Jπ =
3+ states of 8Be at ∼19 MeV and the pair of 1+ states at
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FIG. 4. (Color online) Overlap functions for several bound states, computed from the bound-state analog of the integral relation in Eq. (31)
(solid curves) and from the definition in Eq. (18) (squares with Monte Carlo error bars.) The la and ja quantum numbers of the “virtually
emitted” nucleon are indicated by labels near the appropriate curves (and distinguished by color). Where they exist, overlaps computed directly
from GFMC wave functions [60] are shown as (black) dashed curves.

∼18 MeV. Each of these doublets consists of one T = 0 and
one T = 1 state that have mixed, with the lower state of each
pair predominantly T = 1. The VMC wave functions have
definite isospin, so incorporating the mixing into calculations
of their widths presents ambiguities. Simply ignoring the
mixing and assigning the T = 1 widths to the lower states and
T = 0 widths to the higher states does not work. For example,
in the 3+ doublet, the lower state has measured width 270 ± 20
keV and the upper has 227 ± 20 keV; the unmixed widths from
the integral method are 177 and 364 keV, respectively.

There exist preliminary GFMC calculations of the mixing
matrix element of the Hamiltonian for each of these doublets
[59], and this matrix element can be combined with the
splitting of the doublet to determine its mixing angle (e.g.,
[82]). The splittings of the doublets are small enough that
they are not resolved by the existing GFMC calculations,
so the experimental splittings must be used to compute
mixing angles. Since the recommended [68] 165-keV splitting
of the 3+ doublet is less than twice the GFMC mixing
energy, these two numbers cannot be combined to yield a
real mixing angle. (Adopting a splitting of 310 keV [83]
produces good agreement with the experimental widths.) In
the 1+ doublet, combining the GFMC mixing matrix element
with the experimental splitting produces a poor match to the
data (widths of 14.2 and 105 keV versus 10.7 ± 0.5 and
138 ± 6 keV from experiment).

For each doublet, a mixing angle can be computed by
χ2 minimization of the difference between theoretical and
experimental widths. This produces good agreement with the

measured widths, which was not guaranteed. The resulting
mixing angle for the 3+ doublet has sin θmix = 0.28, which
is small relative to literature values [83]. The mixing angle
from minimizing χ2 for the 1+ doublet has sin θmix =
0.068, which is much smaller than both the value of 0.20
from the GFMC mixing energy and the literature value of
0.21 [84].

Thus, attempts to compute separate widths for the upper
and lower states in each doublet run aground on the problem of
finding mixing angles consistent with all available information.
For each doublet, the quantity most independent of the mixing
angle is the sum of the two widths. The sum is less sensitive
to θmix than are the underlying pole residues, but it is not
quite independent of θmix because the doublet states are not
degenerate. It is the sum for each doublet that is shown in
Table I and Fig. 3, with the T = 1 width computed in each
case using the lower energy and the T = 0 width the higher.
These sums are in good agreement with experiment.

C. Applications to recent measurements

An important use of theoretical estimates of widths is in the
identification of observed states. Most of the states considered
here (A � 9, � � 1 MeV, dominated by nucleon decays) were
found experimentally, and their spins and parities identified,
long ago. Some exceptions are the first 0+ and second 2+ states
of 8B and the entire low-lying spectra of 9He and 9Li. Here I
attempt to shed light on these systems by calculating widths
from VMC wave functions.
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FIG. 5. (Color online) Overlap functions of several resonance states, computed directly from the definition [Eq. (18); points with Monte
Carlo errors] and from the integral relation of Eq. (31) with Ba,∞ = 0 (or δla = π/2; solid curves). Where more than one angular momentum
channel is available, the channels are labeled. The four cases on the left show good agreement between the two methods at small separation
(r � 4 fm), and the corresponding widths agree with experiment. The two states on the right are inconsistent with the δla = π/2 assumption
since the two types of overlap calculations disagree at r < 4 fm. Computed widths of these two states also disagree with experiment.

1. 8B

Several theoretical models predict low-lying states of 8B
that have not been observed, as discussed in Ref. [71]. It is
possible that the states are simply too broad to be seen easily
in experiments, and evidence was recently found for a 0+ state
at 1.9 MeV above the 8B ground state [71]. An R-matrix fit to
both elastic and inelastic scattering of 7Be on protons indicated
a 0+ state with partial width 0.28 ± 0.14 MeV for decay to the
7Be ground state and 0.33 ± 0.18 MeV to the first excited
state. Since these widths are within 2σ of zero, I have not
shown them in Table I. This state has some support from the
calculation of Ref. [14], where it was found in computed phase
shifts at the same energy using the merged no-core shell model
and resonating group method. That calculation also indicates
reason for caution in applying the integral relation: the phase
shift does not approach π/2, and indeed the VMC 0+ state
fails the π/2 consistency test discussed above.

I show in Table I the predicted partial widths of the 0+ state
at its energies for the AV18 + UIX and AV18 + IL7 Hamil-
tonians. Figure 6 shows the dependence of this prediction
on the assumed resonance energy. The claimed experimental
widths are consistent with my results, though inconsistency
of the overlaps with π/2 phase shift makes the significance
of this consistency doubtful. I also include in Table I the
AV18 + IL7 energies and VMC-computed partial widths of
the unobserved isobaric-analog state in 8Li. The 8Li and 7Li

VMC wave functions are explicitly isospin rotations of the 8B
and 7Be wave functions, and the 8Li(0+) decays also fail the
π/2 condition on the overlaps.

The authors of Ref. [71] also find a 2+ state at 2.55 MeV
excitation. Because this result has not been confirmed, I omit
this state from goodness-of-fit statistics, but I have computed
its partial widths to the 7Be ground and first-excited states
and included the results in Table I. The overlap functions for
these states are compatible with a π/2 phase shift. However,
the computed partial widths do not match those claimed in
Ref. [71]: I find 0.51 ± 0.02 MeV to the 7Be ground state
versus 0.12 ± 0.04 MeV measured and 0.039 ± 0.002 MeV
to the 7Be excited state versus 0.24 ± 0.11 MeV measured.
The origin of these differences is not clear.

2. 9He

The spectroscopy of 9He remains unclear despite several
experimental studies [85–92]. The ground state was originally
thought to be a 1/2− resonance state [85]. Subsequently, strong
s-wave n-8He interaction was seen near threshold and was
argued to reflect a 1/2+ virtual state [86,87]. More recent
experiments have revealed a smaller scattering length and thus
lend less support to a virtual state [91,92]. Because s-wave
neutrons do not have true resonances passing through a π/2
phase shift, I do not present a width for this state.
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FIG. 6. (Color online) Predicted partial widths as functions of
assumed resonance energy (relative to the 7Be ground-state threshold)
for the first 0+ state in 8B. The thicknesses of the bands indicate
the errors from Monte Carlo sampling. The band bounded by solid
curves indicates the partial width to the ground state of 7Be, and that
bounded by dashed curves shows the partial width to the first excited
state. The boxes (offset from each other slightly in the horizontal
direction for visibility) show the experimental results of Ref. [71]
without a correction from R-matrix formal width to observed width.
(This can amount to a ∼30% reduction at the high end of the allowed
width.) Also indicated is the best estimate of the resonance energy
from GFMC calculations using the AV18 + IL7 Hamiltonian.

Several other observations of resonances within a few
MeV of the 8He + n “threshold” have been claimed. (See
Ref. [92] for a summary.) Spin and parity assignments for all
of these states are uncertain, and matching them to theoretical
expectations has proven difficult [68,87,89]. Width estimates
based on ab initio calculations could provide useful guidance,
so I explore this possibility here.

There have been four claims of a state around 1.2 MeV
above the 8He + n “threshold” [85,86,92,93], and it has
additional support from a study of possible analog states [88].
This is generally assumed to be the lowest-lying p-shell
state, with Jπ = 1/2−, and there is conflicting information
concerning its width. The authors of Ref. [85] found it to be
narrower than their 0.42-MeV resolution; other experiments
gave 1 MeV [93], 0.10 ± 0.06 MeV [86], and 2 MeV [91].
As pointed out particularly by Barker [89], it is difficult to
reconcile widths considerably narrower than 1 MeV with
the expected strong single-particle character of the 1/2−
resonance. Theoretical calculations also place the 1/2− state a
few MeV higher (e.g., at 3 and 4 MeV in GFMC calculations
with Illinois-6 and Illinois-2 three-body forces, respectively).
One possibility is reduction of the 1/2− energy by an sd-shell
component that is missing in the calculations [19].

FIG. 7. (Color online) Reported and computed 9He resonance
widths. Resonances for which there are reported widths are shown
as boxes, with sizes indicating reported errors. The band labeled
“VMC” shows the predicted width of the 1/2− state as a function of
the resonance energy assumed in the integral relation, and its width
reflects the statistical error of the Monte Carlo integration. Where no
error was reported for a width (for example, Ref. [91] has “∼2 MeV”
for the width of the state at 2.0 MeV), I have assigned an error
of 0.5 MeV and indicated this with broken lines at the upper and
lower limits. I have omitted some very broad states with missing or
lower-limit errors: a state with ER ∼ 3 MeV and � ∼ 3 MeV from
Ref. [93] and one with ER � 4.2 MeV and � > 0.5 MeV from Ref.
[91]. See Ref. [92] for additional reports of states without measured
widths. The displayed widths are from Seth et al. [85], Belozerov et al.
[93], Bohlen et al. [86], and Golovkov et al. [91]. Downward arrows
indicate widths that include ∼400 keV instrumental resolution.

Additional resonances have been found at higher energies:
one around 2.3 MeV [85,86,92] with claimed width 0.7 ±
0.2 MeV, one around 4 MeV [86,91], and another around
5 MeV [85,86]. In addition to the 1/2− state, a 3/2− state is
expected theoretically, though also at higher energy. It is also
likely that sd-shell intruder states with Jπ = 5/2+ and 3/2+
are present in the low-lying spectrum.

I computed widths of p-shell states with Jπ = 1/2−
and 3/2−, but the results proved difficult to match with
experimental data. The short-range overlaps of the 1/2− state
computed directly and by the integral method are in nice
agreement. Since it is unclear what resonance energy should
be used in the calculation, I have computed widths from
the VMC wave function using a range of channel energies
in the integral relation. Figure 7 shows these results. They
mainly demonstrate the argument of Barker [89] that there
is a mismatch between the narrow width of the 1/2− state
claimed by Bohlen et al. [86] and theoretical expectations of
a strongly single-particle state. The resonances claimed by
Belozerov et al. [93] and Golovkov et al. [91] are consistent
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with the computed 1/2− width, but that assignment makes
interpretation of the 1.3- and 2.4-MeV states of Bohlen et al.
[86] difficult: at least one would have to be an sd-shell state.

All channel energies below 6 MeV for the 3/2− state yield
computed widths of less than 5 keV. This could match either
of the states at 4.3 and 5.3 MeV in Ref. [86], which were found
to be narrower than the 100-keV experimental resolution, but
the VMC overlaps of this state are inconsistent with π/2 phase
shift. For this reason, the integral-relation results are probably
not reliable predictions of the width.

VMC wave functions also exist for states with Jπ =
1/2+, 3/2+, and 5/2+, but these wave functions with sd-shell
components have not reached the same level of development
as the VMC p-shell states and have not been published. As
mentioned above, the 1/2+ state should not be observable as
a resonance. The VMC wave functions for the 3/2+ and 5/2+
states indicate that they are mainly made by coupling the 2+
state of 8He to an s-wave neutron and therefore are also not
true δa = π/2 resonances. I did not attempt calculations of
partial widths for decay to the 8He(2+) state. Calculations of
the partial widths for decay from positive-parity states to the
8He ground state by emission of a d-wave neutron yielded
partial widths of less than 60 keV and overlaps inconsistent
with a π/2 phase shift.

3. 9Li

The most recent data compilation for A = 9 lists five
low-lying states of 9Li, and firm spins and parities are only
assigned to the lowest two [68]. In a more recent paper [63]
the third state has been identified as Jπ = 5/2− by comparing
spectroscopic factors of VMC wave functions (older versions
of those used here) with measured (d, p) cross sections. Those
authors also assigned Jπ = 3/2− and 7/2−, respectively, to
the next two states. This assignment was based partly on the
ordering of states in theoretical calculations and partly on
the assumption that widths should correlate with computed
spectroscopic factors. The results presented in Table I and
Fig. 3 support these assignments by reproducing the widths of
all three unbound states.

D. Comparison with other width estimates

I conclude by considering other ways to estimate widths
from VMC wave functions and comparing them with the
integral method. In the absence of integral relations or
explicit scattering calculations, widths must be estimated from
spectroscopic factors. In applications of the shell model, one
often assumes that the width is the product of the spectroscopic
factor,

Sa ≡
∫ ∞

0
[Ra(r)]2r2 dr, (53)

and the single-particle width. VMC spectroscopic factors
might in fact be more suited to this procedure than those from
a shell model, because shell models are typically confined to a
single value of the principal quantum number, while the large

FIG. 8. (Color online) Comparison between experimental widths
and widths estimated as the VMC spectroscopic factor times the
Wigner limit. The vertical axis shows the ratio of these numbers,
using a radius of 4 fm to compute the Wigner limit. Symbols are as in
Fig. 3, and the labels from that figure may be used to identify states
here. Comparison with Fig. 3 indicates that the integral relation is a
significantly better predictor of widths than Sa�W . Note the different
vertical scale from that of Fig. 3.

amount of correlation in VMC wave functions guarantees that
Eq. (18) picks up contributions from all major shells.

The crudest estimate of the single-particle width is the
“Wigner limit” [94]. On the basis of a causality argument,
the width of a resonance can be shown to have an approximate
upper limit of

�W = 2
h̄2

μab2
Pl(kab), (54)

where b is a “matching radius” (typically ∼4 fm) defining
the edge of the interaction region, and Pl is the penetration
factor of Ref. [40]. Since �W is (approximately) an upper limit
on the width that a resonance can have, it might approximate
a single-particle width. Some authors define �W to include
an additional numerical factor multiplying Eq. (54), reflecting
assumptions about the wave function inside the interaction
region. Teichmann and Wigner [94] assumed a constant wave
function to arrive at a factor of 3/2. Other authors make more
elaborate assumptions and arrive at a factor of (2l − 1)/(2l +
1) for l �= 0 [95]. I take Eq. (54) to define �W .

In Fig. 8 I use the Wigner limit to estimate widths
of the states under consideration. In each case, I multiply
�W for a 4-fm radius by the VMC spectroscopic factor
from Eqs. (18) and (53). These estimates plainly do not
reproduce measured widths as well as the integral relation.
The weighted mean ratio of “theoretical” to experimental
width for this method, restricted to states consistent with π/2
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phase shift and purely nucleon-emission decay, is 2.49 ± 0.52;
the reduced χ2 is 1845 for eight degrees of freedom. (Recall
that 〈�integral/�expt〉 = 1.08 ± 0.04 with χ2

ν = 1.6 for the same
set of states.) The mismatch between Sa�W and �expt can be
reduced by choosing a smaller numerical factor to define the
Wigner limit, but that does not remove the large scatter in
Sa�W/�expt. Better agreement with experiment is likewise
achieved with a smaller radius, but good agreement requires
an unphysically small radius in the neighborhood of 2 fm,
which again does not remove the large scatter in the ratio
Sa�W/�exp. Estimates from �W are typically ∼20% smaller
if they are estimated as “observed widths” from Eq. (51),
using

γ 2
a = Sa

h̄2

μab2
. (55)

This helps significantly with neither the overall scale nor the
large scatter of the predicted widths.

A better estimate of the single-particle width, and one
perhaps more widespread in shell-model studies, is based
on Woods-Saxon potentials. One assumes a potential well
of “standard” radius and diffuseness and adjusts its depth to
produce a resonance at the correct energy. The width �WS of
this resonance is then taken as an estimate of the single-particle
width. A range of geometric parameters for the potential is
usually considered, because the most appropriate values are
not known a priori.

FIG. 9. (Color online) Widths estimated as the VMC spectro-
scopic factor times the Woods-Saxon single-particle width �WS,
divided by experimental widths. Symbols are as in Fig. 3, and the
labels from that figure may be used to identify states here. Comparison
with Figs. 3 and 8 indicates that this approach predicts experimental
widths more accurately than the Wigner-limit approach but still not
as well as the integral relation.

I computed estimates of this kind, using a diffuseness of
0.65 fm and a Woods-Saxon radius of 1.15 fm × (A − 1)1/3,
with A the mass number of the resonance state (the defaults
in a code provided by Brown [96]). I neglected variation of
these parameters and estimated the single-particle width �WS

from the FWHM of the peak in the computed cross section
for the given Woods-Saxon well. The comparison of Sa�WS

with �expt is shown in Fig. 9. The Woods-Saxon estimates are
systematically low, with a weighted mean 〈Sa�WS/�expt〉 =
0.74 ± 0.15 for the same eight cases considered above and
χ2

ν = 34 for eight degrees of freedom. I conclude from this
exercise and the similar exercise using Wigner limits that
VMC widths computed by the integral method are more
useful predictors of experimental widths than are the VMC
spectroscopic factors.

V. SUMMARY

I have presented plausibility arguments, supported by de-
tailed derivations in the literature, that widths of resonant states
can be estimated by evaluating an integral over pseudobound
ab initio wave functions. This approach is approximate, but
it avoids a great deal of computation and human labor that
would be needed in full-on scattering calculations and would
often be complicated by coupled channels. It is nicely suited to
quantum Monte Carlo calculations in that it is insensitive to the
difficult-to-compute tails of the many-body wave functions,
involves a short-range integral amenable to Monte Carlo
integration, uses more information about the Hamiltonian than
is encoded in the variational wave function, and can be applied
to resonances narrower than the practical energy resolution of
the GFMC technique. Related integrals yield overlap functions
for bound states, and these overlaps are guaranteed to have
the correct shapes in their long-range asymptotics even when
the variational wave function does not. These may be useful
for calculations of spectroscopic factors and of transfer and
knockout cross sections.

I have implemented integral-method width calculations for
one-nucleon emission from wave functions computed by the
variational Monte Carlo method. It yields widths in good
agreement with experiment for several states in the 7 � A � 9
mass range. Cases of disagreement always involve either open
channels for which I have not accounted or a resonant wave
function that is not strongly peaked in the interaction region.
I have shown that widths predicted in this way are closer
matches to experiment than are naive combinations of ab
initio spectroscopic factors with Wigner-limit or Woods-Saxon
estimates of single-particle widths. The integral method is thus
a useful tool for estimating widths from ab initio methods that
produce pseudobound wave functions.

For the longer term, the calculations presented here repre-
sent a learning problem for application of integrals of the type
in Eqs. (32) and (33) to QMC wave functions. Application
to GFMC wave functions of the methods used here will be
straightforward and mainly involve additional bookkeeping
similar to that used in Ref. [60] for direct overlap calculations.
Integrals of the kind considered here are likely to find their
most extensive use in ab initio calculations of coupled-channel
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scattering and reactions, and a major goal of the work presented
here is to prepare the way for such calculations.
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