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Neutron number dependence of the energies of the γ -vibrational states in nuclei with
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Background: The symmetry-guided methods have shown their power over many years of nuclear physics
research. It was found that the concept of the pseudospin symmetry is very helpful in providing a simple
explanation of many features of heavy nuclei.
Purpose: To show, based on the results of calculations of the energies of the γ -vibrational states in nuclei with
Z ∼ 100, that the experimental data on these energies will give us information indicating how well the pseudospin
symmetry is realized in these exotic nuclei.
Method: The quasiparticle-phonon model is used to calculate the energies of the γ -vibrational states.
Results: It is shown that the energies of the γ -vibrational states in the Cm, Cf, Fm, No, and Rf isotopes considered
as the functions of the number of neutrons N have a minimum at N = 156 when the neutron Fermi level lies
just between the following neutron single particle levels: 3/2[622] and 1/2[620] which belong to the pseudospin
doublet. It is shown that the corresponding two-quasiparticle component gives the main contribution to the
structure of the γ phonon.
Conclusion: The experimental information on the energies of the γ -vibrational states in nuclei with Z ∼ 100
can be used to determine a splitting of the ˜[521] pseudospin doublet.
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I. INTRODUCTION

It is well known that in nuclear theory the mean field
concept plays the role of the basic approach for several more
specific advanced theories. These theories can be built upon
introducing the single particle mean field basis. Therefore it
is very important for the whole field of nuclear structure to
examine and use the consequences of the underlying mean
field symmetries even if these symmetries are approximate.

The pseudospin symmetry [1–3] is known as an approxi-
mate symmetry of the nuclear mean field. This symmetry is
manifested in the nuclear excitation spectra by the presence of
the quasidegenerate doublets. At the same time, the existence
of this symmetry is strongly related to the strength of the
spin-orbit interaction term of the nuclear mean field.

Dynamical symmetry implies the existence of a charac-
teristic multiplet structure. These multiplets are characterized
by a magnitude of the multiplet splitting. The characteristic
magnitude of the splitting of the pseudospin doublets in
spherical nuclei is of the order of 0.1h̄ω0, where h̄ω0 is the
frequence of the harmonic oscillator approximating nuclear
mean field. However, this splitting demonstrates a dependence
on the ratio between the numbers of protons and neutrons in
the nucleus, and it is very small in some nuclei.

Single particle pseudospin doublets in the well-deformed
nuclei are characterized by a projection of the pseudo-orbital
momentum on the axial symmetry axis. The splitting of
these doublets are several times smaller than in spherical
nuclei. The calculations performed in [4] have shown that the
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goodness of the pseudospin symmetry improves if the nucleon
binding energy decreases and the pseudo-orbital momentum
decreases also. Therefore, weakly bound exotic nuclei are the
most exciting ones to search for the pseudospin symmetry
manifestation.

It is well known from many calculations of the structure
of the γ -vibrational states in the well-deformed axially sym-
metric nuclei [5] that the structure of the γ phonons is mainly
exhausted by a rather small number of the two-quasiparticle
components. Due to this fact the energy of the γ -vibrational
state can be strongly influenced by the presence of the low-
energy two-quasiparticle state with Kπ = 2+. This happens
if near the Fermi level are located two nearly lying single
particle states having the same parities and the projections
of the angular momentum on the axial symmetry axis whose
sum or difference is equal to K = 2. Such closely lying single
particle states can be the members of the pseudospin doublet.
It is the aim of the present paper to calculate the energies of
the γ -vibrational states for the sequences of the isotopes of
the elements with Z ∼ 100 and investigate the influence of the
appearance of the pseudospin doublets near the Fermi level on
the energies of the γ -vibrational states

In Sec. II we present information on the theoretical
approach used in the calculations and on the single particle
level scheme on which our calculations are based. In Sec. III
the results of calculations of the energies and the structure of
the γ -vibrational states in the even-even isotopes of Cm, Cf,
Fm, No, and Rf are discussed.

II. QUASIPARTICLE-PHONON MODEL

The Hamiltonian of the quasiparticle-phonon model [5]
contains the mean fields for protons and neutrons, monopole
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TABLE I. Parameters of the Woods-Saxon potential used in the
calculations.

A isospin V0, MeV r0, fm a, fm κ , fm2

243 n 46.0 1.26 0.72 0.430
243 p 62.0 1.24 0.65 0.370

pairing, and the multipole-multipole interaction, both isoscalar
and isovector, acting in the particle-hole and the particle-
particle channels:

H = Hsp + Vpair + V
ph

M + V
pp

M . (1)

Here Hsp is a one-body Hamiltonian, Vpair describes the
monopole pairing, V ph

M and V
pp

M are the particle-hole separable
multipole interaction and particle–particle multipole pairing
interaction, respectively.

As the mean field term we have taken the Woods-Saxon
potential

Vsp(�r) = VWS(�r) + Vso(�r),

VWS(�r) = −V0 (1 + exp[(r − R(θ, ϕ))/a])−1 , (2)

Vso(�r) = −κ( �p × σ )∇VWS(�r)

with the parameters taken from [6]. They are presented in
Table I. These parameters are quite close to those used in the
calculations for the rare earth nuclei [6,7].

In the last years many calculations of the self-consistent
nuclear mean field have been performed. They are based on
different choices of the energy density functional [8–11]. Our
approach is not self-consistent. For this reason it is necessary
to justify a possibility to use the Woods-Saxon shape of the
single particle potential for nuclei with Z ∼100. This was
discussed in details in [12]. Here we repeat the main points of
the discussion.

The experimentally investigated nuclei with Z ∼100 are
deformed [13–15]. Beautiful experimental confirmation of the
quadrupole deformation of the heavy elements with Z ∼100
comes from γ -ray spectroscopy around Z = 102 and N =
152. The deformation leads to a more equal distribution of the
single particle states emerging from the high-j (for these states
the maximum of the single particle wave function is shifted
closer to the nuclear surface) and low-j spherical subshells.
For this reason a density profile of a deformed nucleus is
relatively flat inside a nucleus [16–18]. This resembles the
use of the phenomenological Woods-Saxon potential for these
nuclei.

A comparison of the results of the self-consistent cal-
culations with the single particle spectra obtained with the
Woods-Saxon potential demonstrates a very good agreement
for neutrons [19]. The large gaps in the single particle spectra
for neutrons at N = 152 and protons at Z = 96 and 100 are
clearly seen. Our proton single particle scheme confirms an
existence of the gaps at Z = 96 and Z = 100. In addition, the
results obtained in [20] and [21] indicate on the existence of
the proton 1/2−[521] and 7/2−[514] single particle states near
the Fermi level at Z = 103 in agreement with our scheme.

The values of the diffusion parameter used in our calcula-
tions have been fixed in the investigations of the properties of
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FIG. 1. The neutron single particle level scheme of the Woods-
Saxon potential calculated with the parameters given in Table I.

the actinide nuclei [6]. They are close to the values used in [22]
where a = 0.70 fm for neutrons and a = 0.68 fm for protons.

There is some experimental information about the
quadrupole deformation parameter β2. Although the lifetimes
have not been measured, the B(E2) values of rotors are related
to the energies of the first 2+ levels by the empirical Grodzins
relation [23]. Using this relation the value β2 = 0.27(2) has
been deduced for 254No [24]. The recent calculations [25]
give the value β2 = 0.26 for nuclei with Z = 96–104 and
N = 148–156. The results of calculations presented in [26]
demonstrate a stability of the quadrupole deformation for
nuclei with Z = 100–104. For these reasons we have used
the same value of β2 = 0.26 for all considered nuclei. A
comparison of the single particle energies of the levels lying
around the Fermi surface and calculated for β2 = 0.25 and
β2 = 0.27 with those obtained for β2 = 0.26 show that in
many cases deviations are less than 100 keV. Although
for some states they take the values 150 keV or even
350 keV.

The neutron and proton single particle energies calcu-
lated with the Woods-Saxon potential as function of the
deformation parameter β2 are show in Figs. 1 and 2 taken
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FIG. 2. The proton single particle level scheme of the Woods-
Saxon potential calculated with the parameters given in Table I.

from [12]. Only fragments of the single particle schemes are
presented.

In these figures the single particle levels are characterized
by the asymptotic quantum numbers K[Nnz
]. The parity of
the single particle states π is given by (−1)N .

If we compare the neutron single particle level scheme in
Fig. 1 with the single particle energies extracted from the
experimental data in [27] (Fig. 6 in [27]) we see in both cases
just above N = 152 (only these neutron levels are shown in
[27]) the same closely lying single particle levels, namely,
7/2+[613], 1/2+[620], 3/2+[622], and 11/2−[725]. There is,
however, a small difference in the ordering of the first two
levels. We mention, however, that in [27] the energies of the
neutron single particle levels have been extracted from the
experimental data without taking into account the particle-
vibration coupling.

The analysis of the proton single particle states [28] shows
that the lowest states just above the gap at Z = 96 are
7/2+[633] and 3/2−[521] orbitals. The next three orbitals
are 7/2−[514], 1/2−[521], and 9/2+[624]. This is just in a
correspondence with the level scheme presented in Fig. 2 and
calculated at β2 = 0.26.

TABLE II. The experimental and the calculated energies of the
Kπ = 2+ γ -vibrational states. The energies are given in keV. The
quadrupole interaction constant κ22 is given in fm2/MeV. This
dimension of the interaction constant is determined by the use of
the radial derivative of the Woods-Saxon potential as a form factor of
the multipole-multipole interaction. The experimental data are taken
from [31].

Nucleus E(2+
γ )exp E(2+

γ )calc

κ22 = 0.0174 κ22 = 0.0165 κ22 = 0.0150

246Cm 1124 1225 1432 1680
248Cm 1049 997 1229 1492
248Cf – 1289 1478 1708
250Cf 1032 1079 1282 1517
252Cf 805 781 987 1207
254Cf – 553 758 957
256Cf – 612 834 1058
250Fm – 1181 1354 1543
252Fm – 1021 1225 1462
254Fm 694 735 933 1148
256Fm 682 510 713 909
258Fm – 586 812 1042
252No – 1261 1461 1703
254No – 1065 1274 1520
256No – 809 1018 1251
258No – 531 725 914
260No – 602 826 1052
254Rf – 1291 1478 1626
256Rf – 1077 1277 1497
258Rf – 833 1049 1286
260Rf – 539 731 917
262Rf – 606 832 1057

The strength of the monopole pairing interaction has been
adjusted to reproduce the experimental values of the odd-even
mass differences for all considered nuclei.

The quadrupole-quadrupole interaction in the particle-hole
channel is used below as the residual forces. The factorized
multipole-multipole forces used in this paper are rather
schematic. However, because the universal nucleon-nucleon
interaction in heavy nuclei is not yet derived microscopically, it
is preferred to use the forces adjusted to selected experimental
data. The factorized multipole-multipole interactions have
been used in many calculations of the properties of the
low-lying collective and two-quasiparticle states performed
in the framework of the quasiparticle-phonon model [5,7,29].
Thus, we can say that these forces have been tested in the
known regions of the nuclide chart. Good agreement with the
experimental data obtained previously shows that the model
can be used to predict the properties of nuclei in the new
region. As the result of the previous calculations we know
the values of the multipole-multipole interaction constants
determined for the rare earth and actinide regions. At the
same time we know from the self-consistent estimates of the
interaction constants of the multipole-multipole forces that
they are smooth functions of the mass number A [30].
Therefore we can extrapolate the interaction constants from the
known regions of Z and A to nuclei with Z ∼ 100.
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TABLE III. The quasiparticle structure of the calculated Kπ = 2+ γ -vibrational states of 246,248Cm, 248−256Cf, and 250−258Fm. The quantum
numbers of the most important two-quasiparticle components and their contribution (in %) to the norm of the γ phonon are shown. The
quadrupole interaction constant κ22 is given in fm2/MeV.

Nucleus Structure (in %)

κ22 = 0.0174 κ22 = 0.0165 κ22 = 0.0150

246Cm nn 7/2[624] ⊗ 3/2[622] 23 nn 7/2[624] ⊗ 3/2[622] 27 nn 7/2[624] ⊗ 3/2[622] 35
nn 5/2[622] ⊗ 1/2[620] 20 nn 5/2[622] ⊗ 1/2[620] 22 nn 5/2[622] ⊗ 1/2[620] 25
pp 3/2[651] ⊗ 1/2[660] 7 pp 3/2[651] ⊗ 1/2[660] 7 pp 3/2[651] ⊗ 1/2[660] 6

246Cm nn 7/2[624] ⊗ 3/2[622] 30 nn 7/2[624] ⊗ 3/2[622] 36 nn 7/2[624] ⊗ 3/2[622] 51
nn 3/2[622] ⊗ 1/2[620] 12 nn 3/2[622] ⊗ 1/2[620] 12 nn 3/2[622] ⊗ 1/2[620] 12
nn 5/2[622] ⊗ 1/2[620] 12 nn 5/2[622] ⊗ 1/2[620] 12 nn 5/2[622] ⊗ 1/2[620] 10
pp 3/2[651] ⊗ 1/2[660] 5

248Cf nn 7/2[624] ⊗ 3/2[622] 24 nn 7/2[624] ⊗ 3/2[622] 29 nn 7/2[624] ⊗ 3/2[622] 37
nn 5/2[622] ⊗ 1/2[620] 20 nn 5/2[622] ⊗ 1/2[620] 23 nn 5/2[622] ⊗ 1/2[620] 26
nn 3/2[622] ⊗ 1/2[620] 6 nn 3/2[622] ⊗ 1/2[620] 6 nn 3/2[622] ⊗ 1/2[620] 5
pp 3/2[521] ⊗ 1/2[521] 8 pp 3/2[521] ⊗ 1/2[521] 8 pp 3/2[521] ⊗ 1/2[521] 8

250Cf nn 7/2[624] ⊗ 3/2[622] 31 nn 7/2[624] ⊗ 3/2[622] 38 nn 7/2[624] ⊗ 3/2[622] 52
nn 3/2[622] ⊗ 1/2[620] 12 nn 3/2[622] ⊗ 1/2[620] 13 nn 3/2[622] ⊗ 1/2[620] 11
nn 5/2[622] ⊗ 1/2[620] 11 nn 5/2[622] ⊗ 1/2[620] 11 nn 5/2[622] ⊗ 1/2[620] 10
pp 3/2[521] ⊗ 1/2[521] 7 pp 3/2[521] ⊗ 1/2[521] 7 pp 3/2[521] ⊗ 1/2[521] 6

252Cf nn 3/2[622] ⊗ 1/2[620] 39 nn 3/2[622] ⊗ 1/2[620] 48 nn 3/2[622] ⊗ 1/2[620] 63
nn 7/2[624] ⊗ 3/2[622] 16 nn 7/2[624] ⊗ 3/2[622] 16 nn 7/2[624] ⊗ 3/2[622] 13
nn 7/2[613] ⊗ 3/2[611] 6 nn 7/2[613] ⊗ 3/2[611] 5
nn 5/2[622] ⊗ 1/2[620] 6

254Cf nn 3/2[622] ⊗ 1/2[620] 55 nn 3/2[622] ⊗ 1/2[620] 66 nn 3/2[622] ⊗ 1/2[620] 81
nn 7/2[624] ⊗ 3/2[622] 8 nn 7/2[624] ⊗ 3/2[622] 6
nn 7/2[613] ⊗ 3/2[611] 6

256Cf nn 3/2[622] ⊗ 1/2[620] 47 nn 3/2[622] ⊗ 1/2[620] 59 nn 3/2[622] ⊗ 1/2[620] 76
nn 7/2[613] ⊗ 3/2[611] 7 nn 7/2[613] ⊗ 3/2[611] 6
nn 9/2[615] ⊗ 5/2[613] 7 nn 9/2[615] ⊗ 5/2[613] 6

250Fm nn 7/2[624] ⊗ 3/2[622] 15 nn 7/2[624] ⊗ 3/2[622] 15 nn 7/2[624] ⊗ 3/2[622] 10
nn 5/2[622] ⊗ 1/2[620] 14 nn 5/2[622] ⊗ 1/2[620] 14 nn 5/2[622] ⊗ 1/2[620] 10
pp 3/2[521] ⊗ 1/2[521] 33 pp 3/2[521] ⊗ 1/2[521] 40 pp 3/2[521] ⊗ 1/2[521] 41

pp 7/2[514] ⊗ 3/2[521] 23
252Fm nn 7/2[624] ⊗ 3/2[622] 23 nn 7/2[624] ⊗ 3/2[622] 26 nn 7/2[624] ⊗ 3/2[622] 31

nn 3/2[622] ⊗ 1/2[620] 10 nn 3/2[622] ⊗ 1/2[620] 10 nn 3/2[622] ⊗ 1/2[620] 9
nn 5/2[622] ⊗ 1/2[620] 10 nn 5/2[622] ⊗ 1/2[620] 10 nn 5/2[622] ⊗ 1/2[620] 8
pp 3/2[521] ⊗ 1/2[521] 22 pp 3/2[521] ⊗ 1/2[521] 25 pp 3/2[521] ⊗ 1/2[521] 31

254Fm nn 3/2[622] ⊗ 1/2[620] 37 nn 3/2[622] ⊗ 1/2[620] 45 nn 3/2[622] ⊗ 1/2[620] 58
nn 7/2[624] ⊗ 3/2[622] 15 nn 7/2[624] ⊗ 3/2[622] 15 nn 7/2[624] ⊗ 3/2[622] 12
nn 7/2[613] ⊗ 3/2[611] 6
pp 3/2[521] ⊗ 1/2[521] 11 pp 3/2[521] ⊗ 1/2[521] 11 pp 3/2[521] ⊗ 1/2[521] 9

256Fm nn 3/2[622] ⊗ 1/2[620] 54 nn 3/2[622] ⊗ 1/2[620] 65 nn 3/2[622] ⊗ 1/2[620] 80
nn 7/2[624] ⊗ 3/2[622] 8 nn 7/2[624] ⊗ 3/2[622] 6
nn 7/2[613] ⊗ 3/2[611] 6
pp 3/2[521] ⊗ 1/2[521] 6 pp 3/2[521] ⊗ 1/2[521] 5

258Fm nn 3/2[622] ⊗ 1/2[620] 44 nn 3/2[622] ⊗ 1/2[620] 55 nn 3/2[622] ⊗ 1/2[620] 73
nn 7/2[613] ⊗ 3/2[611] 7 nn 7/2[613] ⊗ 3/2[611] 6
nn 9/2[615] ⊗ 5/2[613] 7 nn 9/2[615] ⊗ 5/2[613] 6
pp 3/2[521] ⊗ 1/2[521] 8 pp 3/2[521] ⊗ 1/2[521] 7 pp 3/2[521] ⊗ 1/2[521] 5

Then, the Hamiltonian (1) is expressed in terms of the
quasiparticle creation and annihilation operators obtained
from the corresponding particle operators through the u-v
Bogoliubov transformation. The quasiparticle Hamiltonian
is then adopted to solve the RPA eigenvalue equations and
generates the RPA phonon operators.

III. GAMMA-VIBRATIONAL STATES

The γ -vibrational states can be considered as the most
collective vibrational excitations in many well-deformed
axially symmetric nuclei. They have been observed in many
nuclei and are well-understood theoretically. However, the
experimental information on these excitations in nuclei with
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TABLE IV. The quasiparticle structure of the calculated Kπ = 2+ γ -vibrational states of 252−260No and 254−262Rf. The quantum numbers
of the most important two-quasiparticle components and their contribution (in %) to the norm of the γ phonon are shown. The quadrupole
interaction constant κ22 is given in fm2/MeV.

Nucleus Structure (in %)

κ22 = 0.0174 κ22 = 0.0165 κ22 = 0.0150

252No nn 5/2[622] ⊗ 1/2[620] 17 nn 5/2[622] ⊗ 1/2[620] 18 nn 5/2[622] ⊗ 1/2[620] 19
nn 7/2[624] ⊗ 3/2[622] 17 nn 7/2[624] ⊗ 3/2[622] 18 nn 7/2[624] ⊗ 3/2[622] 19
nn 3/2[622] ⊗ 1/2[620] 5 nn 3/2[622] ⊗ 1/2[620] 5
pp 3/2[521] ⊗ 1/2[521] 21 pp 3/2[521] ⊗ 1/2[521] 25 pp 3/2[521] ⊗ 1/2[521] 33

254No nn 7/2[624] ⊗ 3/2[622] 25 nn 7/2[624] ⊗ 3/2[622] 29 nn 7/2[624] ⊗ 3/2[622] 37
nn 3/2[622] ⊗ 1/2[620] 11 nn 3/2[622] ⊗ 1/2[620] 11 nn 3/2[622] ⊗ 1/2[620] 11
nn 5/2[622] ⊗ 1/2[620] 11 nn 5/2[622] ⊗ 1/2[620] 10 nn 5/2[622] ⊗ 1/2[620] 9
pp 3/2[521] ⊗ 1/2[521] 16 pp 3/2[521] ⊗ 1/2[521] 18 pp 3/2[521] ⊗ 1/2[521] 21

256No nn 3/2[622] ⊗ 1/2[620] 34 nn 3/2[622] ⊗ 1/2[620] 41 nn 3/2[622] ⊗ 1/2[620] 55
nn 7/2[624] ⊗ 3/2[622] 16 nn 7/2[624] ⊗ 3/2[622] 16 nn 7/2[624] ⊗ 3/2[622] 14
nn 7/2[613] ⊗ 3/2[611] 6 nn 7/2[613] ⊗ 3/2[611] 5
nn 5/2[622] ⊗ 1/2[620] 6 nn 5/2[622] ⊗ 1/2[620] 5
pp 3/2[521] ⊗ 1/2[521] 10 pp 3/2[521] ⊗ 1/2[521] 9 pp 3/2[521] ⊗ 1/2[521] 8

258No nn 3/2[622] ⊗ 1/2[620] 56 nn 3/2[622] ⊗ 1/2[620] 66 nn 3/2[622] ⊗ 1/2[620] 81
nn 7/2[624] ⊗ 3/2[622] 7 nn 7/2[624] ⊗ 3/2[622] 6
nn 7/2[613] ⊗ 3/2[611] 6
pp 3/2[521] ⊗ 1/2[521] 5

260No nn 3/2[622] ⊗ 1/2[620] 46 nn 3/2[622] ⊗ 1/2[620] 57 nn 3/2[622] ⊗ 1/2[620] 75
nn 7/2[613] ⊗ 3/2[611] 7 nn 7/2[613] ⊗ 3/2[611] 6
nn 9/2[615] ⊗ 5/2[613] 7 nn 9/2[615] ⊗ 5/2[613] 6
pp 3/2[521] ⊗ 1/2[521] 5

254Rf nn 7/2[624] ⊗ 3/2[622] 21 nn 7/2[624] ⊗ 3/2[622] 21 nn 7/2[624] ⊗ 3/2[622] 82
nn 5/2[622] ⊗ 1/2[620] 19 nn 5/2[622] ⊗ 1/2[620] 19
nn 3/2[622] ⊗ 1/2[620] 6
pp 3/2[521] ⊗ 1/2[521] 8 pp 3/2[521] ⊗ 1/2[521] 17
pp 5/2[512] ⊗ 1/2[521] 8 pp 5/2[52] ⊗ 1/2[521] 8

256Rf nn 7/2[624] ⊗ 3/2[622] 31 nn 7/2[624] ⊗ 3/2[622] 36 nn 7/2[624] ⊗ 3/2[622] 39
nn 3/2[622] ⊗ 1/2[620] 12 nn 3/2[622] ⊗ 1/2[620] 12 nn 3/2[622] ⊗ 1/2[620] 9
nn 5/2[622] ⊗ 1/2[620] 12 nn 5/2[622] ⊗ 1/2[620] 11 nn 5/2[622] ⊗ 1/2[620] 8
pp 3/2[521] ⊗ 1/2[521] 6 pp 3/2[521] ⊗ 1/2[521] 6 pp 3/2[521] ⊗ 1/2[521] 24

258Rf nn 3/2[622] ⊗ 1/2[620] 35 nn 3/2[622] ⊗ 1/2[620] 43 nn 3/2[622] ⊗ 1/2[620] 57
nn 7/2[624] ⊗ 3/2[622] 16 nn 7/2[624] ⊗ 3/2[622] 17 nn 7/2[624] ⊗ 3/2[622] 15
nn 7/2[613] ⊗ 3/2[611] 6 nn 7/2[613] ⊗ 3/2[611] 5
nn 5/2[622] ⊗ 1/2[620] 6 nn 5/2[622] ⊗ 1/2[620] 5

260Rf nn 3/2[622] ⊗ 1/2[620] 57 nn 3/2[622] ⊗ 1/2[620] 68 nn 3/2[622] ⊗ 1/2[620] 82
nn 7/2[624] ⊗ 3/2[622] 8 nn 7/2[624] ⊗ 3/2[622] 6
nn 7/2[613] ⊗ 3/2[611] 6

262Rf nn 3/2[622] ⊗ 1/2[620] 47 nn 3/2[622] ⊗ 1/2[620] 59 nn 3/2[622] ⊗ 1/2[620] 77
nn 7/2[613] ⊗ 3/2[611] 7 nn 7/2[613] ⊗ 3/2[611] 6
nn 9/2[615] ⊗ 5/2[613] 7 nn 9/2[615] ⊗ 5/2[613] 6
nn 7/2[624] ⊗ 3/2[622] 6

Z ∼ 100 is rather scarce. The γ -vibrational excitations have
been observed only in 246,248Cm, 250,252Cf, and 254,256Fm.

The results of our calculations of the energies and the two-
quasiparticle structure of the γ -vibrational states are presented
in Tables II, III, and IV for three values of the interaction
constant of the quadrupole-quadrupole forces in the particle-
hole channel. The value of κ22 = 0.0174 was fixed previously
in the calculations for U isotopes. As it is seen from Table II
with this value of κ22 we obtain a good description of the known
experimental data. The results for the other two values of κ22

are shown in order to get an idea of sensitivity of the energies

of γ phonons to variations of κ22. The results presented in
Tables II–IV are obtained without taking into account a mixing
of the one-phonon and two-phonon states.

The results given in Table II show that for all considered
elements the energy of the γ -vibrational state takes its
minimum in nuclei with the number of neutrons equal to N =
156. To understand this fact let us analyze the quasiparticle
structure of the γ phonon. It is seen from Tables III and IV
that if the number of neutrons approaches the value N = 156
the contribution of the two-quasiparticle component 3/2[622]
⊗ 1/2[620] to the norm of the γ -vibrational one phonon state
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becomes the largest one. It is seen from Fig. 1 (left part) that
at N = 156 and β2 = 0.26 the neutron Fermi level is located
between the single particle states 3/2+[622] and 1/2+[620]
and therefore the two-quasiparticle state consisting of these
quasiparticles has the smallest energy compared to the other
two-quasiparticle states. This energy is equal to 1.251 MeV.
This explains why the energy of the γ -vibrational one phonon
state has a minimum when the number of neutrons is equal
to N = 156. The other important neutron two-quasiparticle
component 7/2[613]⊗3/2[622] has at N = 156 the energy
1.343 MeV. However, our calculations have shown that the
energy of this two-quasiparticle component has its minimum
not at N = 156 but at N = 154. The energies of the others
neutron two-quasiparticle components are larger than 2 MeV
if N = 156.

To verify further the effect of the neutron two-quasiparticle
component 3/2[622]⊗1/2[620] on the neutron number de-
pendence of the energies of the γ -vibrational states we have
shifted artificially the energy of the neutron single particle
state 3/2[622] up, i.e., decreased its binding, by 0.6 MeV
and 1.2 MeV. As the result there appear two and three
others neutron single particle states, respectively, between
the 1/2[620] and 3/2[622] neutron single particle states at
β2 = 0.26. This shift of the energy of the single particle state
changes the neutron number dependence of the energy of the
γ -vibrational state in such a way that the minimum at N = 156
disappears and E(2+

γ ) decreases continuously if N increases
from N = 150 to N = 160. The absolute value of E(2+

γ ) is
increased because of this shift of the energy of the single
particle neutron state 3/2+[622] for all considered isotopes.
This fact indicate on the strong neutron number dependence
of the E(2+

γ ) and its absolute value on a relative position of
the neutron single particle states 1/2[620] and 3/2[622].

The single particle neutron states 3/2+[622] and 1/2+[620]
are the members of the pseudospin doublet with the quantum
numbers [Ñ ñ3
̃] = [521]. The connection of the pseudospin
quantum numbers to the Nilsson asymptotic quantum num-
bers [Nnz
1,2] is the following: Ñ = N − 1, ñ3 = n3, 
̃ =
1
2 (
1 + 
2). Our discussion above have shown that the
difference between the single particle energies of these states
influences on the neutron number dependence and the absolute
energy value of the γ -vibrational state. Small splitting of the
1/2[620] and 3/2[622] single particle state will mean that the

pseudospin symmetry is approximately preserved. Thus, the
experimental observation (or nonobservation) of the minimum
of the energy of the γ -vibrational one phonon state when
the number of neutrons is equal to N = 156 is important
for studying manifestation of the pseudospin symmetry in
very heavy exotic nuclei. The value of E(2+

γ ) at N = 156
gives an information on the splitting of the pseudospin doublet
[Ñ ñ3
̃] = [521].

To get the feeling of the effect of the mixing of the
one-phonon and the two-phonon states we have performed
the calculations for the Cf isotopes with and without the
mixing. The results of the calculations have shown that the
mixing of the one-phonon and the two-phonon states decreases
the energies of the E(2+

γ ) states approximately by 50 keV.
However, this mixing does not influence on the neutron
number dependence of the E(2+

γ ) and keeps the minimum
at N = 156. Approximately 98% of the norm of the state
vectors corresponding to the γ -vibrational states obtained in
the calculations including the mixing effect are provided with
the one-phonon component.

IV. SUMMARY

Based on the quasiparticle-phonon model we have calcu-
lated the energies and the two-quasiparticle structure of the
γ -vibrational states. The results of calculations show that in
the isotopes of Cm, Cf, Fm, No, and Rf the energies of the one-
phonon γ -vibrational states have a minimum if the number
of neutrons is equal to N = 156. In addition, a contribution
of the two-quasiparticle component 3/2+[622]⊗1/2+[620] to
the norm of the γ -vibrational one-phonon state becomes the
largest one at N = 156. The single particle states 3/2+[622]
and 1/2+[620] are the members of the pseudospin doublet.
Thus, the experimental information on the energies of the
γ -vibrational states in nuclei with Z ∼ 100 can be used to
determine a splitting of the ˜[521] pseudospin doublet.
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