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Fission barriers and half-lives of actinides in the quasimolecular shape valley
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The energy of actinide nuclei in the fusionlike deformation valley has been determined from a liquid-drop
model, taking into account the proximity energy, the mass and charge asymmetries, and the shell and pairing
energies. Double-humped potential barriers appear. The saddle point corresponds to the second maximum and
to the transition from compact one-body shapes with a deep neck to two touching ellipsoids. The scission point,
where the effects of the nuclear attractive forces between the fragments vanish, lies at the end of an energy plateau
below the saddle point and corresponds to two well-separated fragments. The kinetic and excitation energies of
the fragments come from the energy on this plateau. The shell and pairing effects play a main role to decide
the most probable decay path. The heights of the potential barriers roughly agree with the experimental data
and the calculated half-lives follow the trend of the experimental values. A shallow third minimum and a third
peak appear in specific asymmetric exit channels where one fragment is close to a double magic quasispherical
nucleus, while the other one evolves from oblate to prolate shapes.
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I. INTRODUCTION

The observed properties of the ground-state and isomeric-
state spectra of actinides suggest the existence of double-
humped potential barriers. The heights of the inner and
asymmetric outer fission barriers are almost constant
(5–6 MeV) from Th to Am isotopes [1,2]. This is a severe test
for theoretical models. Furthermore, analysis of the fission
probability and of the angular distribution of the fragments
indicates the existence of hyperdeformed states in a deep
third well in several Th and U isotopes [3–5], confirming
the pioneering work of Blons et al. [6] in 231,233Th. The
observed strongly enhanced low-energy α decay of several
heavy actinide nuclei is also understood assuming the decay
of a third hyperdeformed minimum, and the possibility that
the third minimum is the true ground state of very heavy
and perhaps superheavy nuclei has been also advocated [7].
Beyond the actinides, and very surprisingly, it is also necessary
to advance fission barrier heights of 5–10 MeV to explain
the successful formation in heavy-ion reactions of superheavy
elements of charge 112–118, pointing out the determining
influence of shell effects [8,9].

The fission shapes were first investigated a long time ago by
minimizing the sum of the Coulomb and surface energies using
mainly a development of the radius in Legendre polynomials.
This leads naturally to fission paths through very elongated
shapes with a shallow neck or no neck. By adding to the
macroscopic liquid-drop model energy of these elongated
one-body shapes, an oscillatory microscopic contribution, the
Strutinsky’s method [10], generated double-humped barriers
allowing explaination of the fission isomer characteristics. On
the other side, Myers and Swiatecki [11] proposed analytical
formulas to calculate rapidly the shell and pairing ener-
gies for deformed shapes. Later, the asymmetric two-center
shell model [12], the Hartree-Fock-Bogoliubov [13], and the
relativistic mean-field theories [14] have also succeeded in
obtaining different minima in the potential landscape where
strongly deformed fission isomers can survive.

Within a generalized liquid-drop model (GLDM) taking
into account both the proximity energy between close opposite
surfaces and the mass and charge asymmetries, most of the
symmetric and asymmetric fission [15–17], α and light nucleus
emission [18,19], and fusion data [20], as well as the rotating
super and highly deformed state characteristics [21,22], have
been also reproduced in the fusionlike shape valley. It has
been proved that there is a degeneracy between the energy
of elongated shapes with a shallow neck and the energy of
quasimolecular shapes, as well as between the values of the
moment of inertia and quadrupole moment [23] in the two
deformation paths. Consequently, the experimental data do
not allow us to choose between them.

The purpose of this work is to focus on the actinide
region remaining in the peculiar quasimolecular shape valley,
taking into account the ellipsoidal deformations of the two
different fission fragments, in order to investigate all possible
mass and charge asymmetries in the framework of the
GLDM, accounting for shell and pairing energies. The study
is limited to quasimolecular shapes since these shapes are
rarely investigated and are inaccessible in using the usual
development of the nuclear radius.

II. POTENTIAL ENERGY OF A DEFORMED NUCLEUS

The energy of a deformed nucleus is the sum of the GLDM
energy and the microscopic shell and pairing energies. The
GLDM energy is given by [20]

E = EV + ES + EC + Eprox, (1)

where the different terms are, respectively, the volume, surface,
Coulomb, and nuclear proximity energies.

All along the fission path the proximity energy term
Eprox takes into account the nuclear attractive forces between
nucleons in the neck, in the case of a deformed one-body shape,
or across the gap, in the case of two separated fragments. In
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the quasimolecular shape valley, where the necks are narrow
and well developed, this correction to the surface energy plays
a main role in a large part of the fission path and especially
around the touching point. For example, at the contact point
between two spherical Kr and Ba nuclei the proximity energy
reaches −43 MeV. The absence of this term in fusion studies
leads to an unrealistic Coulomb peak. When the proximity
energy is taken into account, the fusion barrier is smooth and
the maximum corresponds to two separated nuclei maintained
in unstable equilibrium by the balance between the repulsive
Coulomb forces and the attractive nuclear proximity forces. In
fission studies this term is very important when creviced and
compact shapes are considered and is almost negligible for
elongated shapes with a shallow neck. The proximity energy
is defined as

Eprox(r) = 2γ

∫
� [D(r, h)/b] 2πhdh, (2)

where r is the distance between the mass centers; � is the
proximity function of Feldmeier [24]; h is the transverse
distance varying from zero, for separated fragments or the
neck radius for one-body shapes, to the height of the neck
border; b is the surface width fixed at the standard value of
0.99 fm; and D is the distance between the opposite surfaces
on a line parallel to the fission axis (see also Refs. [20,24]).
Finally, the surface parameter γ is given by a geometric mean
between the surface parameters of the two fragments,

γ = 0.9517
(
1 − ksI

2
1

)1/2(
1 − ksI

2
2

)1/2
MeV fm−2. (3)

The selected one-body shape sequence simulating the
fusionlike fission valley is shown in the upper part of Fig. 1.
Two elliptic lemniscatoids are connected, allowing the devel-
opment of a deep neck while keeping almost spherical ends
[20]. The proximity energy is maximized in this deformation
path.

For a given final asymmetry, there is a one-to-one corre-
spondence between the distance r between the centers of the
future fragments and the shape of the deformed nucleus [20].

FIG. 1. Shape sequences describing the one-body shape evolution
(for a given final asymmetry) and the two coaxial ellipsoid configu-
rations. The fission axis is the common axis of revolution.

For one-body shapes, the first three contributions are
expressed as

EV = −15.494(1 − 1.8I 2)A MeV, (4)

ES = 17.9439(1 − 2.6I 2)A2/3 S

4πR2
0

MeV, (5)

where I is the relative neutron excess and S is the surface
of the deformed nucleus. The values of the surface energy
coefficient and asymmetry surface energy coefficient are very
close to those proposed by the Lund group and have never
been changed since the first study [15],

EC = 0.6e2(Z2/R0)BC. (6)

The Coulomb shape-dependent function BC is defined as

BC = 15

16π2R5
0

∫
dτ

∫
dτ ′

|r − r ′| . (7)

It has been determined within the method proposed by Cohen
and Swiatecki [25] using the axial symmetry of the system and
complete elliptic integrals [26],

BC = 0.5
∫

(V (θ )/V0)(R(θ )/R0)3 sin θdθ, (8)

where V (θ ) is the electrostatic potential at the surface and
V0 the surface potential of the sphere. The radius R0 of the
compound nucleus is given by

R0 = (1.28A1/3 − 0.76 + 0.8A−1/3) fm. (9)

This formula, proposed in Ref. [27], was derived from the
droplet model and from the proximity energy values and
simulates rather a central radius for which R0/A

1/3 increases
slightly with the mass. It has been shown that this GLDM
can be used to reproduce accurately the fusion [20,22],
fission [15,17], and cluster [19] and α [18] radioactivity data.
Furthermore, the values of the parameters can be used to
calculate the nuclear masses [28].

The radii of the two fragments are calculated assuming vol-
ume conservation. For two-body shapes, the coaxial ellipsoidal
deformations of the two fragments have been considered [29]
(see the lower part of Fig. 1). For a given distance r between
the mass centers of the two fragments the system configuration
depends on two parameters: the ratios si (i = 1, 2) between
the transverse semiaxis ai and the radial semiaxis ci of the
fragments,

ai = Ris
1/3
i , ci = Ris

−2/3
i . (10)

The prolate deformation is characterized by s � 1 and the
related eccentricity is e2 = 1 − s2, while in the oblate case
s � 1 and e2 = 1 − s−2. The volume and surface energies are
the sum of the contributions of each fragment. In the prolate
case, the relative surface energy is given by

BSi =
(
1 − e2

i

)1/3

2

[
1 + sin−1(ei)

ei

(
1 − e2

i

)1/2

]
(11)
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and, in the oblate case,

BSi =
(
1 + ε2

i

)1/3

2

[
1 + ln

(
εi +

(
1 + ε2

i

)1/2)
εi

(
1 + ε2

i

)1/2

]
ε2
i = s2

i − 1.

(12)

The Coulomb self-energy of the spheroid i reads

EC,self = 3e2Z2
i Bci

5Ri

. (13)

The relative self-energy is, in the prolate case,

BCi =
(
1 − e2

i

)1/3

2ei

ln
1 + ei

1 − ei

(14)

and, in the oblate case,

BCi =
(
1 + ε2

i

)1/3

εi

tan−1εi . (15)

The Coulomb interaction energy between the two fragments
is calculated as

EC,int = e2Z1Z2

r
[s(λ1) + s(λ2) − 1 + S(λ1, λ2)]

(16)

λ2
i = c2

i − a2
i

r2
.

In the prolate case, s(λi) is expressed as

s(λi) = 3

4

(
1

λi

− 1

λ3
i

)
ln

(
1 + λi

1 − λi

)
+ 3

2λ2
i

, (17)

while, for the oblate shapes,

s(λi) = 3

2

(
1

ωi

+ 1

ω3
i

)
tan−1ωi − 3

2ω2
i

ω2
i = −λ2

i . (18)

S(λ1, λ2) can be calculated within a twofold summation,

S(λ1, λ2) =
∞∑

j=1

∞∑
k=1

3

(2j + 1)(2j + 3)

3

(2k + 1)(2k + 3)

× (2j + 2k)!

(2j )!(2k)!
λ

2j

1 λ2k
2 . (19)

III. ANALYTICAL SHELL ENERGY

The shape-dependent shell corrections have been deter-
mined within the droplet model formulas [30] with slightly
different values of the parameters. The shell energy is

Eshell = E
sphere
shell (1 − 3.1θ2)e−θ2

. (20)

The shell corrections for a spherical nucleus are given by

E
sphere
shell = 5.8

{
[F (N ) + F (Z)]/(0.5A)2/3 − 0.28A1/3

}
MeV,

(21)

where, for Mi−1 < X < Mi , Mi being the magic numbers,

F (X) = qi(X − Mi−1) − 0.6
(
X5/3 − M

5/3
i−1

)
(22)

and

qi = 0.6
(
M

5/3
i − M

5/3
i−1

)
/(Mi − Mi−1). (23)

The assumed highest proton magic number is 114 while, for
the two highest neutron magic numbers, the values 126 and
184 have been retained,

θ2 = (δR)2/a2. (24)

The distortion θa is the root-mean-square of the deviation
of the nuclear surface from the sphere, a quantity which
incorporates indiscriminately all types of deformation. The
range a has been chosen to be 0.286r0. For the two-body
shapes, the total shell energy is the sum of the shell corrections
for each deformed fragment.

This algebraic method to calculate the shell effects is
questionable but it gives, at least for ellipsoidal deformations,
almost the same results as the Strutinsky’s method. Therefore,
this approach seems justified for the ellipsoidal fragments
and around the ground state. For large deformed one-body
shapes the shell effects obtained by the Strutinsky’s method
are generally higher.

IV. PAIRING ENERGY

The pairing energy has been calculated with the following
expressions provided by the Thomas-Fermi model [31].

For odd Z, odd N , and N = Z nuclei,

EPairing = 4.8/N1/3 + 4.8/Z1/3 − 6.6/A2/3 + 30/A. (25)

For odd Z, odd N , and N �= Z nuclei,

EPairing = 4.8/N1/3 + 4.8/Z1/3 − 6.6/A2/3. (26)

For odd Z and even N nuclei,

EPairing = 4.8/Z1/3. (27)

For even Z and odd N nuclei,

EPairing = 4.8/N1/3. (28)

For even Z and even N nuclei,

EPairing = 0. (29)

It is assumed that the pairing energy of the compound nucleus
is constant before the separation and it is the sum of the pairing
energy of the two fragments after the separation.

V. POTENTIAL BARRIERS

The potential barriers determined in the fusionlike fission
valley within the macroscopic part of the GLDM (i.e.,
without pairing and shell effects) and with the two sphere
approximation for the fragments are plotted in Fig. 2 for the
symmetric fission of β-stable nuclei. The proximity energy
introduces progressively an inflection in the potential energy
curve. For A < 215 there is one saddle point corresponding
to two separated spherical fragments in unstable equilibrium
due to the balance between the repulsive Coulomb forces and
the attractive nuclear proximity forces. For A > 215, there are
two maxima. The inner maximum is close to the sphere while
the outer one presents always the same configuration; between
them a second minimum occurs due to the proximity effects
in the neck which strongly lower the deformation energy.
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FIG. 2. Macroscopic barriers of the symmetric fission in the β-
stability valley.

Naturally, these macroscopic double-humped barriers for
actinides are not sufficient to reproduce the experimental data
and the shell and pairing energies as well as the deformations
of the fragments must be introduced.

The dependence of the deformation energy on the shape se-
quence and on the introduction of the microscopic corrections
is displayed in Fig. 3 for an asymmetric fission path of the
240Pu nucleus. The shell effects generate the slightly deformed
ground state and contribute to the formation of the first peak.
The proximity energy flattens the potential energy and the
shell effects lead to the formation of a deep second minimum,
lodging the observed superdeformed isomeric states. The value
of the theoretical rigid moment of inertia, 2I/h̄2, of the ground
state is 133 MeV−1 relatively close to the experimental value
of 140 MeV−1 [1]. The value of the experimental moment of
inertia of the isomeric state is 299 MeV−1 while the theoretical
one is 221 MeV−1. The bottom of the second well is almost
flat which may explain the difference between the two values.

The transition between one-body and two-body shapes is
less smooth when the ellipsoidal deformations of the fragments
are taken into account. Indeed, it corresponds to the transition
(at r = 11.6 fm for 240Pu) from a one-body quasimolecular

FIG. 3. Asymmetric fission barrier of a 240Pu nucleus emitting a
magic nucleus 128Sn. The dashed-dotted curve gives the macroscopic
energy within the two-sphere approximation for the two-body shapes
while the solid line includes the ellipsoidal deformations of the
fragments and the shell and pairing energies. r is the distance between
the mass centers.

shape with spherical ends, a very deep neck, and vanishing
shell effects to two touching ellipsoidal fragments. The barrier
height is reduced by several MeV. Later, the magic Sn nucleus
remains almost spherical while the other fragment evolves
from an oblate shape to a prolate shape but the proximity
energy keeps close the two tips of the fragments. A plateau
appears in the potential energy curve at larger distances around
10 MeV below the ground state. On this plateau the prolate
deformation of the second fragment increases and the Coulomb
and proximity energies diminish, the two fragments remaining
in contact. The end of the plateau corresponds to the end of
the contact between the two fragments and to a rapid transition
from prolate to oblate or spherical shapes for the nonmagical
fragment and to the vanishing of the proximity energy, with
the two fragments going away.

It must be pointed out that the macro-microscopic models
[32] and the Hartree-Fock-Bogoliubov approaches [33] have
difficulties smoothly connecting the two sheets of the potential
energy surfaces corresponding, respectively, to one-body and
two-body shapes. Furthermore, the models using elongated
one-body shapes lead also generally to a second peak of the
potential barrier, which is too high.

When the proximity energy is not taken into account, the
scission point is often defined as the point where the rupture of
the matter bridge between the nascent fragments occurs. In our
approach, this point is the second peak of the double-humped
barrier but this is not the real scission point. The introduction
of the proximity energy changes the definition of the scission
point. The scission point then is the point where the nuclear
attraction between the fragments vanishes. It corresponds in
our approach to the end of the plateau where the proximity
energy becomes negligible and the scission configuration is
that of two well-separated ellipsoids. The energy at the scission
point is around 16 MeV lower than the energy at the external
saddle point. As in other studies, a descent exists from the
saddle point to the scission point. The final fragment shell
effects play a main role during this descent, as underlined
by Wilkins, Steinberg, and Chasman a long time ago [34].
Nevertheless, the fission fragment mass distribution is strongly
connected with the relative half-lives of all the possible decays
and, consequently, is mainly determined by the barriers along
the fission path.

FIG. 4. Multiple-humped barriers for 240Pu as a function of the
heaviest fragment mass.
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FIG. 5. Heights Ea and Eb of the inner (full circles) and outer
(crosses) peaks of the fission barrier as a function of the mass of the
heaviest fragment for 240Pu.

The selected one-body shape sequence depends only on
two parameters and does not allow the investigation of all
the possible nuclear shapes. Its interest lies in the efficiency
to very rapidly reach the contact point between spherical or
deformed fragments and to check the largest possible nuclear
proximity effects. This quasimolecular shape valley seems to
be another possible candidate that allows the reproduction of
the double-humped barriers of actinides.

In Fig. 4 the macro-microscopic double-humped barriers
are displayed as a function of the mass of the heaviest fragment
for the fission of the 240Pu nucleus. For a given fragment mass,
the charge which leads to the shortest decay half-life (see
Sec. VI) has been retained. The height of the inner peak is
almost constant since it depends on the assumed shell effects
after the ground state of the decaying nucleus. The height of
the external peak generally increases with the asymmetry but
the shell and pairing corrections induce strong distortions from

TABLE I. Comparison between theoretical (t) and experimental (e) [1,2,4,6] barrier characteristics for actinide nuclei. Ea , Eb, and Ec are
the first, second, and third peak heights while E2 and E3 are the energies of the second and third potential minima, relative to the ground-state
energy (in MeV). The last column gives the energy of the plateau below the external barrier.

Reaction Ea(t) Ea(e) E2(t) E2(e) Eb(t) Eb(e) E3(th) Ec(t) Plateau energy

230
90 Th → 132

50 Sn + 98
40Zr 4.9 – 4.5 – 7.7 – 6.8 8.4 190

231
90 Th → 132

50 Sn + 99
40Zr 5.0 – 4.5 – 7.4 6.5 6.2 8.4 191

– e: 5.6 e: 6.3
233
90 Th → 132

50 Sn + 101
40 Zr 5.25 – 4.4 – 6.5 6.8 5.1 7.65 189

– e: 5.2 e: 6.8
232
92 U → 134

52 Te + 98
40Zr 4.6 4.9 3.15 – 5.4 5.4 5.1 6.4 196

234
92 U → 134

52 Te + 100
40 Zr 5.0 5.6 3.2 – 4.8 5.5 4.3 6.3 195

– e: 3.1
235
92 U → 131

50 Sn + 104
42 Mo 5.4 5.7 4.2 2.5 6.1 5.8 5.35 7.15 199

236
92 U → 130

50 Sn + 106
42 Mo 5.3 5.6 3.6 2.3 5.0 5.5 4.5 6.7 198

– e: 3.15
237
92 U → 132

50 Sn + 105
42 Mo 5.8 6.1 4.6 2.5 6.2 5.9 4.9 7.1 199

238
92 U → 130

50 Sn + 108
42 Mo 5.6 5.7 3.8 2.6 5.1 5.7 4.6 6.5 200

239
92 U → 132

50 Sn + 107
42 Mo 5.9 5.8 4.4 1.9 5.6 6.0 4.0 6.2 197

238
93 Np → 132

50 Sn + 106
43 Tc 6.0 6.0 4.9 2.3 6.6 6.0 5.6 7.1 205

238
94 Pu → 132

52 Te + 106
42 Mo 5.2 5.6 2.3 2.7 5.1 5.4 210

239
94 Pu → 130

50 Sn + 109
44 Ru 5.6 6.2 3.4 2.6 4.75 5.5 4.7 5.6 207

240
94 Pu → 128

50 Sn + 112
44 Ru 5.5 5.7 2.6 2.4 5.2 5.1 205

241
94 Pu → 131

50 Sn + 110
44 Ru 6.0 6.0 3.8 1.9 4.8 5.5 4.2 5.1 207

243
94 Pu → 132

50 Sn + 111
44 Ru 6.2 5.9 4.0 1.7 5.0 5.4 3.7 4.5 208

242
95 Am → 131

50 Sn + 111
45 Rh 6.1 6.5 3.85 2.9 5.2 5.4 4.8 5.25 214

243
95 Am → 133

51 Sb + 110
44 Ru 6.0 5.9 3.2 2.3 4.1 5.4 3.3 4.0 214

244
95 Am → 132

50 Sn + 112
45 Rh 6.3 6.3 4.0 2.8 5.1 5.4 3.9 4.3 218

243
96 Cm → 122

48 Cd + 121
48 Cd 5.35 6.4 1.3 1.9 2.9 4.2 213

245
96 Cm → 130

50 Sn + 115
46 Pd 5.8 6.2 2.4 2.1 3.5 4.8 217

248
96 Cm → 130

50 Sn + 118
46 Pd 5.8 5.7 2.0 – 2.7 4.6 216

250
97 Bk → 130

50 Sn + 120
47 Ag 5.7 6.1 1.3 – 2.0 4.1 222

250
98 Cf → 125

49 In + 125
49 In 5.5 5.6 0.1 – 1.1 – 231

256
99 Es → 128

50 Sn + 128
49 In 5.2 4.8 −0.6 – −0.2 – 232

255
100Fm → 127

51 Sb + 128
49 In 5.4 5.7 −0.4 – 0.3 – 237
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this global behavior. More precisely, the heights Ea and Eb of
the two barriers are given in Fig. 5. The combination of the
proton and neutron magic numbers, respectively, around 50
and 82, leads to a lowering of the second barriers for masses
of the heaviest fragment around 130.

The “experimental” fission barriers are usually extracted
from induced fission excitation functions at excitation energy
above the barrier. Hence, they correspond roughly to the
lowest possible theoretical fission barriers. Within the GLDM,
for each studied actinide isotope, the half-lives of all the
possible decays have been calculated (see Sec. VI). The decay
giving the shortest half-life corresponds to the smallest action
integral according to the method determining this half-life.
This exit channel has been selected to compare the calculated
and experimental energies of the maxima and minima of the
fission barriers. The choice of this most probable fission path
is difficult for some isotopes since there is a true degeneracy
in energy between several paths. This problem comes from the
fragment mass distribution which is very broad. The results are
presented in Table I. The experimental and theoretical heights
Ea and Eb of the two peaks roughly agree. The predicted
value of the second minimum energy is often slightly too high.
For the U, Pu, Am, and Cm isotopes, an asymmetric path
is favored. One fragment is close to the doubly magic 132

50 Sn
nucleus and, consequently, keeps an almost spherical shape.
This effect does not appear for Cf, Es, and Fm since for nuclei
with Z ∼ 100 the symmetric fission gives fragments with a
charge close to the magic number 50. For the heaviest nuclei
the external barrier disappears since the attractive proximity
forces cannot compensate for the repulsive Coulomb forces
any more.

The energy of the two deformed fragments at the end of the
plateau below the multiple-humped barrier is given in the last
column of Table I. It follows the trend of the experimental
distribution of the total kinetic of the fragments but it
overestimates the data of about 20–30 MeV. That might be
explained partially by the energy stored by collective excitation
modes such as vibration, rotation, charge polarization, and
so on.

A third shallow minimum and a third peak appear in
certain asymmetric decay paths when the heaviest fragment
is a magic nucleus which preserves its almost spherical shape.
The nonmagic fragment was born in an oblate shape (s ∼ 1.4),
due to the small distance between the mass centers at the
transition between one-body and two-body shapes. When this
distance increases, the ratio s decreases, because the proximity
energy tends to keep the two tips of the fragments close. The
lightest fragment remaining in contact with the other spherical
fragment approaches the spherical shape and its shell energy
increases to reach a maximum, which is at the origin of the third
peak and corresponds to two touching different spheres. Before
reaching this third peak a third shallow minimum appears. Its
shape is hyperdeformed and asymmetric, in agreement with
the experimental data [4]. Later, the proximity forces maintain
the two fragments in contact and the shape of the smallest
one evolves to prolate shapes (s < 1), with the corresponding
shell corrections decreasing. In the symmetric mass exit
path, the proximity and Coulomb energies counterbalance the
smallest shell effects and induce an asymmetric shape; the two

TABLE II. Comparison between experimental [2] and theoretical
spontaneous fission half-lives of actinide nuclei.

Reaction T1/2,exp(s) T1/2,theo(s)

232
92 U → 134

52 Te + 98
40Zr 2.5 × 1021 4.8 × 1018

234
92 U → 134

52 Te + 100
40 Zr 4.7 × 1023 4.6 × 1019

235
92 U → 131

50 Sn + 104
42 Mo 3.1 × 1026 1.1 × 1024

236
92 U → 130

50 Sn + 106
42 Mo 7.8 × 1023 1.7 × 1022

238
92 U → 130

50 Sn + 108
42 Mo 2.6 × 1023 5.2 × 1023

238
94 Pu → 132

52 Te + 106
42 Mo 1.5 × 1018 2.1 × 1018

239
94 Pu → 130

50 Sn + 109
44 Ru 2.5 × 1023 9.9 × 1022

240
94 Pu → 128

50 Sn + 112
44 Ru 3.7 × 1018 2.3 × 1020

243
95 Am → 133

51 Sb + 110
44 Ru 6.3 × 1021 3.6 × 1022

243
96 Cm → 122

48 Cd + 121
48 Cd 1.7 × 1019 2.3 × 1016

245
96 Cm → 130

50 Sn + 115
46 Pd 4.4 × 1019 2.0 × 1020

248
96 Cm → 130

50 Sn + 118
46 Pd 1.3 × 1014 1.9 × 1018

250
98 Cf → 125

49 In + 125
49 In 5.2 × 1011 4.2 × 1011

255
99 Es → 128

50 Sn + 127
49 In 8.4 × 1010 5.5 × 106

256
100Fm → 128

50 Sn + 128
50 Sn 1.0 × 104 1.1 × 104

256
102No → 128

51 Sb + 128
51 Sb 110 1.9 × 100

fragments remain in contact but one fragment is oblate while
the other one is prolate. With increasing distance between the
mass centers the two nuclei become prolate. There is no third
barrier in the symmetric deformation paths. The still sparse and
controversial data for the third barrier are roughly reproduced.

Clearly, the magicity of the proton and neutron numbers of
the fragments plays a main role in discriminating between all
the possible exit channels. Different hypotheses have been
checked regarding the calculations of the pairing energy:
pairing depending on the shape, pairing independent of the
shapes but differing for one- and two-body shapes, and no
pairing term. There are variations but the global consensus is
about the same.

VI. HALF-LIVES

Within this asymmetric fission model the decay constant
is simply given by λ = ν0P . The assault frequency ν0 has
been taken as ν0 = 1020 s−1. The barrier penetrability P is
calculated within the action integral

P = exp

[
− 2

h̄

∫ rout

rin

√
2B(r)(E(r) − Eg.s.)dr

]
. (30)

The inertia B(r) is related to the reduced mass by

B(r) = μ[1 + 24exp(−3.25(r − Rsph)/R0)], (31)

where Rsph is the distance between the mass centers of the
future fragments in the initial sphere, Rsph/R0 = 0.75, in the
symmetric case. For shapes near the ground state, the inertia is
largely above the irrotational flow value since a large amount
of internal reorganization occurs at level crossings. For highly
deformed shapes the reduced mass is reached asymptotically.
The partial half-life is finally obtained by T1/2 = ln2

λ
.
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The experimental spontaneous fission half-lives and theo-
retical predictions for the assumed most probable exit channels
are compared in Table II. There is a rough agreement with
most of the experimental data on 26 orders of magnitude. Let
us recall that the same GLDM and method to determine the
half-lives have allowed an accurate reproduction of the α and
cluster radioactivity half-lives [18,19].

VII. SUMMARY AND CONCLUSION

Exit channels of actinides via the quasimolecular shape
valley have been investigated within a generalized liquid-
drop model, including the nuclear proximity energy and
microscopic corrections. Double-humped potential barriers
and large deformed minima lodging possibly isomeric states

appear. The external saddle point corresponds to the transition
from one-body shapes to two touching ellipsoids. The scission
point, where the effects of the nuclear attractive forces between
the fragments vanish, lies at the end of an energy plateau
below the saddle point. It corresponds to two well-separated
fragments. The energy on this plateau gives the fragment
kinetic energy plus an excitation energy. The barrier heights
roughly agree with the experimental results on the double-
humped fission barriers. The shell and pairing effects play
a main role to decide the most probable decay path. The
predicted half-lives follow most of the experimental data.

A shallow third minimum and a third peak appear in specific
asymmetric exit channels where one fragment is close to
a double magic quasispherical nucleus, while the other one
evolves from oblate to prolate shapes.
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