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Monopole-optimized effective interaction for tin isotopes
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We present a systematic configuration-interaction shell-model calculation on the structure of light tin isotopes
with a global optimized effective interaction. The starting point of the calculation is the realistic CD-Bonn
nucleon-nucleon potential. The unknown single-particle energies of the 1d3/2, 2s1/2, and 0h11/2 orbitals and the
T = 1 monopole interactions are determined by fitting to the binding energies of 157 low-lying yrast states in
102−132Sn. We apply the Hamiltonian to analyze the origin of the spin inversion between 101Sn and 103Sn that was
observed recently and to explore the possible contribution from interaction terms beyond the normal pairing.
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I. INTRODUCTION

Substantial experimental and theoretical efforts have been
devoted in the past decade to explore the structure of light
tin isotopes [1–26]. The excitation energies of the first 2+
states in Sn isotopes between 102Sn and 130Sn are established
to possess an almost constant value (see, e.g., Refs. [1,27,28]).
This may be understood from the simple perspectives of
generalized seniority scheme [16,29,30] and pairing corre-
lation [31,32]. A more realistic description of these nuclei
requires a knowledge of the effective interaction between
the valence nucleons that govern the dynamics [27,33]. The
complete wave functions thus calculated show large overlap
with those of the generalized seniority scheme, especially
for the low-lying states of isotopes close to the N = 50 and
82 shell closures [30,32]. The J = 0 pairing channel of the
effective interaction has been shown to play an essential role
in reproducing the spacings between the ground states and 2+

1
states [32]. Possible deviations from the generalized seniority
scheme were suggested from B(E2) measurements in the 2+

1
states [3].

A microscopic shell-model description of the configura-
tions of nuclei in the trans-tin region is a challenging task
due to the scarceness of available experimental data and
the near degeneracy in energy of the relevant 0g7/2 and
1d5/2 single-particle orbits [34–36]. In the earlier shell-model
calculations of Refs. [34,35], the spacing between the two
orbits was taken to be ε(0g7/2) − ε(1d5/2) = 0.2 and 0.5 MeV.
In Ref. [37], excited states in 103Sn have been observed using
in-beam spectroscopic methods. The measured spectrum of
103Sn is very similar to that of 105,107,109Sn, with the spin
parity 5/2+ and 7/2+ for the ground and first excited states,
respectively. By a shell-model fitting procedure, the spacing
between 0g7/2 and 1d5/2 single-particle orbits was predicted
to be ε(0g7/2) − ε(1d5/2) = 0.11 MeV [37]. It has long been
expected that the ground-state spin of 101Sn should be identical
to that of 103−109Sn [7], which can be approximately viewed
as one-quasiparticle states [34]. However, in Ref. [12], the
configurations of the ground and first excited states in 101Sn
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were determined to be 0g7/2 and 1d5/2, respectively. The
spins of these states are reversed with respect to those
in 103Sn.

Shell-model calculations with empirical interactions have
been very successful in explaining the structure and decay
properties of light nuclei between 4He and 100Sn (see, e.g.,
Refs. [38–44]) and heavier nuclei around shell closures
[40,45,46]. The key to these calculations is a proper description
of the monopole channel of the effective interaction [47],
which determines the bulk properties of the effective in-
teraction and governs the evolution of the effective single-
particle energies (the mean field) as a function of valence
neutron and proton numbers [41,48]. The contribution of the
monopole interaction becomes much more important with
increasing valence nucleon numbers N since it is proportional
to N (N − 1)/2. The light tin isotopes between shell closures
N = 50 and 82 are the longest chain that can be reached by
contemporary shell-model calculations. They may provide an
ideal test ground to study the competition between different
terms of the monopole interaction.

Realistic effective interactions obtained from free nucleon-
nucleon potentials provide a microscopic foundation to shell-
model calculations [33]. Extensive previous shell-model cal-
culations tend to suggest that the realistic interaction can give
a satisfactory description of the multipole part, but not the
monopole channel [39,41,42,49], which may be due to the
lack of three-body forces [50]. This is supported by recent
shell-model calculations in Refs. [51,52], where it is shown
that a better description of the oxygen and calcium chains can
be obtained by including the three-body monopole interaction.
Moreover, significant progress has been made in a variety
of ab initio calculations with three-body forces for light
nuclei within the frameworks of Green’s function Monte Carlo
[53], no-core shell-model [54,55], and coupled-cluster [56]
approaches. For heavier nuclei, a more convenient approach
is to treat the monopole interaction empirically [41,48,57].
Thus, we are motivated to fine tune the monopole part of
the realistic interaction by fitting to available experimental
data in tin isotopes. One may also get a limitation on the
unknown single-particle energies of the orbitals 1d3/2, 2s1/2,
and 0h11/2. We expect that the refined effective Hamiltonian
will give a better understanding of the structure of trans-tin
nuclei.
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TABLE I. Numbers of two-body matrix elements 〈jαjβ |V |jδjγ 〉JT for different sets of J and T .

J = 0 J = 1 J = 2 J = 3 J = 4 J = 5 J = 6 J = 7 J = 8 J = 9 J = 10 J = 11

T = 0 36 16 48 16 25 11 9 3 2 1
T = 1 15 6 46 18 34 13 16 6 4 1 1

II. MODEL SPACE AND OPTIMIZATION
OF THE EFFECTIVE HAMILTONIAN

We assume the doubly magic 100Sn as the inert core. For
the model space we choose the neutron and proton orbitals
between the shell closures N = Z = 50 and 82, comprising
0g7/2, 1d5/2, 1d3/2, 2s1/2, and 0h11/2. We also assume isospin
symmetry in the effective Hamiltonian. A common practice
in full configuration-interaction shell-model calculations is to
express the effective Hamiltonians in terms of single-particle
energies and two-body matrix elements numerically (see, e.g.,
the Oxbash Hamiltonian package [58]):

H =
∑

α

εαN̂α

+1

4

∑
αβδγ JT

〈jαjβ |V |jγ jδ〉JT A
†
JT ;jαjβ

AJT ;jδjγ
, (1)

where α = {nlj t} denote the single-particle orbitals and
εα stand for the corresponding single-particle energies.
N̂α = ∑

jz,tz
a
†
α,jz,tz

aα,jz,tz is the particle-number operator.
〈jαjβ |V |jγ jδ〉JT are the two-body matrix elements coupled
to good spin J and isospin T . AJT (A†

JT ) is the fermion
pair annihilation (creation) operator. For the model space
we have chosen, the effective Hamiltonian is such that it
contains 5 single-particle energies and 327 two-body matrix
elements. Among the two-body matrix elements, there are 167
elements with isospin T = 0 and 160 elements with T = 1.
The number of matrix elements of a given set of J and T is
given in Table I. The monopole interaction is defined as the
angular-momentum-weighted average value of the diagonal
matrix elements 〈jαjβ |V |jαjβ〉JT for a given set of jα , jβ , and
T [47,57]. For the chosen model space, there are 15 T = 0
(and 1) monopole terms.

The single-particle energies are assumed to be the same
for all nuclei within the model space. They are given relative
to the neutron 0g7/2 state. The energy of the 1d5/2 is taken
as ε(1d5/2) = 0.172 MeV [12]. The energies of other states
have not been measured yet. They are adjusted to fit the
experimental binding energies of tin isotopes. The single-
particle energies of the proton orbitals are assumed to be the
same as those of the neutron.

The starting point of our calculation is the realistic CD-
Bonn nucleon-nucleon potential [59]. The interaction was
renormalized using the perturbative G-matrix approach, thus
taking into account the core-polarization effects [33]. This
interaction has been intensively applied in recent studies
[3,60,61]. The mass dependence of the effective interaction
is not considered in this work.

Calculations are carried out within the so-called M scheme
where states with M = I are considered. Diagonalizations

are done with a parallel shell-model program we developed
a few years ago [62]. Part of the calculations are checked with
the shell-model codes NUSHELLX [63] and ANTOINE [64] and
that of the Oslo group [65]. All the calculations are done on
the computer Kappa at the National Supercomputer Center in
Linköping, Sweden. Matrices with dimensions up to 109 (in
the M scheme) can be diagonalized with high efficiency. In
Fig. 1, we plotted the M-scheme dimensions for the M = 0
positive-parity states in even-even Sn and Te isotopes. The
dimensions of the corresponding Iπ = 0+ states are also given
for comparison. Only tin isotopes are considered in our fitting
procedure due to the limitation in computing capability around
mid-shell when both protons and neutrons are considered.

The experimental (negative) binding energy of a given state
i is given by

E
Expt.
i = BEExpt.

gs (N ) + Ex(i), (2)

where BE and Ex denote the binding energy of the nucleus
(with N valence nucleons) and the corresponding excitation
energy of the state relative to the ground state, respectively. The
experimental data are taken from Refs. [66,67]. A total number
of D = 157 yrast states from nuclei 102−132Sn are considered.

We neglect isospin in the following discussions for sim-
plicity since the systems we handle in this work only contain
valence neutrons. The calculated total energy of the state i can
be written as

ECal.
i = C + Nε0 + N (N − 1)

2
Vm + 〈�I |H |�I 〉, (3)
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FIG. 1. (Color online) Dimensions of the Mπ = 0+ states in
even-even Sn (circle) and Te (triangle) isotopes as a function of
valence neutron numbers, where M and N denote the total magnetic
quantum number and the number of valence neutrons, respectively.
The open symbols connected by dashed lines give the dimensions of
the corresponding Iπ = 0+ states.
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where �I is the calculated shell-model wave function of
the state i and I is the total angular momentum. The
constant C denotes the (negative) binding energy of the
core 100Sn. The values of ε0 and Vm depend on the way
the effective Hamiltonian is constructed. In this work, we
assume ε0g7/2 = Vm;0g2

7/2
= 0, and the other single-particle

energies and monopole interactions are given as relative values
with respect to those of the orbital 0g7/2. Thus, ε0 and Vm

correspond to the real energy and monopole interaction of the
0g7/2 state in 101Sn.

The excitation energy and wave function of a given state
only depend on the shell-model Hamiltonian H . One may
rewrite the Hamiltonian as H = Hm + HM where Hm and HM

denote the (diagonal) monopole and multipole Hamiltonians,
respectively. The shell-model energies can be written as

ESM = 〈�I |H |�I 〉

=
∑

α

εα〈N̂α〉 +
∑
α�β

Vm;αβ

〈
N̂α(N̂β − δαβ)

1 + δαβ

〉

+〈�I |HM |�I 〉, (4)

where
∑

α〈N̂α〉 = N and

∑
α�β

〈
N̂α(N̂β − δαβ)

1 + δαβ

〉
= N (N − 1)

2
. (5)

We optimize the single-particle energies and monopole
terms of the realistic effective interaction by minimizing the
quantity

χ2 =
D∑
i

[
ECal.

i − E
Expt.
i

]2
, (6)

where the summation runs over all states considered. The
quality of the fit can be measured by the root-mean-square
deviation as

σ =
√

χ2

D − P
, (7)

where P denotes the total number of free terms that are
to be considered in the fitting. As mentioned before, the
single-particle energy of the orbital 1d5/2 is fixed at ε(1d5/2) =
0.172 MeV [12]. One may rewrite the calculated total energy as

ECal.
i =

P∑
k

Vkxk + ε1d5/2

〈
N1d5/2

〉 + 〈HM〉, (8)

where Vk denote the unknown single-particle energies and
monopole interaction terms to be determined. The binding en-
ergy of the 100Sn core and the single-particle energy ε0 are also
taken as adjustable terms since the uncertainties in experimen-
tal data are still large [66]. We have P = 20 variables in total.

To minimize the χ2 function, we apply a Monte Carlo global
optimization method which we developed recently (denoted as
MC in following discussions). It is an iterative approach. The
basic idea is as follows: For the nth fitting step, we start with
an initial set of {Vk(n)} and a new set of variables {V ′

k(n)} is
proposed by the Monte Carlo sampling method. We require

that |V ′
k(n) − Vk(n)| < δk where δk denote the step lengths of

the sampling. This new set will be accepted as {Vk(n + 1)} if
we have χ2[V ′

k(n)] < χ2[Vk(n)]. Another consideration is that
the proposed new set will also be accepted as {Vk(n + 1)} with
certain probability g even if one has χ2[V ′

k(n)] > χ2[Vk(n)].
This is a key part of the global optimization since the χ2

as a function of many variables may contain more than one
minimum. Otherwise, the global searching may be trapped in
a local one. The step is repeated until convergence. The step
lengths δk and the probability function g can also be adjusted
in the fitting to getting a faster convergence.

The advantage of the Monte Carlo global optimization
method is that no information on the derivatives (i.e., xk in
this study) is required. This is very convenient when other
observables [e.g., B(E2) values] are included in the fitting.

To get the mean-square deviations χ2 for a given set
of {Vk(n)} and the large number of succeeding samplings
{V ′

k(n)} (of the order 102–103), one has to re-diagonalize
the corresponding shell-model Hamiltonian matrices. Since
the shell-model diagonalizations around N = 16 are still
time consuming, we further assume that the wave functions
are stable against the variation of the effective Hamiltonian
〈�I (n)|� ′

I (n)〉 ∼ 1. One has

ECal.
i (n)′ − ECal.

i (n) ≈
P∑
k

[V ′
k(n) − Vk(n)]xk, (9)

from which the χ2 value for a given sampling can be calculated
approximately in a straightforward way. The wave functions
and coefficients xk are recalculated when a new set of variables
are accepted. This is known as the linear approximation based
on which standard fitting approaches can be applied [42,68].

As a comparison, the singular value decomposition (SVD)
approach is also employed in the fitting process. The SVD
approach was used recently in Refs. [69,70]. For calculations
with the SVD approach, the constants C and ε0 are taken as
free parameters with no restriction. In the MC approach, we
assume that C and ε0 can only take values within the range
−825.5 ∼ −8.24 MeV and −12 ∼ −8 MeV, respectively, by
considering the uncertainties in experimental data [66]. For
the monopole interactions, we assume |Vm| � 1.5 MeV. These
restrictions can be adjusted in the fitting process if necessary.

The fitting is carried out in three steps. In the first step, we
only consider 131 states in the nuclei 102−112Sn and 120−132Sn.
The nuclei 113−114Sn and 118−119Sn are considered in the
second step to further fine tune the effective interaction. The
three isotopes 115−117Sn are added to the calculation in the last
step. Our calculations show that convergence is already
reached in the second step.

To test the fitting approaches mentioned above, calculations
are done with 10 sets of random monopole Hamiltonians. They
are generated by the Monte Carlo sampling approach with the
restriction 0.172 MeV < εα � 5 MeV and |Vm;αβ | � 1 MeV.
Then, these Hamiltonians are optimized by fitting to the 131
states mentioned above. We found that in all cases, one can
get convergence with the MC approach within 10 iterations.
As a typical example, one set of these calculations is plotted in
Fig. 2. Two types of MC calculations are presented in the fig-
ure. The solid triangles correspond to the calculations with the
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FIG. 2. (Color online) The convergence of the mean-square
deviations χ 2 as a function of iteration number within the singular
value decomposition (SVD) and Monte Carlo global optimization
(MC) approaches starting from a random monopole Hamiltonian.
See text for the difference between the red (solid) and green (open)
triangles.

restrictions on the constants C, ε0, and Vm mentioned above.
These restrictions are removed in calculations marked by the
open symbols. This is why in the first (n = 1) iteration the χ2

value is smaller in the latter case. For n = 1, calculations with
the SVD approach give the same χ2 value as that of the second
MC calculation. But, the new set of variables {Vk(n = 2)}
predicted by these approaches is very different. Among
calculations with the 10 random samplings, as in Fig. 2, the
SVD approach diverges in most cases. The reason for the
divergence may be that the step lengths [the difference between
{Vk(n + 1)} and {Vk(n)}] predicted by the SVD approach are
too large so that one can not apply the linear approximation. In
the MC approach, we restrict the step length to be δ � 1 MeV.
This is a rational restriction by taking into account the fact
the T = 1 monopole interactions are mostly small and close
to zero in shell-model calculations in light- and medium-mass
nuclei [39,43].

Figure 2 suggests that our restrictions on the C, ε0, and
Vm are reasonable and have no influence on the final results.
It should also be mentioned that the monopole Hamiltonians
that are fitted starting from these random samplings are very
similar to each other.

In Fig. 3, the same calculations are done starting from the re-
alistic CD-Bonn potential. The 131 yrast states are considered
in the fitting. The initial root-mean-square deviation is around
750 keV. This is reduced to about 110 keV after 10 iterations.
The χ2 given by the SVD approach is smaller than the MC
method for the same reason as before. But, the variables C,
ε0, and Vm predicted by the SVD approach soon fall into the
expected range after a few iterations. The χ2 value given by
the SVD calculation starts to fluctuate around n = 10. This is
avoided in the MC calculations by gradually decreasing the
maximal range δ. In the calculation labeled by the open circle
presented in the figure, the MC approach is applied instead
of SVD.
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FIG. 3. (Color online) The convergence of the mean-square
deviations χ 2 as a function of iteration number for fittings that are
started from the realistic CD-Bonn interaction. The inset shows the
maximal deviation r = max|ECal.

i − E
Expt.
i | in each step.

In Ref. [71] the maximal deviation r = max|ECalc.
i −

E
Expt.
i | is minimized in their fitting to experimental binding

energies within the Skyrme-Hartree-Fock approach. In the
inset of Fig. 3, we plot the maximal deviation r . It also
gradually decreases as a function of the iteration even though
the criterion of our calculation is to find the minimum of χ2.

III. RESULTS AND DISCUSSIONS

The fitting approach described above has been successfully
applied in deriving the effective interactions for several nuclear
regions. In particular, we constructed an interaction to describe
the structure of the N = 83–85 isotones by assuming the
nucleus 146Gd as the core [72], which is not as good shell
closure as 100Sn. As a result, the standard SVD approach failed
to get a converging result. The interaction for light tin isotopes
derived in this work is briefly discussed in the following. It
has already been used in recent studies on the level structure
and electromagnetic transition properties of the odd-A nucleus
109Te [73] and the E2 transition properties in Sn isotopes [74].

The monopole Hamiltonians we derived in Fig. 3 are
slightly refined by including the nuclei 113−119Sn into the
fitting. As mentioned before, we include a total number of 157
states in the fitting, among which there are 31 binding energies
and 126 excitation energies. As seen in Table II, after around
15 iterations, both calculations give a mean-square deviation
χ2 ∼ 2.35 MeV. It means that these states can be reproduced
within an average deviation of about 123 keV. In Table II, we
also give the values of the variables C, ε0, and Vm predicted by
the MC and SVD calculations. The uncertainties within these
variables are also analyzed with the help of the SVD approach.
The C and ε0 values predicted by the fitting are in reasonable
agreement with the binding energies given in Ref. [66].

The largest uncertainties of the optimized monopole Hamil-
tonian are related to the single-particle energies. The values
predicted by the MC approach are ε1d3/2 = 5.013 ± 3.10,
ε2s1/2 = 0.369 ± 2.63, and ε0h11/2 = 3.249 ± 0.83 MeV. The
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TABLE II. The final mean-square deviation χ 2 (in MeV2) given by the SVD and MC fittings and the predicted values of the variables C,
ε0, and Vm and their uncertainties (in MeV).

χ 2 C ε0 Vm

MC 2.697 −825.5 ± 0.288 −10.671 ± 0.0410 0.167 ± 0.00249
SVD 2.686 −825.5 ± 0.288 −10.669 ± 0.0410 0.172 ± 0.00249

single-particle energies given by the SVD approach are ε1d3/2 =
5.182 ± 3.16, ε2s1/2 = 0.409 ± 2.73, and ε0h11/2 = 3.236 ±
0.84 MeV. More experimental efforts are desired in order to
get a better constraint on these single-particle energies.

In Table III, we compare the optimized monopole terms
from the SVD and MC approaches and those of the realistic
CD-Bonn interaction. The list of the two-body matrix elements
and part of the calculated results on tin isotopes with the
optimized interaction can be found in Ref. [75].

The monopole Hamiltonians optimized with the SVD and
MC approaches are similar to each other. To illustrate this
point, in Fig. 4 we plotted the deviation from experimental
data for calculations with the two effective Hamiltonians. The
difference between the calculations is practically negligible.
The largest deviation from experiments is seen at N = 15
where the ground-state energy of 115Sn is underestimated by
around 420 keV. In the following, only calculations done with
the MC optimized effective Hamiltonian are presented for
simplicity.

The calculated shell-model energies ESM = 〈H 〉 of the
selected states in tin isotopes are plotted in Fig. 5. The contri-
butions from the monopole Hamiltonian are also presented for
comparison. From the figure, one can see that the contribution
from the multipole Hamiltonian reaches its maximum around
the mid-shell.

The excitation energies of the 126 excited states can be
reproduced within an average deviation of about 150 keV. The
largest difference is seen in the 3/2+

1 state in 115Sn mentioned
above, where the experimental data are underestimated by

TABLE III. The strengths of the T = 1 monopole interactions
V m

J ;j1j2
(in MeV) of the original CD-Bonn potential and the interac-

tions optimized by the SVD and Monte Carlo fitting approach.

j1 j2 CD-Bonn SVD MC

0g7/2 0g7/2 0.000 0.000 0.000
1d5/2 1d5/2 −0.200 −0.127 −0.121
1d3/2 1d3/2 −0.105 0.200 0.179
2s1/2 2s1/2 −0.834 −0.707 −0.749
0h11/2 0h11/2 −0.136 −0.250 −0.244
0g7/2 1d5/2 −0.129 −0.157 −0.151
0g7/2 1d3/2 −0.060 −0.086 −0.139
0g7/2 0h11/2 −0.251 −0.287 −0.261
0g7/2 2s1/2 −0.105 −0.062 −0.028
1d5/2 1d3/2 −0.231 −0.726 −0.607
1d5/2 2s1/2 −0.201 0.228 0.203
1d5/2 0h11/2 −0.106 0.012 −0.016
1d3/2 2s1/2 −0.134 −0.783 −0.768
1d3/2 0h11/2 −0.191 −0.122 −0.116
2s1/2 0h11/2 −0.141 −0.018 −0.013

about 540 keV. Extensive experimental efforts are made
recently to explore higher-seniority states built on the 10+
states in Sn isotopes [17,18,76]. In Fig. 6, we plot the
calculated excitation energies of the low-lying even spin states
up to Iπ = 12+ in the nuclei 102−130Sn. The experimental
data are also plotted for comparison. They can be found in
Refs. [17,18,67,76].

In Fig. 7, we present the calculated occupancies of the
single-particle orbitals in the ground-state wave functions of
even tin isotopes. The comparison with available experimental
data [77,78] (taken from Tables I and II in Ref. [31]) and
calculations from Ref. [31] is presented in Table IV. The
structure of the low-lying states in light tin isotopes is
dominated by configuration mixing between the orbitals 0g7/2

and 1d5/2. The two orbitals are half-filled around N = 8
(108Sn). The orbital 0h11/2 is calculated to be half-filled around
N = 22 and 24. This is in agreement with the speculation in
Ref. [79] by considering the E2 decay properties of the 10+
isomers in these nuclei.

It is noticed in Ref. [79] that the B(E2) values practically
vanish for the transitions between the 10+

1 and 8+
1 states in

122,124Sn. In that paper, this is analyzed within the framework
of the BCS approximation. That is, the B(E2) value will
minimize when the 0h11/2 orbital is half-filled. Such a scheme
is indeed supported by our shell-model calculations, as seen in
Fig. 8. In that figure, the B(E2) values are calculated with two
sets of neutron effective charge eeff

n = 1.0e [3] and eeff
n = 0.88e

[79]. As in Ref. [79], a better agreement is obtained with
eeff
n = 0.88e.
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FIG. 4. (Color online) Differences between experimental and
calculated binding energies E

Expt.
i − ECal.

i as a function of valence
neutron number.
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FIG. 5. (Color online) The calculated shell-model energies (solid
circles) ESM = 〈H 〉, and contributions from monopole Hamiltonian
〈Hm〉 (open squares).

The calculated excitation energies of the 11/2−, 1/2+,
5/2+, and 7/2+ one-neutron-hole states in 131Sn, relative to
the 3/2+ state, are −0.022, 0.475, 1.720, and 2.521 MeV,
respectively. These are in fair agreement with the experimental
data [67,81].

In Table V, we present the comparison between experi-
mental and calculated excitation energies and magnetic dipole
moments of the low-lying states in odd-A tin isotopes. The
experimental data on excitation energies are taken from
Refs. [67,81], while the magnetic moments are taken from
the compilation in Ref. [82]. Two kinds of calculations
are presented. The first one (labeled by I) corresponds to
calculations with the free g factors of neutron gs = −3.826
and gl = 0. The last column corresponds to calculations with
the effective g factor geff

s = 0.7gs , where qs = 0.7 stands for
an effective quenching factor. As can be seen from the table,
a much better agreement with experiment is obtained with
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FIG. 6. (Color online) Experimental [17,18,67,76] (open sym-
bols) and calculated (solid symbols with dotted lines) excitation
energies of the low-lying even spin states in nuclei 102−130Sn.
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FIG. 7. (Color online) Shell-model occupancies 〈N̂j 〉/(2j + 1)
of the three higher-j shells in the ground states of even tin isotopes.

the introduction of the quenching factor. The same quenching
factor qs = 0.7 was also used in Ref. [43] for calculations in
the fpg shell and in Ref. [23] for the calculations of 127,128Sn.

The empirical pairing gaps can readily be obtained from
the experimental and calculated binding energies as

�n(N ) = (−1)(N+1)

2
[BE(N ) + BE(N − 2) − 2BE(N − 1)] .

(10)

These gaps are shown as a function of the neutron number in
Fig. 9. As can be seen from the figure, the overall agreement
between experiments and calculations on the pairing gaps is
quite satisfactory. Noticeable differences are only seen for
mid-shell nuclei 114−117Sn. This is related to the relatively
large difference between experimental and calculated binding
energies of 115Sn. It may indicate that the J = 0 pairing matrix
elements in the CD-Bonn potential involving the 2s1/2 and
1d3/2 orbitals may not be perfectly described.

IV. SPIN INVERSION IN 103SN

The spins of the ground and first excited states in 103Sn
are I = 5/2 and 7/2, respectively [37], which are reversed
with respect to those in 101Sn [12]. Through seniority model
analyses with a pairing Hamiltonian, Ref. [12] suggested
that the inversion is dominated by orbital-dependent pair-
ing correlations, namely, the strength of the pairing matrix
elements 〈0g2

7/2|V |0g2
7/2〉J=0 is much larger than that of

〈1d2
5/2|V |1d2

5/2〉J=0. This produces strong additional binding
for the Jπ = 5/2+ state in 103Sn, which eventually becomes
the ground state. The effect of other interaction terms on the
spin inversion was not considered in Ref. [12].

In Fig. 10, we analyze the contribution from different
components of the effective Hamiltonian to the spin inversion
between 101Sn and 103Sn. For that purpose, the energies of
the first Jπ = 5/2+ and 7/2+ states are calculated with a
limited Hamiltonian H ′ containing the single-particle terms
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TABLE IV. Shell-model occupancies 〈N̂j 〉/(2j + 1) for the
ground states of even tin isotopes 112−124Sn calculated in this work
in comparison with experimental data [77,78] and those calculated
in Ref. [31].

j Ref. [77] Ref. [78] Ref. [31] This work

A 112
5/2 0.70 0.93(12) 0.76 0.78
7/2 0.69 0.63(13) 0.62 0.67
1/2 0.11 0.24(3) 0.30 0.21
3/2 0.14 0.18(3) 0.16 0.12
11/2 0.12 0.10 0.089

A 114
5/2 0.60 0.97(9) 0.87 0.82
7/2 0.86 0.69(15) 0.81 0.75
1/2 0.26 0.34(3) 0.28 0.29
3/2 0.31 0.37(4) 0.13 0.20
11/2 0.17 0.25(7) 0.11 0.14

A 116
5/2 0.81 1.05(10) 0.90 0.84
7/2 0.88 0.75(19) 0.86 0.79
1/2 0.52 0.60(5) 0.49 0.42
3/2 0.32 0.40(5) 0.20 0.31
11/2 0.15 0.30(7) 0.16 0.21

A 118
5/2 0.82 1.0(1) 0.88 0.86
7/2 0.81 0.78(19) 0.85 0.83
1/2 0.64 0.80(10) 0.48 0.55
3/2 0.38 0.60(8) 0.33 0.42
11/2 0.30 0.35(8) 0.30 0.28

A 120
5/2 0.94 1.00(9) 0.90 0.88
7/2 0.70 0.67(16) 0.88 0.87
1/2 0.70 0.95(10) 0.58 0.62
3/2 0.50 0.65(3) 0.43 0.51
11/2 0.42 0.38(9) 0.39 0.37

A 122
5/2 0.86 1.00(9) 0.92 0.89
7/2 0.58(16) 0.91 0.90
1/2 0.73 0.95(10) 0.67 0.66
3/2 0.51 0.65(9) 0.52 0.57
11/2 0.38(12) 0.48 0.49

A 124
5/2 0.94 1.00(9) 0.94 0.90
7/2 0.81(23) 0.93 0.93
1/2 0.80 0.95(10) 0.75 0.69
3/2 0.69 0.75(10) 0.62 0.62
11/2 0.38(12) 0.58 0.61

and two-body matrix elements with J � Jmax only. Jmax

denotes the maximal spin value of the two-body matrix
elements to be considered. Two different types of calculations
are presented in the figure. The solid symbols correspond to
the results calculated by diagonalizing the Hamiltonian H ′.
The expectation values of such a Hamiltonian with respect to
the corresponding wave functions |�I 〉 of the full Hamiltonian
H , 〈�I |H ′|�I 〉, are plotted as open symbols. It should
be mentioned that calculations with the original CD-Bonn
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FIG. 8. (Color online) Experimental [79,80] and calculated
B(E2) values on the transitions of the 10+

1 states in even Sn isotopes.
The lower panel gives the calculated occupancies of the 0h11/2 orbital
in the 10+ and 8+ states.

interaction and other realistic nucleon-nucleon potentials give
a similar pattern.

It is thus seen from Fig. 10 that both calculations give
similar results concerning the order of the 5/2+ and 7/2+
states. Calculations with the pairing matrix elements only (i.e.,
Jmax = 0) show that the pairing terms, in particular, the ele-
ment 〈0g2

7/2|V |0g2
7/2〉J=0 mentioned above, can significantly

reduce the gap between the two states, but were not strong
enough to induce the inversion. A sudden switch is seen when
the J = 6 two-body matrix elements are considered. It can be
seen from Fig. 10 that in both calculations, the exact results
are also approached by including terms with J � 6 only. This
is expected since the low-lying states of light tin isotopes
mainly occupy the nearly degenerate orbitals 0g7/2 and 1d5/2

for which the maximal spin is J = 6. Thus, the contribution
from interactions with higher spin values is marginal. Among
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0.6

0.8

1

1.2

1.4

1.6

1.8

2

N

Δ n(M
eV

)

 

 

Experiment
Calculation

FIG. 9. (Color online) Neutron pairing gaps in Sn isotopes
extracted from the experimental and calculated binding energies.
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TABLE V. Experimental [82] and calculated excitation energies (in MeV) and magnetic moments (in μN ) of the low-lying states in odd-A
Sn isotopes. Columns denoted by I and II correspond to calculations with the free and effective g factors, respectively.

Nucl. Iπ EExpt.
x ECal.

x μExpt. μCal.(I) μCal.(II)

103Sn 5/2+ 0 0 −1.856 −1.299
7/2+ 0.168 0.155 1.449 1.014

105Sn 5/2+ 0 0 −1.723 −1.206
7/2+ 0.1997 0.202 1.418 0.993

107Sn 5/2+ 0 0 −1.591 −1.114
7/2+ 0.151 0.241 1.345 0.942

109Sn 5/2+ 0 0 −1.079(6) −1.463 −1.024
7/2+ 0.0135 0.221 1.320 0.924

111Sn 7/2+ 0 0 0.608(4) 1.246 0.872
0.617(8)

5/2+ 0.154 −0.083 −1.353 −0.947
11/2− 0.979 0.766 −1.26(11) −1.741 −1.219

113Sn 1/2+ 0 0 −0.8791(6) −1.009 −0.706
3/2+ 0.498 0.0311 0.769 0.538
5/2+ 0.4098 0.0271 −0.455 −0.318
7/2+ 0.077 0.0314 1.278 0.895
11/2− 0.738 0.332 −1.30(2) −1.710 −1.197

−1.29(2)
115Sn 1/2+ 0 0 −0.91883(7) −1.088 −0.762

3/2+ 0.497 −0.045 0.793 0.555
5/2+ 0.987 0.724 −1.317 −0.922
7/2+ 0.613 0.403 0.683(10) 1.366 0.914
11/2− 0.714 0.237 −1.378(11) −1.745 −1.222

−1.369(4)
117Sn 1/2+ 0 0 −1.00104(7) −1.238 −0.867

3/2+ 0.159 −0.058 0.66(5) 0.790 0.553
7/2+ 0.7115 0.572 1.321 0.925
11/2− 0.315 0.171 −1.3955(10) −1.791 −1.253

119Sn 1/2+ 0 0 −1.04728(7) −1.268 −0.888
3/2+ 0.0239 −0.131 0.633(3) 0.854 0.598

0.682(3)
11/2− 0.0895 0.128 −1.40(8) −1.825 −1.278

121Sn 3/2+ 0 0 0.6978(10) 0.923 0.646
11/2− 0.0063 −0.0086 −1.3877(9) −1.844 −1.291

123Sn 11/2− 0 0 −1.3700(9) −1.854 −1.298
3/2+ 0.025 0.0703 1.005 0.703

125Sn 11/2− 0 0 −1.348(6) −1.866 −1.306
3/2+ 0.028 0.053 0.764(3) 1.071 0.750

127Sn 11/2− 0 0 −1.329(7) −1.885 −1.319
3/2+ 0.0047 −0.027 0.757(4) 1.106 0.774

129Sn 3/2+ 0 0 0.754(6) 1.128 0.789
11/2− 0.035 0.0912 −1.297(5) −1.907 −1.335

131Sn 3/2+ 0 0 0.747(4) 1.148 0.804
11/2− 0.069(14) −0.0225 −1.276(5) −1.913 −1.339

T = 1 matrix elements, the maximal spin one can have is
J = 10. It corresponds to the coupling of two nucleons in the
orbital 0h11/2. Calculations in the restricted 0g7/21d5/2 model
space give a result similar to Fig. 10.

Among the J = 6 two-body matrix elements, the ones
that contribute most to the spin inversion are the repul-
sive matrix element 〈0g2

7/2|V |0g2
7/2〉J=6 and the strongly

attractive one 〈0g7/21d5/2|V |0g7/21d5/2〉J=6. This can be
understood by considering the structure of the wave func-
tions of the two states. In the 5/2+ ground state in

103Sn, the leading component is |(0g2
7/2)J=01d5/2〉I [12].

Its overlap with the total wave function is calculated to
be |〈(0g2

7/2)J=01d5/2|�〉I | = 0.86. One can also construct
a three-body state starting from the pair |0g7/21d5/2〉J=6.
The overlap between the state thus constructed and the
total wave function is |(0g7/21d5/2)J=60g7/2|�〉I = 0.75.
The 〈0g7/21d5/2|V |0g7/21d5/2〉J=6 term induces a signif-
icant additional binding for the Jπ = 5/2+ state in
103Sn, as can be seen from Fig. 10. It should be
mentioned that states generated by the two couplings
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FIG. 10. (Color online) The calculated shell-model energies of
the first 5/2+ and 7/2+ states in 103Sn with a Hamiltonian H ′

containing the single-particle terms and two-body matrix elements
with J � Jmax. The solid symbols denote the eigenvalues of H ′

derived by diagonalizing the Hamiltonian matrix. The open symbols
denote the expectation values of H ′, 〈�I |H ′|�I 〉, with respect to the
corresponding wave functions |�I 〉 of the full Hamiltonian H , where
all matrix elements are taken into account.

|(0g2
7/2)J=01d5/2〉 and (0g7/21d5/2)J=60g7/2〉I are not per-

pendicular to each other. Their overlap is quite large,
〈(0g2

7/2)J=01d5/2|(0g7/21d5/2)J=60g7/2〉I = 0.74. This can be
evaluated analytically [83].

The overlaps of the total wave function of the first
7/2+ state 103Sn with its leading components are calculated
to be |〈(1d2

5/2)J=00g7/2|�〉I | = 0.65, |〈(0g2
7/2)J 0g7/2|�〉I | =

0.62, and |〈(0g7/21d5/2)J=61d5/2|�〉I | = 0.57. From a shell-
model point of view, the couplings |(0g2

7/2)J=00g7/2〉I and
|(0g2

7/2)J=60g7/2〉I generate exactly the same three-particle
state. All interaction terms 〈0g2

7/2|V |0g2
7/2〉J contribute to the

total energy of the state [83]. It may be interesting to mention
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FIG. 11. (Color online) Solid symbol: The overlaps between the
wave functions |�I 〉 of the full Hamiltonian H and those of the
pairing Hamiltonian with Jmax = 0 for the first 5/2+ and 7/2+ states
in light odd-A Sn isotopes. Open symbol: Same as above, but only
the nondiagonal pairing matrix elements are considered.

that the effect of the maximally aligned pair in single-j systems
was discussed in Refs. [84,85].

The influence of the pairing interaction on the structure of
tin isotopes was considered in a variety of approaches (see,
e.g., [31,32]). In Fig. 11, we calculated the overlaps between
the full shell-model wave functions and those calculated from
the pairing Hamiltonian including the single-particle terms
and the J = 0 pairing matrix elements. It is thus seen that
the nondiagonal pairing matrix elements 〈j 2|V |j ′2〉J=0 play
an essential role in inducing the configuration mixing in the
first 5/2+ and 7/2+ states of odd-A tin isotopes. The overlap
gradually decreases when the number of valence neutrons
increases. This is consistent with the generalized seniority
model calculations in Ref. [30], namely, the overlap between
the full wave functions and seniority-truncated state also
decreases with increasing neutron number.

V. SUMMARY

The structure properties of light tin isotopes are calculated
with a global optimized effective interaction. The unknown
single-particle energies of the orbitals 1d3/2, 2s1/2, and 0h11/2

and the monopole interactions are refined by fitting to
experimental binding energies. A total number of 157 states in
102−132Sn are considered in the fitting. The binding energies of
these states can be reproduced within an average deviation of
about 120 keV. The largest deviation is around 400 keV, which
is seen in the nucleus 115Sn. With the effective Hamiltonian
thus derived, we calculate the contributions of the monopole
and multipole Hamiltonian to the total shell-model energies.
The excitation energies of the low-lying even spin states in even
Sn isotopes are presented. We also evaluated the shell-model
occupancies in the ground states of these nuclei. Detailed
systematic calculations on the spectra and decay properties of
tin isotopes as well as the list of the two-body matrix elements
will be presented in Ref. [75].

We analyze the origin of the spin inversion between the
7/2+ and 5/2+ states in 103Sn and heavier odd tin isotopes in
order to explore the possible influence of different interaction
channels. We thus find that both the J = 0 pairing and the
maximally aligned J = 6 two-body matrix elements produce
strong additional binding for the 5/2+ states. The nondiagonal
pairing matrix elements play an essential role in inducing the
mixing of different configurations in the wave functions of
these states.

Within the framework as described in this paper, we have
done a preliminary optimization of the T = 0 monopole
interaction by fitting to the binding energies of Sb, Te, and
I isotopes around the N = 50 and 82 shell closures. This will
be available in Ref. [75].
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